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Abstract

Medial temporal lobe structures have long been implicated in the pathogenesis of major depressive disorder. Although
findings of smaller hippocampal and amygdalar volumes are common, inconsistencies remain in the literature. In this targeted
review, we examine recent and significant neuroimaging papers examining the volumes of these structures in major depres-
sive disorder. A targeted PubMed/Google Scholar search was undertaken focusing on volumetric neuroimaging studies of the
hippocampus and amygdala in major depressive disorder. Where possible, mean volumes and accompanying standard
deviations were extracted allowing computation of Cohen’s d, effect sizes. Although not a meta-analysis, this allows a
broad comparison of volume changes across studies. Thirty-nine studies in total were assessed. Hippocampal substructures
and amygdale substructures were investigated in || and 2 studies, respectively. The hippocampus was more consistently
smaller than the amygdala across studies, which is reflected in the larger cumulative difference in volume found with the
Cohen’s d; calculations. The left and right hippocampi were, respectively, 92% and 91.3% of the volume found in controls,
and the left and right amygdalae were, respectively, 94.8% and 92.6% of the volume of controls across all included studies.
The role of stress in temporal lobe structure volume reduction in major depressive disorder is discussed.
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Introduction

Major depressive disorder (MDD) is an increasingly
prevalent condition resulting in significant morbidity
and mortality.! Consistent with the variation in illness
presentation, diagnostic criteria for MDD encapsulate a
wide range of signs and symptoms.? Core symptoms of
MDD comprise pervasively low mood, increased fatigu-
ability and anhedonia.> However, deficits in neurocogni-
tive function frequently accompany these affective
phenomena and include impairment of memory, visuo-
spatial processing and attention.* This heterogeneity of
illness presentation is unsurprising given the multifacto-
rