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A B S T R A C T   

Markers of cerebral small vessel disease (CSVD) have previously been associated with age-related cognitive 
decline. Using longitudinal data of cognitively healthy, older adults (N = 216, mean age at baseline = 70.9 
years), we investigated baseline status and change in white matter hyperintensities (WMH) (total, periven
tricular, deep), normal appearing white matter (NAWM), brain parenchyma volume (BPV) and processing speed 
over seven years as well as the impact of different covariates by applying latent growth curve (LGC) models. 
Generally, we revealed a complex pattern of associations between the different CSVD markers. More specifically, 
we observed that changes of deep WMH (dWMH), as compared to periventricular WMH (pWMH), were more 
strongly related to the changes of other CSVD markers and also to baseline processing speed performance. 
Further, the number of lacunes rather than their volume reflected the severity of CSVD. With respect to the 
studied covariates, we revealed that higher education had a protective effect on subsequent total WMH, pWMH, 
lacunar number, NAWM volume, and processing speed performance. The indication of antihypertensive drugs 
was associated with lower lacunar number and volume at baseline and the indication of anti
hypercholesterolemic drugs came along with higher processing speed performance at baseline. In summary, our 
results confirm previous findings, and extend them by providing information on true within-person changes, 
relationships between the different CSVD markers and brain-behavior associations. The moderate to strong as
sociations between changes of the different CSVD markers indicate a common pathological relationship and, 
thus, support multidimensional treatment strategies.   

1. Introduction 

The medical term «cerebral small vessel disease» (CSVD) refers to 
clinical and imaging findings that result from abnormalities in perfo
rating cerebral arterioles, capillaries, and venules (Shi and Wardlaw, 
2016). In accordance to the STandards for ReportIng Vascular changes 
on nEuroimaging (STRIVE), signs of CSVD include recent small 
subcortical infarcts, white matter hyperintensities (WMH) of presumed 
vascular origin, lacunes of presumed vascular origin, perivascular spaces 
(PVS), cerebral microbleeds, and brain atrophy (Wardlaw et al., 2013). 
Singly, these lesions may be clinically silent, and many affected in
dividuals are asymptomatic, but in combination and in increasing 
number, single CSVD markers are associated with cognitive impairment, 

dementia, depression, gait problems, and increased risk of stroke 
(Debette et al., 2019). According to Pantoni (2010), 45% of dementia 
cases, 25% of ischemic (or lacunar) strokes, and 20% of all strokes 
around the globe are caused by CSVD. In turn, with the rapidly aging 
population, cognitive impairment due to CSVD is becoming more com
mon (Baker et al., 2012), and burdens societies worldwide. Advanced 
age is strongly associated with WMH (Brickman et al., 2008b; Chowd
hury et al., 2011), reflected by the fact that up to 90% of the adult 
population older than 65 years present WMH on magnetic resonance 
images (MRI) (Schmidt et al., 2016). Higher age is also an important risk 
factor for lacunes (Ghaznawi et al., 2019), whose prevalence ranges 
from 11% to 31% in healthy older (Bernick et al., 2001; Han et al., 2018; 
Howard et al., 1998; Longstreth et al., 1998; Price et al., 1997; Schmidt 
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et al., 2005; Vermeer et al., 2002). Another major risk factor for WMH 
and lacunes is hypertension (Dufouil et al., 2001) – specifically a high 
systolic blood pressure (Maillard et al., 2012). Other risk factors previ
ously identified are smoking (Gons et al., 2011; Jeerakathil et al., 2004; 
Moroni et al., 2018), type-2 diabetes (Ling and Chabriat, 2020; van 
Harten et al., 2007), late-life depression (Firbank et al., 2012; Herrmann 
et al., 2008), and recently also visceral obesity (Kim et al., 2017; Lampe 
et al., 2019b). On the positive side, it has been shown that lifestyle ad
justments, like physical activities, for which robust evidence exists in the 
secondary prevention of cardiovascular events (Williams et al., 2018), 
can slow the progression of CSVD (Franchetti et al., 2020; Landman 
et al., 2021; Torres et al., 2015). In addition, reserve and compensatory 
mechanisms slow down the progression of CSVD, at least until these 
mechanisms are exhausted and functional performance declines after all 
(Ter Telgte et al., 2018). 

Frequently reported pathophysiology of WMH are demyelination, 
loss of oligodendrocytes, and axonal damage (Fazekas et al., 1993; 
Fazekas et al., 1998; Gouw et al., 2011; Grueter and Schulz, 2012; Shi 
and Wardlaw, 2016). Other studies also suggest fluid leakage due to a 
disrupted blood–brain barrier (BBB) (Black et al., 2009; Muñoz Maniega 
et al., 2017), as well as ischemia, infarction, inflammation, increased 
vascular permeability, and venous insufficiency as causes (E. Smith 
et al., 2017). Importantly, different appearances of WMH indicate 
different degrees of severity of the underlying pathological changes. For 
example, Alber et al. (2019) described that mild tissue changes, pre
sented as punctate WMH, are associated with myelin damage, gliosis, 
and PVS, whereas severe pathological changes, described as confluent 
WMH, include some degree of myelin loss, axonal disruption, and 
astrogliosis. 

WMH appear hyperintense on T2-weighted MR-images such as fluid- 
attenuated inversion recovery (FLAIR) images (Schmidt et al., 2011; 
Wardlaw et al., 2013). WMH can be divided into periventricular 
(pWMH) and deep WMH (dWMH) (De Groot et al., 2002), which appear 
to represent functionally, histopathologically, and etiologically distinct 
entities (Kim et al., 2008). 

Cross-sectional studies with data from non-demented older adults 
demonstrated that higher WMH load is related to poorer cognition 
(Godin et al., 2010; Timothy, 2015), particularly in executive func
tioning (Lampe et al., 2019a) and in processing speed (Nebes et al., 
2006; van den Heuvel et al., 2006). Also, longitudinal studies confirmed 
associations of WMH load increases and cognitive function losses, 
especially in processing speed, as summarized in a recent meta-analysis 
by Caunca et al. (2019). 

When looking more specifically at the two subtypes of WMH, pWMH 
and dWMH, the associations with cognitive ability are more heteroge
neous. For example, van den Heuvel et al. (2006) showed negative as
sociations between pWMH load and processing speed performance, 
while two recent studies conclude that dWMH are functionally more 
relevant than pWMH (Brugulat-Serrat et al., 2020; Wen et al., 2006). In 
line with the latter, C. D. Smith et al. (2016) reported that elevated 
dWMH compared to pWMH were more likely to be associated with a 
diagnosis of vascular dementia (VAD) than Alzheimer’s disease (AD) – 
concluding that dWMH go along with more pervasive impairment than 
pWMH. 

Lacunes are fluid-filled cavities with a signal intensity similar to the 
cerebrospinal fluid (CSF), round or ovioid, subcortical, of between 3 and 
15 mm in diameter (Wardlaw et al., 2013), and represent areas of 
infarction (Vermeer et al., 2003a). Lacunes are not only detected in 
stroke patients or in patients with dementia, but also in healthy older 
individuals. Because of the latter, lacunes have been found to be a major 
cause of so-called «silent infarcts» in the elderly (Vermeer et al., 2003b). 
Previous research has concluded that these «silent infarcts» were not 
clinically silent but could be a factor inducing cognitive dysfunction, 
especially executive functioning and processing speed (Azeem et al., 
2020; Lei et al., 2019). Moreover, it was shown that elderly subjects with 
lacunes exhibit a greater cognitive decline than people without lacunes 

and an increased risk of developing dementia than people without 
lacunes (Vermeer et al., 2003b). Although lacunes have been associated 
with decreased cognitive performance in population-based cohort 
studies of the elderly, very few longitudinal studies examined non- 
demented samples (Azeem et al., 2020; Caunca et al., 2019). 

Brain atrophy occurs with the normal aging process, although the 
extent varies interindividually. In healthy older adults above 65 years, 
age-related brain atrophy amounts to ~1% per year (Longstreth et al., 
1998; Price et al., 1997; Vermeer et al., 2003a). Higher rates are 
observed in pathological diseases, such as Alzheimer’s disease (Fox and 
Freeborough, 1997; Karas et al., 2004). The importance of brain atrophy 
as a marker of CSVD has long been underestimated (Jouvent et al., 
2010). Associations between brain atrophy and other CSVD markers, 
namely WMH load and number of lacunes, have been reported in pre
vious studies (Appelman et al., 2009; Jouvent et al., 2007; Kloppenborg 
et al., 2012). 

Because of the frequent coexistence of the different CSVD markers, 
even in healthy older individuals, we consider it relevant to include the 
different CSVD markers in one study to learn more about potentially 
cumulative effects. To our knowledge, there is no single-center study to 
date that has examined a comprehensive set of CSVD markers with 
multiple measurement occasions in the context of healthy aging over 
such a long period of time. 

Based on the gaps in previous literature, we used longitudinal data 
from healthy older adults that cover a time period of seven years to 
analyze WMH (total, periventricular, deep), lacunes (number, volume), 
brain parenchyma volume (BPV) and normal appearing white matter 
(NAWM) volume and changes in those CSVD markers over time. We 
further explored associations between the CSVD markers and tested the 
influence of demographic characteristics (age, sex, education), medi
cation use (antihypertensives, antihypercholesterolemics) and risk fac
tors previously associated with CSVD (obesity and depressive 
symptoms). Finally, we were interested in the associations between 
CSVD markers and processing speed – a fluid cognitive ability that is 
markedly affected also in the process of healthy aging (Oschwald et al., 
2019). We analyzed the data using the approach of latent growth curve 
(LGC) modeling (Bollen, 2005; McArdle and Epstein, 1987; Meredith 
and Tisak, 1990). 

2. Material and methods 

2.1. Study sample 

Longitudinal magnetic resonance imaging (MRI) and cognition data 
were taken from the Longitudinal Healthy Aging Brain (LHAB) database 
(Zöllig et al., 2011). We used data from five measurement occasions 
(baseline, 1-year follow-up, 2-year follow-up, 4-year follow-up, 7-year 
follow-up). The baseline dataset included 232 participants (mean age 
baseline: M = 70.8; range: 64–87; F:M = 114:118). At each measure
ment occasion, participants completed an extensive battery of neuro
psychological and psychometric cognitive and motor assessments and 
underwent brain imaging. The brain imaging session was conducted in 
close temporal proximity to the behavioral assessments (difference be
tween behavioral and MRI assessments in days (M ± SD): baseline: 2.2 
± 5.2, 1-year follow-up: 2.6 ± 5.2, 2-year follow-up: 4.3 ± 13.0, 4-year 
follow-up: 4.6 ± 9.3, 7-year follow-up: 6.7 ± 8.0). Inclusion criteria for 
study participation at baseline were age ≥ 64, right-handedness, fluent 
German language proficiency, a score of ≥ 26 on the Mini Mental State 
Examination (MMSE; Folstein et al., 1975), no self-reported neurological 
disease of the central nervous system and no contraindications to MRI. 
The study was approved by the ethical committee of the canton of 
Zurich. Participation was voluntary and all participants gave written 
informed consent in accordance with the declaration of Helsinki. 

For the present analysis, participants were excluded if either struc
tural MRI or cognition data were missing for all measurement occasions. 
With this criterion we were able to include 231 participants from the 
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LHAB baseline sample (mean age at baseline: M = 70.8, F:M = 113:118). 
The MR images were reviewed by a neuroradiologist with over 30 years 
of experience to assure that they are free of intracranial hemorrhages, 
intracranial space occupying lesions, multiple sclerosis lesions or large 
chronic, subacute or acute infarcts. Five T1w images had to be excluded 
due to insufficient MRI data quality. Further, 38 data points were 
excluded from analysis due to the use of drugs affecting the central 
nervous system (hypnotics, sedatives and anxiolytics, opioids, antipsy
chotics, antidepressants, anticonvulsants), three data points due to a 
drop of the MMSE score below 23 points during the follow-up mea
surements and another eight data points due to either process errors 
during segmentation or massive WMH segmentation errors. Outlier 
values in CSVD load and processing speed performance were removed 
using a moderately conservative cut-off of 2.5 median absolute de
viations (MADs) above or below the sample’s distribution, respectively 
(Leys et al., 2013). This resulted in a baseline sample size of N = 216 
(mean age at baseline: M = 70.9, range = 64–87, F:M = 105:111), with 
51.4 % holding a bachelor’s, master’s, or doctoral degree and achieving 
a median IQ of 124 [range = 93–145]. At the 7-year follow-up, the 
dataset comprised 51.9 % of our baseline sample (N = 112, mean age: M 
= 76.7, range = 71.5–89.3, F:M = 44:68). As reported in other publi
cations with this sample (Malagurski et al., 2020; Oschwald et al., 2019), 
selectivity analyses showed that the participants remaining in the study 
did not substantially differ from the baseline sample in terms of age, 
education or physical and mental health. 

2.2. MRI data acquisition 

Longitudinally structural MRI data were acquired at the University 
Hospital of Zurich on a Philips Ingenia 3 T scanner (Philips Medical 
Systems, Best, The Netherlands) using the dsHead 15-channel head coil. 
T1w images were recorded with a 3D T1w turbo field echo (TFE) 
sequence, repetition time (TR): 8.18 ms, echo time (TE): 3.799 ms, flip 
angle (FA): 8◦, 160 × 240 × 240 mm3 field of view (FOV), 160 sagittal 
slices, in-plain resolution: 256 × 256, voxel size: 1.0 × 0.94 × 0.94 mm3, 
scan time: ~7:30 min. The 2D FLAIR image parameters were: TR: 11000 
ms, TE: 125 ms, inversion time (TI): 2800 ms, 180 × 240 × 159 mm3 

FOV, 32 transverse slices, in-plain resolution: 560 × 560, voxel size: 
0.43 × 0.43 × 5.00 mm3, interslice gap: 1 mm, scan time: ~5:08 min. 
The 3D FLAIR image parameters were: TR: 4800 ms, TE: 281 ms, TI: 
1650 ms, 250 × 250 mm FOV, 256 transverse slices, in-plain resolution: 
326 × 256, voxel size: 0.56 × 0.98 × 0.98 mm3, scan time: ~4:33 min. 

The T1w and FLAIR images were used for the automated segmen
tation of the WMH. 3D FLAIR images were only considered (sporadi
cally) for the differentiation between PVS and lacunes. 

2.3. Definition and terminology of the cerebral small vessel diseases 
measures 

The terminology and definitions of the subclinical CSVD used in this 
study are in line with the STRIVE (Wardlaw et al., 2013). 

White matter hyperintensities of presumed vascular origin have 
a variable diameter, appear hyperintense on T2w MRI sequences, like 
FLAIR sequences, and isointense or hypointense on T1w sequences but 
not as hypointense as CSF – without cavitation (Wardlaw et al., 2013). 
We categorized the WMH volumes into total WMH (tWMH), pWMH and 
dWMH. In this work, we used the term white matter hyperintensities 
(WMH) for those of presumed vascular origin and found in white matter 
without those found in deep gray matter (GM) and brainstem (Wardlaw 
et al., 2013). 

Lacunes of presumed vascular origin are small round or ovoid, 
CSF-filled cavities (Wardlaw, 2008), have a size of between 3 mm and 
15 mm in diameter. A hyperintense rim can be seen on FLAIR images but 
it is non-specific since a hyperintense rim can also surround PVS when 
they pass through a WMH. Sometimes the lacunes may appear totally 
hyperintense due to not suppressed central cavity fluid on FLAIR images 

(Wardlaw et al., 2013). Therefore, it is important to examine the same 
lesion in successive slices of a given MR image and in different MR 
modalities (i.e., T1w in addition to FLAIR images, and exclude the 
lacunes in WMH segmentation. We carefully distinguished lacunes from 
PVS according to the STRIVE, and calculated an interrater reliability of 
two operators. The measures of interest were number of lacunes and 
lacunar volume. In this work, we referred to lacune(s) as those of pre
sumed vascular origin. 

Brain parenchyma volume. Parenchyma is the term for organ- 
specific tissue that determines the function of an organ. In the brain, 
the functional neurons form the brain parenchyma (Pschyrembel, 2020). 
Since lacunes are filled with CSF (Wardlaw, 2008) we subtracted the 
lacunar volumes from the BPV as they contain no functional neurons. 

Normal-appearing white matter volume is referred to the normal, 
non-diseased cerebral white matter (WM) tissue. For this reason, we 
subtracted the WMH and lacunar volume from the cerebral white matter 
volume. 

2.4. Demographic factors, medication use and risk factors 

The demographic factors we controlled were age, sex, and education. 
Antihypertensives and antihypercholesterolemics were defined by self- 
reported physician prescription for the respective drug used to treat 
the condition. Hight and weight were used to calculate the body mass 
index (BMI) (weight-height-ratio in kg/m2) to define obesity by a mean 
BMI across all time points of ≥ 30 kg/m2 according to WHO (World 
Health Organisation Obesity, 2000). Depressive symptoms were assessed 
using the German version of the Hospital Anxiety and Depression Scale 
(HADS-D) using the cut-off of ≥ 8 points (Herrmann-Lingen et al., 2011). 
Age was the only metric variable, sex, medication use and the risk fac
tors were dichotomous variables. 

2.5. Assessment of cognition 

The global cognitive status was estimated with the MMSE (Folstein 
et al., 1975), and the global intelligence with a German multiple-choice 
vocabulary intelligence spot-the-word test, the so-called Mehrfach
wahl-Wortschatz-Intelligenztest, version B (MWT-B) (Lehrl, 2005). It is 
well known that crystalline abilities that capture, for example, vocab
ulary do not decline with increasing age and the MWT-B can thus be seen 
as an economic estimator of global intelligence. The cognitive ability 
measures of the subjects are listed in Supplementary Table 1. 

Processing speed was measured using the number of correct responses 
from (a) the Digit Symbol (DS) – subtest of the German version of the 
Wechsler Adult Intelligence Scale (WAIS-III) (WIE; von Aster et al., 
2006), (b) the Identical Pictures Test (IPT) (KIT; Ekstrom et al., 1976), 
(c) the subtest 14 of the Leistungsprüfsystem 50+ (LPS 50 + ) (Sturm 
et al., 1993), a German intelligence test developed to measure Thur
stone’s (Thurstone, 1938) primary mental abilities, and (d) from the 
completion time of the Trail-Making-Test, part A (TMT-A) (Reitan and 
Wolfson, 2004) (the scores were reversed so that the higher scores 
equaled better performance and vice-versa). The individual scores of 
processing speed were standardized to T scores (M = 50, SD = 10) with 
respect to baseline and averaged across subtests to calculate the domain- 
average composite scores. For a description of the measured skill(s) by 
test on processing speed, see Supplementary Table 2. 

2.6. Assessment of cerebral small vessel disease measurements 

2.6.1. White matter hyperintensities 
For automatically quantifying the WMH subtypes we used the WMH 

volumes outputted by unidentified bright objects (UBO) Detector (Jiang 
et al., 2018) – a k-nearest neighbor (k-NN) algorithm. In our previous 
paper we comprehensively validated and compared these UBO Detector 
WMH volumes of tWMH, pWMH, and dWMH with other automatic or 
semi-automatic WMH extraction methods (Hotz et al., 2020). 
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We applied a Diffeomorphic Anatomical Registration through 
Exponentiated Lie template (Ashburner, 2007) of 70–80 years to best 
approximate the age of our cohort and a GM mask to reduce the possi
bility of false positive voxels. To define the borders of pWMH we choose 
the 12 mm threshold as recommended by Jiang and colleagues (2018). 
The customization of the WMH probability maps was done in our pre
vious study (Hotz et al., 2020) evaluating different thresholds and 
nearest neighbors (k) between manually segmented WMH and the WMH 
outputted by UBO Detector using different accuracy measures. The best 
performance was achieved with a threshold of 0.9 and a NN of k = 3. In 
this preceding study, the tWMH, pWMH, and dWMH volumes, estimated 
by UBO Detector (2D FLAIR + T1w input), were strongly correlated with 
the Fazekas scores (N = 756; tWMH = rs = 0.80, pWMH = rs = 0.74, 
dWMH = rs = 0.60). The Dice Similarity Index (DSC) between manually 
segmented WMH and automated segmented WMH by UBO Detector was 
also good to very good (n = 16; DSC = 0.531, SD =± 0.113) according to 
Dadar et al. (2017). 

Consistent with the STRIVE, we excluded the WMH volume lesions in 
the brainstem from the tWMH volume (tWMH volume = pWMH volume 
+ dWMH volume + WMH volume in cerebellum), since UBO Detector 
includes them in the «whole brain WMH volume». WMH volumes 
outputted by UBO Detector are in DARTEL space, and are therefore not 
necessary to adjust for intracranial volume (ICV). For additional quality 
assurance, every WMH map was visually checked using FSLeyes 
(McCarthy, 2018) for false positives and to ensure that all lacunes were 
correctly removed from the WMH segmentation. For one subject with 
lacunes, UBO Detector did not omit the WMH in which lacunes were 
located. For this subject, the incorrectly segmented voxels were added to 
the correct segmentation volumes, a procedure that has been reported in 
previous studies (e.g., Ghaznawi et al., 2018). 

2.6.2. Lacunes 
Lacunes were segmented manually, their volume in mm3 and the 

lacunar number were extracted and outputted with Python (Rossum 
et al., 2009) (version 3.7.4) using pandas (The pandas development 
team, 2020). The estimation of the lacunar volume was extracted within 
each parcel of Freesurfer’s white matter parcellation (wmparc.mgz) so 
that the volumes within the brainstem could be estimated for later 
subtraction from NAWM volume. To distinguish lacunes from PVS we 
used a combination of FLAIR (2D and 3D) and T1w images following the 
STRIVE criteria including size (3–15 mm), signal intensity on MR images 
(similar to that of CSF on all sequences, and usually a hyperintense rim), 
and orientation (follow the typical course of a vessel as it goes through 
gray or white matter). The inter-rater reliability was determined on 13 
randomly selected scans with lacunes and PVS as follows: Operator 1 
marked 100 lesions in the 13 scans that could be either a lacune or a PVS 
with a voxel on the axial T1w scan. Operator 2 and 3 divided the lacunes 
and PVS independently into the two categories (0 = PVS; 1 = lacune) 
(Cohen’s kappa = 0.94). The lacunar volume was adjusted for brain size 
using FreeSurfer’s estimated Total Intracranial Volume (eTIV). 

2.6.3. Brain parenchyma volume and normal appearing white matter 
volume 

We used FreeSurfer v6.0.1 (Fischl, 2012) as implemented in the 
FreeSurfer BIDS-App (Gorgolewski et al., 2017) to obtain volumetric 
measurements. Global volume measurements were also extracted from 
FreeSurfer’s aseg segmentation. FreeSurfer’s longitudinal analysis 
stream was applied to ensure an unbiased registration between time 
points. We estimated BPV and NAWM as follows (both metrics do not 
include the brainstem): (1) BPV = total GM volume (lhCortex +
rhCortex + SubCortGray + CerebellumGM) + total WM volume 
(lhCerebralWhiteMatter + rhCerebralWhiteMatter + WM hypo
intensities + Cerebellar White Matter Volume) - lacunar volume, (2) 
NAWM volume = total WM volume (lhCerebralWhiteMatter + rhCere
bralWhiteMatter + WM hypointensities + Cerebellar WM Volume) - 
tWMH volume UBO Detector (without WMH in brainstem) - lacunar 

volume (without lacunes in brainstem). BPV and NAWM volume was 
adjusted for brain size using FreeSurfer’s eTIV. 

2.7. Computer equipment 

All CSVD measurements were undertaken on a Supermicro X8QB6 
workstation with 4 × Intel Xeon E57-4860 CPU (4 x10 cores, 2.27 GHz) 
and 256 GB RAM. The computing host was a KVM virtualized guest 
instance with Ubuntu 18.04.4 LTS with 32 × Intel Xeon E7-4860 CPU 
(2.27 GHz) and 92 GB RAM. 

2.8. Statistical analysis 

All statistical analyses were done in R version 4.0.3 (R Core Team, 
2020). WMH volumes and lacunar volumes were natural log- 
transformed (loge(x)) to obtain a normal distribution since the original 
data followed a log-normal distribution. The defined p value threshold 
was set to p ≤ 0.05. The results of the univariate LGC model with the 
covariates, and the effect size estimates for the covariances (univariate 
and bivariate LGC models) were reported as standardized effect esti
mates (β) to provide comparable, unit-independent measures of effects 
for different determinants and outcomes. These correlation coefficients 
were interpreted according to Cohen (1992): 0.10 = weak effect, 0.30 =
moderate effect, 0.50 = strong effect size. 

2.8.1. Inference statistics of demographic characteristics of the lacunes 
versus the non-lacunes group 

To compare the age in the population with lacunes to those without 
lacunes a Welch two-sample t-test was performed. For the variable sex 
and medication use (n > 50), differences were determined using the 
Pearson’s Chi-squared test (χ2 -test) with Yates’ continuity correction, 
for the variable education, no correction was applied because the degrees 
of freedom (df) were 2. For the risk factors obesity and depressive symp
toms (expected cell frequency n < 5) a Fisher’s exact test was applied 
(Table 2). 

2.8.2. Latent growth curve modeling 
Since the LGC modeling framework is more flexible than traditional 

approaches such as ANOVA or multiple regressions, and also allows for 
the inclusion of covariates in the same model (Duncan and Duncan, 
2009), we chose this statistical procedure to answer our longitudinal 
research questions:  

1) How do the trajectories of CSVD and processing speed measures 
evolve over the 7-year period, and is there interindividual variance 
in intercept and slope?  

2) Are CSVD and processing speed measures and their trajectories over 
time influenced by demographic factors, medication use, and risk 
factors?  

3) Are there baseline-change associations for the different CSVD and 
processing speed measures (i.e., does baseline lacunar volume pre
dict lacunar volume changes?)  

4) Are there cross-domain associations of CSVD and processing speed 
measures at baseline? Do baseline levels in one domain predict the 
amplitude of change in the other, and can we find evidence for 
coupled changes? 

For questions 1), 2) and 3) we estimated univariate LGC models, and 
for question 4) bivariate LGC models in the structural equation modeling 
(SEM) framework using the lavaan package version 0.6–7 (Rosseel, 
2012) in R. Missing values were treated as Missing at Random (MAR) (R. 
J. A. Little, 1995). Thus, these values could be preserved in the model 
using Full Information Maximum Likelihood Estimation (FIML) (Fink
beiner, 1979; Schafer and Graham, 2002) to handle incomplete data, 
which is clearly an advantage of LGC modeling techniques over other 
techniques. Furthermore, we included the following covariates into the 
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univariate models: age at baseline (0 = 70 years – median of the sample), 
sex (0 = female, 1 = male), education (set to level 2 – medium level), 
antihypertensives (0 = no, 1 = yes), antihypercholesterolemics (0 = no, 
1 = yes), obesity (0 = no, 1 = yes), and depressive symptoms (0 = no, 1 
= yes). For subjects with lacunes (n = 58) the distribution of the co
variate depressive symptoms was too small (n = 1), and it was therefore 
excluded as covariate from the univariate model. Consequently, the 
intercept parameter corresponded to the estimate for a 70-year-old 
woman with a medium level of education (high schools, secondary 
technical schools), and no evidence of the aforementioned intake of 
medication or risk factors. 

2.8.3. Univariate latent growth curve 
To model the trajectories of CSVD we built a 1st-order Latent Growth 

Curve (1LGC) model to estimate latent intercepts and slopes, as well as 
their variances. The variances of the manifest variables were held con
stant (theta), assuming strict measurement invariance. To maintain 
uniform intervals between measurement occasions, we included a latent 
placeholder variable for the follow-up years 3, 5, and 6 (T. D. Little, 
2013). We estimated a latent intercept (I) and slope factor (S) to capture 
baseline levels and overall change across time. The means of these fac
tors reflected the mean baseline value (Intercept) and the annual change 
(Slope) in the specific variable across the entire sample (i. e., fixed ef
fects). In addition, the variances of these latent factors reflected the 

variability between persons (i. e., random effects). For processing speed, 
we calculated a 2nd-order Latent Growth Curve (2LGC) model on the 
basis of four manifest indicators (four test scores). The exact procedure 
for this is described under Factorial invariance – processing speed, 
and a simplified path diagram is depicted in Fig. 1. 

The overall model fit was evaluated by the ratio of the χ2 -test to the 
respective degrees of freedom (χ2 /df) (Jöreskog and Sörbom, 1993; 
Marsh and Hocevar, 1985), the Comparative Fit Index (CFI) (Bentler, 
1990), and the root mean square error of approximation (RMSEA) 
(Browne and Cudeck, 1992; Steiger and Lind, 1984). Good model fit was 
defined as: χ2 / df ≤ 2, CFI > 0.97, RMSEA ≤ 0.05 while adequate fit was 
defined as χ2 /df ≤ 3, CFI > 0.95, RMSEA 0.05 – 0.08 (Hu and Bentler, 
1998; Jöreskog and Sörbom, 1993; Schermelleh-Engel et al., 2003). 

2.8.4. Factorial invariance – processing speed 
For each time point, we modeled a processing speed factor that 

captured the shared variance of the four manifest test values (1st-order 
factors). From these latent processing speed factors, in turn, the 2nd- 
order factors were calculated, consisting of a latent intercept (IPS) and 
slope (SPS). To ensure that the same construct is assessed on the same 
metric across every measurement (Meredith and Teresi, 2006; Meredith, 
1993) we tested the factorial invariance (FI) across time by comparing 
four models (configural, weak, strong, and strict invariance constraints) 
according to Widaman et al. (2010). We assumed that the model with 

Fig. 1. Simplified path diagram of linear 
growth curve (LGC) models associating the 
trajectories of the cerebral small vessel dis
ease (CSVD) measure (brain variables B) to 
the trajectories of the processing speed (PS) 
measure over five-time points (Tp1, Tp2, 
Tp3, Tp5, Tp7). The diagram shows the 
univariate models (thin lines), the bivariate 
models (bold lines), and the covariates (box). 
Circles represent latent variables; squares 
represent observed variables. One-headed 
arrows stand for regression paths, two- 
headed arrows represent variances and co
variances of latent variables (sigma; σ). Pa
rameters with the same label are fixed to be 
equal. Intercept and slope of CSVD (IB, SB) 
and PS (IPS, SPS) are controlled for the cova
riates. CSVD is measured as 1st-order Latent 
Growth Curve (1LGC) model, and PS esti
mated as 2nd-order Latent Growth Curve 
(2LGC) model with a latent construct (at 
each measurement occasion, with four man
ifest indicators). Strong factorial invariance 
(FI) is applied to the PS model by setting the 
factor loadings and intercepts of the manifest 
indicators equal over time. Correlated re
siduals of the same manifest indicator over 
time were estimated, but are also not shown 
for visual clarity. As in all fitted models, the 
residuals were assumed to be the same over 
the time points and the residual-residual as
sociations were also assumed to be the same 
for each time point. An exception is the 
model for PS. The strong model had a better 
fit than the strict model, so that the error 
variance (theta; θ) was not kept constant 
here. For simplicity, the latent placeholder 
variables (Tp4, Tp6), and the training effect 
slope for the PS measures are not shown. For 
visual clarity the manifest indicator in
tercepts (τ) are not shown. DS = Digit Sym
bol task; IPT = Identical Picture Test; LPS =
Leistungsprüfsystem 50+, subtest 14; TMT 

= Trail Making Test, part A.   
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strong FI would achieve an adequate fit for the latent processing speed 
variables. In this model, both the loadings of the observed indicators (λ) 
on the latent factor, and the indicator intercepts (τ) were constrained to 
be equal across measurement occasions (Widaman et al., 2010) (see also 
Fig. 1). To compare the four models, the χ2 -test (for nested models), and 
the sample size adjusted Bayesian Information Criterion (BIC) (Raftery, 
1995) were used. With the BIC, smaller values meant a better model fit 
(Raftery, 1995). The threshold for the χ2 -test was set down to p < .01 to 
reduce the probability of type I errors, although, as noted before, these 
could not be explicitly controlled for and thus not entirely ruled out. 

2.8.5. Training effect in processing speed tests 
Repeated testing of the same person over time may result in a 

training effect (TE) and thus lead to better results over time. Training 
effect and true performance of the person mix inseparably and result in a 
complex trajectory. Nevertheless, to obtain an estimate for the TE we 
modeled a 2nd-order latent variable (loading baseline = 0, loading 
follow-up 1 to follow-up 7 = 1). The variance of this factor was set to 0, 
corresponding to a main effect that is the identical for all individuals. 

2.8.6. Bivariate latent growth curve models (intercept-intercept/intercept- 
slope/slope-intercept/slope-slope) 

To estimate cross-domain relations between CSVD indicators and 
processing speed, we combined the univariate LGC models into bivariate 
LGC models, see also Fig. 1. In these models, we set the covariance of the 
manifest cross-domain variable to equal (covariance of, e. g., tWMH and 
NAWM is the same at time point 1 as at the remaining time points). 
Further, we modeled covariances between the intercepts and between 
the slopes as well as between the intercept and slopes of the respective 
variables, to examine the temporal dynamics in more detail, and thus to 

answer our research question 4). 
We simplified the bivariate model for the variables lacunar volume 

and lacunar number due to the small sample size (n = 58) for subjects 
with lacunes. We therefore calculated a 1LGC with the factor loadings 
for processing speed from the 2LGC model to ensure the comparability of 
the results of question 4) (see the processing speed-loadings below 
Supplementary Table 6). 

3. Results 

In the first section, an overview of the characteristics of the study 
cohort is shown in Table 1. Plots of individual trajectories of CSVD and 
processing speed measures across chronological age, separately for men 
and women, are shown in Supplementary Fig. 1. In the following, the 
study questions are answered: Table 3 lists the annual changes in per
centage for the CSVD and processing speed measures, and Table 4 
summarizes the inner-domain results of the univariate LGC models with 
the influences of the covariates on the CSVD and processing speed var
iables. The results of the last two study questions regarding the uni
variate inner-domain covariances and the cross-domain bivariate 
correlations of the CSVD and processing speed measures are combined 
in Table 5. 

Model estimates and fit parameters are listed in Supplementary 
Table 3, Supplementary Table 3, and Supplementary Table 6. 

3.1. Changes of CSVD markers and processing speed over time 

3.1.1. White matter hyperintensities 
Total WMH showed an average overall volume of 11.52 cm3 (±SD 

9.18 cm3). The majority of the WMH were in the periventricular region 

Table 1 
Characteristics of the study cohort.  

Demographic characteristics All data points Tp1 Tp2 Tp3 Tp5 Tp7 

Number of subjects, n 828 216 189 164 147 112 
Age, mean (SD) (years) a 72.8 (5.1) 70.9 (5.1) 71.9 (5.1) 72.6 (4.8) 73.8 (4.0) 76.7 (4.0) 
Sex, female, n (%) 382 (46.1) 105 (48.6) 90 (47.6) 78 (47.6) 65 (44.2) 44 (39.3) 
Education category, n (%) b       

Secondary with/without apprenticeship  60 (28.6)     
High schools, secondary technical schools  42 (20.0)     
Bachelor, Master, Doctorate  108 (51.4)     
Medication use n (%) c       

Antihypertensives 366 (49.1) 84 (41.2) 83 (47.7) 76 (51.4) 59 (50.9) 64 (61.5) 
Antihypercholesterolemics 144 (19.3) 32 (15.7) 28 (16.1) 32 (21.6) 30 (25.9) 22 (21.2) 
Risk factors n (%) b       

Obesity, BMI ≥ 30 59 (8.4) 10 (6.0) 17 (9.9) 15 (10.1) 9 (7.9) 8 (8.0) 
Depressive symptoms (HADS-D ≥ 8) 54 (7.3) 8 (3.9) 15 (8.7) 11 (7.6) 10 (8.5) 10 (9.6) 
WMH, mean volume (SD) d       

Total WMH volume cm3 11.52 (9.18) 10.37 (8.54) 10.90 (8.58) 11.45 (9.10) 12.14 (9.60) 14.07 (10.43) 
Total pWMH volume cm3 8.69 (7.29) 7.68 (6.61) 8.27 (7.10) 8.76 (7.58) 9.25 (7.89) 10.47 (7.34) 
Total dWMH volume cm3 3.58 (6.36) 3.29 (6.08) 3.40 (5.83) 3.71 (7.18) 4.10 (7.85) 3.53 (3.88) 
Lacunes       
Number of Subjects, n (% of the entire dataset) 242 (29.23) 58 (26.85) 57 (30.16) 48 (29.27) 44 (29.93) 35 (31.25) 
Mean volume mm3 (SD) e 63.4 (63.2) 57.5 (57.3) 62.8 (63.7) 65.7 (65.3) 64.4 (66.4) 69.9 (67.3) 
Mean lacunar number [range] 4.35 [1–18] 4.35 [1–14] 4.17 [1–14] 4.42 [1–16] 4.68 [1–18] 4.37 [1–13] 
Brain volumes, mean % (SD) e       

BPV in cm3 1029.3 (76.0) 1037.6 (77.7) 1031.2 (77.7) 1030.0 (78.5) 1026.1 (74.7) 1012.5 (71.0) 
Number of subjects, n 821 213 188 163 145 112 
NAWM in cm3 444.41 (47.8) 450.17 (46.2) 445.70 (49.9) 444.67 (48.8) 443.41 (45.8) 430.00 (46.3) 

Notes: Education according to International Standard Classification for Education (ISCED): 1 = Secondary with/without apprenticeship, 2 = High schools, secondary 
technical schools, 3 (ISCED 6, 7, 8) = academic career: Bachelor, Master, Doctorate. Obesity = BMI ≥ 30 kg/m2 according to WHO (World Health Organisation Obesity, 
2000). HADS-D = Depression variables from the German version of the Hospital Anxiety and Depression Scale (HADS-D) (Herrmann-Lingen et al., 2011). 
WMH = white matter hyperintensities; pWMH = periventricular white matter hyperintensities; dWMH = deep white matter hyperintensities; BPV = brain parenchyma 
volume; NAWM = normal appearing white matter volume. 

a at the time of the MRI acqisition. 
b via questionnaire. 
c via medication. 
d WMH volumes are in DARTEL space, and therefore not necessary to adjust for intracranial volume (ICV). 
e Adjustment for brain size was done by using the residuals of least square derived linear regressuin between brain volumes and estimated total intracranial volume 

(eTIV) to calculate normalized brain volumes (Voevodskaya et al., 2014). 
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(75.4%). On average, all WMH variables increased significantly (p <
.0001) over the 7-year period. The mean tWMH volume showed a yearly 
increase of 7.9%. Women showed on average a non-significantly faster 
acceleration per year in dWMH compared to men (7.5 % versus 5.8 %) 
(see Table 3). Further, all WMH variables showed interindividual vari
ance in intercept (tWMH: β = 0.800, pWMH: β = 0.846, dWMH: β =
0.747) and slope (tWMH: β = 0.858, pWMH: β = 0.916, dWMH: β =
0.862). 

3.1.2. Subjects with lacunes 
At baseline, 26.9 % (n = 58) of all subjects showed at least one 

lacune, whereas of these, 26.3% (n = 15) showed a single lacune, and 
74.1 % (n = 43) showed multiple lacunes. Over the 7 years 38 subjects 
(65.5%) showed no incident lacunes, whereas 25 (43.1%) developed 
new lacunes. The mean lacunar number was 4.35 (median = 3) with a 
range of 1 to 18 lacunes, and the mean lacunar volume was 63.4 mm3 

(median = 44.6 mm3) and showed a range between 5.0 mm3 and 347.5 
mm3. Both variables increased significantly from baseline to 7-year 
follow-up (p < .0001), and significant interindividual variance was 
demonstrated in intercept (lacunar volume: β = 0.753, lacunar number: 
β = 0.660), and slope (lacunar volume: β = 0.786, lacunar number: β =
0.572). The lacunar volume increased on average about 6.8% per year, 
and with each year of aging, the lacunar number increased on average 
around 4.6% – with no sex differences (see Table 3). 20.8 % (5/24) of the 
subjects in the lacune subgroup taking antihypertensives were also 
taking antihypercholesterolemics, and 62.5% (5/8) of subjects using 
antihypercholesterolemics were also taking antihypertensives. To 
investigate whether there were different characteristics between sub
jects with lacunes and those without lacunes, we compared these two 

groups. According to the descriptive inferential statistics, the group with 
lacunes was significantly older on average at baseline (n = 58; 72.6 
years) and thus does not represent the same population as the group 
without lacunes (n = 158; 70.2 years) (95%-CI[0.74, 3.99]), t(90.28) =
2.89, p = .005, d = 0.467. All other associations were not significantly 
different (see Table 2). 

3.1.3. Brain parenchyma volume and normal appearing white matter 
volume 

The BPV showed a mean volume of 1029.3 cm3 at baseline, and it 
decreased significantly (p < .0001) over the 7 years with a yearly mean 
decrease of 0.6%. Further, interindividual mean variance was evident in 
intercept (β = 0.561). and slope (β = 0.896). The mean volume of the 
NAWM was 444.4 cm3, and it showed a significantly average decline 
over the 7-year period (p < .0001) with a yearly mean decline of 0.95%. 
Men showed a significantly (p < .006) greater mean annual decline 
compared with women. BPV and NAWM volume showed interindividual 
variance in intercept (BPV: β = 0.561, NAWM: β = 0.656) and slope 
(BPV: β = 0.896, NAWM: β = 0.841). See Table 3 for more details. 

3.1.4. Processing speed 
For the description of the cognitive profile of the subjects at baseline 

see Supplementary Table 1. Processing speed declined significantly (p <
.0001) over the 7-year period with a yearly mean decline of 0.9% (see 
Table 3). There were interindividual differences in performance at 
baseline (β = 0.751), and also the slope did significantly vary across the 
sample (β = 0.624). 

3.2. Associations of CSVD and processing speed measures with the 
covariates at baseline level (intercept–intercept), and with subsequent 
changes (intercept–slope) 

Table 4 provides an overview of the results of the univariate models 
with the focus on the influencing factors on CSVD and processing speed 
measures. A summary of the univariate LGC model fits for linear trends 
for the CSVD and processing speed measures is listed in Supplementary 
Table 3. 

3.2.1. White matter hyperintensities and covariates 
The older the subjects were at baseline the higher the WMH volume 

was at baseline: tWMH (p < .0001), pWMH (p < .0001), and dWMH (p <
.0001). Women showed higher tWMH (p = .021), and higher pWMH (p 
= .002) volumes than men at baseline. An academic education was 
associated with higher initial tWMH (p = .018) and pWMH (p = .018). 
However, a reverse effect was seen over time; an academic education 
was associated with less steep slopes of tWMH (p = .012) and pWMH (p 
= .035). Subjects with depressive symptoms showed less dWMH volume 
increases (p = .010). 

3.2.2. Lacunes and covariates 
Older age at baseline was associated with a higher initial lacunar 

volume (p < .0001), more lacunes (p < .0001) at baseline, and also with 
a progression of lacunar number over time (p = .001). Subjects with a 
higher education had fewer lacunes at baseline (p = .006) and also 
showed less progression in lacunar number (p = .009). Subjects taking 
antihypertensives showed initially smaller lacunar volumes (p = .023) 
and also less lacunes (p = .011). 

3.2.3. Brain parenchyma volume/normal appearing white matter volume 
and covariates 

Older baseline age and female sex were initially associated with 
lower BPV and lower NAWM volume (all: p < .0001). Women (p = .006) 
and academics (p = .029) showed less subsequent decline in NAWM 
volume. Obesity was related to more initial BPV (p = .030), and 
depressive symptoms to a lower BPV at baseline (p = .035). 

Table 2 
Comparison of subjects with lacunes (n = 58) with subjects without lacunes (n =
158).  

Demographic characteristics Subjects with 
lacunes at 
baseline 

Subjects without 
lacunes at 
baseline 

p- 
value 

Number of subjects, n 58 158  
Age, mean (SD) (years) a 72.6 (5.5) 70.24 (4.8)  0.005 
Sex, female, n (%) 24 (41.4) 81 (51.27)  0.256 
Education category, n (%) b    0.480 
Secondary with/without 

apprenticeship 
15 (26.3) 45 (29.4)  

High schools, secondary 
technical schools 

9 (15.8) 33 (21.6)  

Bachelor, Master, Doctorate 33 (57.9) 75 (49.0)  
Medication use, n (%) c    

Antihypertensives 25 (44.6) 59 (39.9)  0.646 
Antihypercholesterolemics 8 (14.3) 24 (16.2)  0.902 
Risk factors, n (%) b    

Obesity, BMI ≥ 30 4 (8.16) 6 (5.0)  0.480 
Depressive symptoms (HADS- 

D ≥ 8) d 
1 (1.75) 7 (4.7)  0.449 

Notes: Age was compared using a Welch two-sample t-test. For Sex, Education 
and Medication use (n > 50) the Pearson’s Chi-square was used, for the risk 
factors (expected cell frequency n < 5) a Fisher’s exact test was applied. 
Education according to International Standard Classification for Education 
(ISCED): 1 = Secondary with/without apprenticeship, 2 = High schools, sec
ondary technical schools, 3 (ISCED 6, 7, 8) = academic career: Bachelor, Master, 
Doctorate. Obesity = BMI ≥ 30 kg/m2 according to WHO (World Health 
Organisation Obesity, 2000). HADS-D = Depression variables from the German 
version of the Hospital Anxiety and Depression Scale (HADS-D) (Herrmann- 
Lingen et al., 2011). 
WMH = white matter hyperintensities; pWMH = periventricular white matter 
hyperintensities; dWMH = deep white matter hyperintensities; BPV = brain 
parenchyma volume; NAWM = normal appearing white matter volume. 

a at the time of the MRI acquisition. 
b via questionnare. 
c via medication. 
d excluded as covariate from the univariate model. 
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3.2.4. Processing speed and covariates 
The older the subjects were at baseline, the worse their performance 

on processing speed at the beginning of the study (p < .0001) and the 
steeper also the decrease (p < .0001). Academic education was associ
ated with better initial performance in processing speed (p = .049) and 
also with an increase in performance over time (p = .024) compared to 
the other two education groups. An intake of antihypercholesterolemics 
was related to a better performance on processing speed at baseline (p =

.006). 
Model fit for processing speed: The model fit for FI for the strong 

model had an acceptable to good fit for all fit measures, and the model fit 
for training effect even improved, achieving a good fit for two of three 
criteria and one acceptable model fit (see Supplementary Methods: 
Factorial Invariance Model Fit Testing – Processing Speed). 

Inner-Domain Correlations of CSVD and Processing Speed Measures 
in Baseline and Subsequent Changes (intercept–slope), and Cross- 

Table 3 
Estimates for mean changes per year in percent (%) with 95% confidence intervals [CI] for the CSVD and processing speed measures – separate for females, males and 
total.   

Female mean Male mean Total mean Slope mean p-value Slope sex p-value Slope variance p-value 

Total WMH       
Change per year in % [CI] +8.44 [7.38;9.50] +7.36 [6.31;8.42] +7.90 [6.84;8.96] < 0.0001  0.194 < 0.0001        

Total pWMH       
Change per year in % [CI] +8.97 [7.60;10.16] +8.44 [7.17;9.20] +8.65 [7.38;9.94] < 0.0001  0.739 < 0.0001        

Total dWMH       
Change per year in % [CI] +7.47 [5.79;9.16] +5.76 [4.11;7.43] +6.61 [4.95;8.29] < 0.0001  0.110 0.002        

Lacunar volume       
Change per year in % [CI] +7.25 [5.17;9.37] +6.40 [4.33;8.50] +6.82 [4.75;8.94] < 0.0001  0.346 0.006        

Lacunar number       
Change per year in % [CI] +5.28 [4.65;5.65] +3.89 [2.92;4.50] +4.56 [3.74;5.06] < 0.0001  0.480 < 0.0001        

BPV       
Change per year in % [CI] –0.62 [–0.68;–0.57] –0.66 [–0.71;–0.61] –0.64 [–0.69;–0.59] < 0.0001  0.088 < 0.0001        

NAWM       
Change per year in % [CI] –0.90 [–0.99;–0.82] –1.00 [–1.075;–0.918] –0.95 [–1.03;–0.87] < 0.0001  0.006 0.001        

Processing Speed       
Change per year in % [CI] –0.76 [–1.19;–0.36] –1.02 [–1.46;–0.61] –0.89 [–1.33;–0.49] < 0.0001  0.328 < 0.0001 

Notes: «Slope mean p-value» describes the significance of the mean increase or decrease of the different variables over the 7 years. «Slope sex p-value» shows whether 
the slope of a particular variable differed significantly between the two sexes over the 7 years. «Slope variance p-value» lists the significance of the slope of the variance 
over the 7 years. 
WMH = white matter hyperintensities; pWMH = periventricular white matter hyperintensities; dWMH = deep white matter hyperintensities; BPV = brain parenchyma 
volume; NAWM = normal appearing white matter volume. 
The loge(x) transformed variables (tWMH, pWMH, dWMH, lacunar volume) were transformed back for calculation (formula: eslope). 

Table 4 
Representation of the results of the univariate LGC models with the covariates. Listed are the standardized effect estimates (β) for intercept (I) and slope (S) in the 
original measurement units. For the WMH subtypes and lacunar volume these are given in loge(x), for lacunar number in number, for BPV and NAWM volume in cm3, 
for processing speed in a latent score.   

Cerebral Small Vessel Disease and Processing Speed Measures ~ Covariates  
~Age ~Sex ~Education ~Antihypertens 

a 
~Antihyperchol 
b 

~Obesity ~Depr. Symptoms 
c 

Variables I S I S I S I S I S I S I S 

tWMH (log)  0.410***  — –0.148* —  0.157* –0.276* — —  — —  — — — — 
pWMH (log)  0.326***  — –0.193** —  0.156* –0.217* — —  — —  — — — — 
dWMH (log)  0.494***  — — —  — — — —  — —  — — — –0.158* 
LACVOL 

(log)  
0.446***  — — —  — — –0.262* —  — —  — — — — 

LACNR  0.467***  0.559** — —  –0.356** –0.343** –0.269* —  — —  — — — — 
BPV (cm3)  –0.568***  — 0.271*** —  — — — —  — —  0.108* — –0.086* — 
NAWM 

(cm3)  
–0.529***  — 0.231*** –0.319**  — 0.250* — —  — —  — — — — 

PS  –0.393***  –0.581*** — —  0.137* 0.238* — —  0.189** —  — — — — 

Notes: The intercept corresponds to a female subject with a median age of 70 years, with a medium level of education (level 2). Antihypertensives (0 = no, 1 = yes), 
antihypercholesterolemics (0 = no, 1 = yes), obesity (=BMI ≥ 30) (0 = no, 1 = yes), and depressive symptoms (0 = no, 1 = yes). 
tWMH = total white matter hyperintensities; pWMH = periventricular white matter hyperintensities; dWMH = deep white matter hyperintensities; LACVOL = lacunar 
volume; LACNR = lacunar number; BPV = brain parenchyma volume; NAWM = normal appearing white matter volume; PS = processing speed. 
Standardized beta (β), 0.10 = weak effect, 0.30 = moderate effect, 0.50 = strong effect size (Cohen, 1992). 
*p < 0.05; **p < 0.01; ***p < 0.001. 

a Subjects taking antihypertensives (antihypertens). 
b Subjects taking antihypercholesterolemics (antihyperchol). 
c via questionnare; depressive symptoms (Depr. Symptoms) via German version of the Hospital Anxiety and Depression Scale (HADS-D) (Herrmann-Lingen et al., 

2011). 
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Domain Correlations of the CSVD and Processing Speed Measures at 
Baseline Level (intercept-intercept), Subsequent Changes (intercept- 
slope), and Coupled Changes (slope-slope) 

Table 5 lists the results of all bivariate cross-domain covariances and 
the univariate inner-domain covariances between baseline and pro
gression of the CSVD and processing speed measurements. 

For detailed results of the covariances see Supplementary Table 4, 
for the results and model fits of the bivariate LGC models see Supple
mentary Table 5 and 6. 

4. Discussion 

In this 7-year, five-wave, longitudinal study with cognitively healthy 
subjects, we used latent growth curve models to examine the influence 
of age, sex, education, antihypertensives, antihypercholesterolemics, 
obesity, and depressive symptoms on a multitude of CSVD markers 
(tWMH, pWMH, dWMH, lacunar volume, lacunar number, BPV, NAWM 
volume) and processing speed measures. In addition, we investigated 
baseline-baseline, baseline-change and change-change associations 
within and between the CSVD and processing speed measurements. 

4.1. Influence of age on CSVD and processing speed 

Age affected all included CSVD and processing speed measures at 
baseline with moderate to strong effect sizes: The older the subjects, the 
higher the initial CSVD disease and the worse the initial processing 
speed performance, which is consistent with previous research (Brick
man et al., 2008a; Caunca et al., 2019; Chowdhury et al., 2011; Long
streth et al., 1998; Price et al., 1997; Schmidt et al., 2016; Vermeer et al., 
2003a). Further, the older the subjects were at baseline the greater the 
increase in lacunar number and the greater the decrease in processing 
speed over the 7 years, indicating non-linear trajectories. All other CSVD 
markers showed no associations with age in terms of their change over 
time, suggesting a constant linear trend for these variables in our 

sample. 

4.2. Influence of sex on CSVD and processing speed 

Women showed higher initial pWMH (and tWMH), lower BPV and 
NAWM volume than men. The findings are consistent with other studies 
in which women also showed a higher tWMH load (Alqarni et al., 2021; 
de Leeuw et al., 2001; Longstreth et al., 1996; Sachdev et al., 2009), a 
lower BPV (Ritchie et al., 2018), and a lower WM volume (for review 
see: Cosgrove et al., 2007; Lenroot and Giedd, 2010). Compared with 
men, women might be influenced by other risk factors such as genetic 
and/or hormonal factors (Miller et al., 2013; Sachdev et al., 2016; Seo 
et al., 2013; ten Kate et al., 2018). With regards to the subsequent 
change, there were no sex differences in WMH but in NAWM volume 
women showed a smaller decline over the seven years than men. In our 
study, however, these initial structural «disadvantages» of women had 
no adverse effects on their processing speed, and they performed equally 
well as men at baseline and over time. Also Roivainen (2011) showed no 
general sex differences, but indicated that there are different speed 
abilities in which sex differences occur – as opposed to a general pro
cessing speed ability. 

4.3. Influence of education on CSVD and processing speed 

It is of interest that subjects with an academic education (Bachelor, 
Master, Doctorate) showed a higher initial pWMH (and tWMH), while 
they showed less progression over time in these markers. This combi
nation of effects could occur if subjects with an academic education 
developed WMH earlier in life but with a less steep progression than 
subjects with a lower education. While the former may be related to 
factors such as stress (Yu et al., 2020), the reduced increase of WMH load 
over time may reflect a «reserve-effect» of education. In line with the 
latter, we were able to show that higher levels of education had a pos
itive impact on lacunar number and processing speed at baseline as well 

Table 5 
Combined summary of covariances between CSVD and processing speed measures controlled for all covariates (age, sex, education, antihypertensives, anti
hypercholesterolemics, obesity, depressive symptoms (except for lacunar variables)): All bivariate cross-domain correlations (intercept–intercept, intercept–slope, 
slope–slope), and the univariate inner-domain correlations between baseline and progression (intercept–slope). The first column lists the variables that turned out to be 
significant, and the first row lists all variables. Values describe standardized effect estimates (β); long dashes indicate non-significant results.  

Variables tWMH pWMH dWMH BPV NAWM LACVOL LACNR PS 

Intercept ~ ~Intercept β        

tWMH  +0.946*** +0.816*** –0.197** –0.288*** — +0.505** –0.155* 
pWMH   + 0.636*** –0.168** –0.282*** — +0.444** — 
dWMH    — –0.194** +0.358* +0.584*** –0.196** 
BPV     — — — +0.243** 
NAWM      — — +0.251** 
LACNR      +0.663***  — 
Intercept ~ ~ Slope  β       

tWMH –0.269*a –0.481*** — — –0.386** — +0.420* — 
pWMH –0.251* –0.554***a +0.233* — –0.348** — +0.397* — 
dWMH –0.362** –0.403** — a — –0.314* — +0.439* — 
BPV — — –0.272* +0.216*a b — — — 
NAWM — — –0.306** b — a — — — 
LACVOL — — –0.390* — — — a +0.303* — 
LACNR — –0.692** — — — — +0.470***a — 
PS — — — +0.318** — — — — a 

Slope ~ ~ Slope β        

tWMH  +0.862*** +0.662*** –0.380* –0.577** — — — 
pWMH —  — — –0.388* — –0.572* — 
dWMH — —  –0.429* –0.506* — — — 
LACVOL — — — — — — +0.376* — 

Notes: Standardized beta (β), 0.10 = weak effect, 0.30 = moderate effect, 0.50 = strong effect size (Cohen, 1992). 
tWMH = total white matter hyperintensities; pWMH = periventricular white matter hyperintensities; dWMH = deep white matter hyperintensities; LACVOL = lacunar 
volume; LACNR = lacunar number; BPV = brain parenchyma volume; NAWM = normal appearing white matter volume; PS = processing speed. 
*p < 0.05; **p < 0.01; ***p < 0.001. 

a results of the univariate inner-domain covariances between baseline and progression (Intercept – Slope). 
b no calculated combination. 
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as on trajectories of lacunar number, NAWM volume and processing 
speed over time (Brickman et al., 2011; Jokinen et al., 2016; Nebes et al., 
2006; Pinter et al., 2015; Serra et al., 2015). 

4.4. Influence of medication and risk factors on CSVD and processing 
speed 

Our results show that the use of antihypertensive drugs had a weak to 
moderate protective effect on both initial lacunar number and lacunar 
volume, and that the use of antihypercholesterolemic drugs was asso
ciated with better performance on processing speed at baseline, showing 
a weak effect size. Both results seem counter-intuitive if the variables 
were understood as risk factors and not as protective factors. However, 
both, antihypertensive drugs (Williams et al., 2018) and anti
hypercholesterolemic drugs, such as statins (Cholesterol Treatment 
Trialists’ (CTT) Collaboration, 2010), have robust evidence in reducing 
of cardiovascular events. Furthermore, a reinforcing productive factor in 
those participants taking the respective medication could be lifestyle 
changes recommended by the physician according to the 2016 European 
guidelines (Piepoli et al., 2016) during regular check-ups. A meta-anal
ysis involving>330000 people showed the quantitative dose–response 
relation of physical activity and hypertension (Liu et al., 2017), and two 
further meta-analyses (Sundström et al., 2015; Thomopoulos et al., 
2014) have revealed significant treatment-induced reductions in car
diovascular events and mortality. Moreover, van Middelaar et al. (2018) 
performed a systematic review and meta-analysis on the effect of anti
hypertensives on CSVD. They showed that antihypertensives were 
effective in slowing down the progression of WMH but had no effect on 
brain atrophy. Although not significant, our data point in a similar di
rection by showing less steep increases in tWMH in people taking anti
hypertensives and/or antihypercholesterolemics. The non-significant 
results could be due to the relatively low tWMH volumes in our subjects, 
as Dufouil et al. (2005) found a stronger effect of antihypertensives in 
subjects with severe WMH at baseline. For lacunar number and volume, 
the effect of taking antihypertensives was significant. This may be 
explained by the fact that subjects with lacunes were older than the 
subjects without lacunes. Based in this one could hypothesize that older 
people have been taking antihypertensive drugs for a longer period of 
time and that, therefore, the effect on lacunes was already evident at the 
beginning of the study. Previous research is in line with our result and 
indicates that antihypertensives reduce the incidence of both hemor
rhagic and ischemic (including lacunar) strokes (Perry et al., 2000). 
Also, in the 3-year Leukoaraiosis and Disability Study (LADIS) Gouw 
et al. (2008), were able to show in the multivariate analyses – with a 
sample including subjects with history of stroke, myocardial infarction, 
and arterial fibrillation – that a high diastolic blood pressure and high 
low-density lipoprotein (LDL) were a protective factor for incident 
lacunes. It should be noted that older adults frequently take both, an
tihypertensives and antihypercholesterolemics, which may lead to effect 
enhancement. In general, however, much more research is needed to 
gain a better understanding of the effect that a particular pharmaceu
tical exerts on CSVD markers. Also, our result of anti
hypercholesterolemics being associated with better processing speed at 
baseline can be aligned with previous work. Although case reports 
suggest a risk with statin use for impaired cognitive function such as 
memory loss, forgetfulness, amnesia, memory impairment, confusion, 
large meta-analyses show no increase in risk (Gauthier and Massicotte, 
2015). Swiger et al. (2013) conducted a meta-analysis by examining the 
effects of statins on short-term cognition within one year of drug initi
ation. They found a non-significant trend toward improvement in digit 
symbol substitution test scores in patients taking statins compared with 
the placebo group. Again, the above-mentioned lifestyle change mech
anisms could act to improve processing speed performance, e.g., indi
rectly via physical activity. 

The effects of obesity and depressive symptoms onto CSVD markers 
have to be interpreted with caution due to the small group size and weak 

effect sizes. Further, it should be noted that the depressive symptoms 
used in this study are not a clinical diagnosis, but a self-reported 
symptom in a questionnaire. In our analyses, subjects with depressive 
symptoms showed less BPV at baseline (very weak effect size), which is 
consistent with previous studies (Espinoza Oyarce et al., 2020; Kumar 
et al., 1998; Lebedeva et al., 2018; Nunes et al., 2018). On the other 
hand, our subjects with depressive symptoms showed a decrease in 
dWMH over time (weak effect size), while several other previous studies 
have, in a clinical context, associated depression with higher WMH load 
(Krishnan et al., 2006; Nebes et al., 2002; Teodorczuk et al., 2007). In 
obese subjects we demonstrated a higher initial BPV but no significant 
differences in progression compared with non-obese subjects. This result 
also seems counterintuitive as studies with more obese subjects suggest 
that these adults have smaller total brain volumes than normal weight or 
overweight individuals (Dekkers et al., 2019; Gunstad et al., 2008; 
Hamer and Batty, 2019; Ward et al., 2005). Hence, future studies are 
needed to learn more about the associations between CSVD markers and 
depressive symptoms/obesity in healthy older populations. 

4.5. Baseline-change associations within CSVD markers 

In contrast to previous studies including subjects with substantial 
tWMH lesion load (Gouw et al., 2008; Longstreth et al., 2005; Sachdev 
et al., 2007; Schmidt et al., 2003; Taylor et al., 2003; Whitman et al., 
2001), we did not find evidence for steeper slopes following on higher 
initial tWMH load. Instead, we revealed the opposite pattern for the 
WMH subtype pWMH (and tWMH) but not for dWMH. Only among the 
WMH subtypes we could find that higher pWMH at baseline was asso
ciated with steeper increases of dWMH. In case of the lacunes, the initial 
lacunar number but not the initial volume was related to a subsequent 
increase. Further, the greater the initial BPV, the steeper the slope over 
time. No baseline-change associations were observed for NAWM vol
ume, which is in line with the work of Ritchie et al. (2015), who used 
two-wave longitudinal data. 

4.6. Associations of WMH subtypes and brain volumes 

Expectedly, all associations between WMH subtypes and NAWM 
were negative. In addition, tWMH and pWMH were negatively associ
ated with BPV at baseline. Further, we found coupled changes with 
moderate to strong effect sizes for WMH subtypes and brain volumes: 
Changes in tWMH and dWMH were moderately to strongly negatively 
correlated with changes in BPV, and changes in all WMH subtypes were 
also negatively correlated with changes in NAWM, with the dWMH 
subtype showing the strongest correlation. The findings of our study 
largely replicate those of Ritchie et al. (2015), who reported that initial 
tWMH volume was predictive of the subsequent NAWM volume 
decrease and that the increase in tWMH volume was accompanied by a 
decrease in NAWM volume. Also, Schmidt et al. (2005) showed that the 
increase in tWMH at 3- and 6-year follow-up was correlated with a 
decrease in BPV. In general, these results highlight the relevance of 
including global atrophy measurements such as BPV as they could be 
predictive of WMH burden. 

4.7. Associations of WMH subtypes and lacunes 

The relation between the volume and the number of lacunes at 
baseline showed an expected strong but not nearly perfect correlation (β 
= 0.663) indicating that there are also subjects with few large lacunes or 
with many small lacunes. The baseline lacunar volume was predictive of 
the subsequent increase in the number of lacunes – but not vice versa, 
although moderate positive coupled changes between lacunar volume 
and lacunar number were revealed. 

We found no associations between NAWM or BPV and lacunes. A 
higher load in all initial WMH subtypes were accompanied by higher 
initial number of lacunes and also by a progression in number of lacunes, 
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showing moderate to strong effect sizes. On the other hand, lacunar 
volume at baseline was associated only with the dWMH subtype at 
baseline. In a 7-year study in the general population in China with 
baseline and follow-up measure, Xia et al. (2020) demonstrated that 
higher baseline tWMH was associated with a higher risk of incident 
lacunes and vice versa. Lacunar volume was not assessed. However, in 
our study the higher the volume and number of lacunes at baseline, the 
smaller the increase of pWMH and dWMH volume, respectively, devel
oped over time. In line with this, there was a negative correlation be
tween the changes in lacunar number and pWMH. These results may 
indicate that WMH might transition into lacunes over time, which is 
consistent with the study by Gouw et al. (2008) in which it was hy
pothesized that WMH might develop into lacunes via an intermediate 
stage of a subtype of lacunes that are not yet cavitated. Also a recent 
study concluded that CSVD should be considered as a dynamic «whole- 
brain» disease, possibly based on some common intrinsic microvascular 
pathologies (Shi and Wardlaw, 2016). However, the results reflect the 
complex nesting and interactions of these two CSVD markers, and 
highlights that moderate to strong associations between initial WMH 
subtypes and future progression of lacunar number, even in healthy, 
non-demented individuals exists. Additionally, WMH seem to be pre
dictive for lacunar number and less for lacunar volume, whereas only 
dWMH and lacunar volume seem to be related at baseline. These com
plex associations need to be further investigated in future studies. 

4.8. Associations of CSVD and processing speed 

Higher initial tWMH, dWMH, smaller BPV, NAWM volume, were 
linked to worse performance in processing speed at baseline. For pWMH 
no correlation was found. Further, our results show that dWMH rather 
than pWMH are initially related to processing speed. This fits with the 
study of Wen et al. (2006) where dWMH were reported to be more 
functionally relevant. Also, the results of Brugulat-Serrat et al. (2020) 
showed that the behavior of the composite executive function was 
mainly driven by the indirect effects of dWMH, especially for processing 
speed. We found that the initial performance of processing speed could 
predict BPV with a moderate effect size: the better the initial perfor
mance the steeper the slope of BPV. We did not show any association 
between changes in CSVD markers and changes in processing speed in 
our sample, which is in line with the study by Ritchie et al. (2015), who 
showed that brain volumes and WMH were not predictive for decline in 
processing speed, but in contrast to Schmidt et al. (2005), who revealed 
a decrease in BPV as a strong predictor of decline in processing speed. 

4.9. Strength and limitations 

This study has several strength and limitations. The main advantages 
of this study are: it is a single-center study with a 3 Tesla MRI, the long 
observation time of seven years, the five measurement time points, and 
the therefore possible statistical procedure by using LGC models, which 
makes the error variance highly predictable. Further, we carefully per
formed the outlier analysis, and additionally excluded people with CNS 
active drugs due to the possible influence on, among others, processing 
speed as reported by Rollin et al., 2009. Another benefit is the auto
mated quantification of the WMH volumes using UBO Detector, an al
gorithm validated and customized on the same sample in our previous 
paper (Hotz et al., 2020). 

Nevertheless, a larger sample size for subjects with lacunes would 
have been desirable to generate more robust results, especially with the 
covariates. This applies in general to the risk factors depressive symp
toms and obesity, where the results can only be interpreted with caution. 
Another desirable addition would have been the measurement of serum 
low-density lipoprotein (LDL) to have objective data for harmful lipids 
in blood serum. But in this case, as in the measurement of blood pres
sure, the distinction between protective factor and risk factor would 
remain difficult, especially at this sample size. Finally – in addition to 

BMI – a waist-to-hip ratio or even more sophisticated abdominal fat 
tissue measurement with a computed tomography or MRI would have 
provided valuable and more coherent results, as some studies have 
associated visceral fat with increased CSVD burden (Kim et al., 2017; 
Lampe et al., 2019b). 

5. Conclusion 

The presented longitudinal analysis of CSVD markers in relation to 
processing speed and different covariates on cognitively healthy older 
adults demonstrates the importance of including multiple CSVD markers 
to better understand the complex underpinnings of CSVD. 

From the multiple analyses reported in this work, we can conclude 
that older age is associated with higher initial CSVD loads and poorer 
processing speed performance. Within-individuals, an increase of CSVD 
load over time was observed, and changes in lacunar number and pro
cessing speed were accelerated in older age. Further, we discovered sex- 
specific differences in CSVD loads at baseline and over time, and showed 
that higher education, blood pressure and/or lipid-lowering drugs had 
protective effects on brain and behavior. Importantly, our results indi
cate that changes of dWMH, as compared to pWMH, are more strongly 
related to the changes of the other CSVD markers but also to initial 
processing speed performance. With respect to the lacunes, our data 
indicate that their number rather than their volume reflect the severity 
of CSVD. 

The effects sizes for baseline-change and change-change associations 
were moderate to strong (range: absolute β = 0.272–0.692) pointing to a 
common pathological mechanism and, thus, support multidimensional 
treatment strategies. 
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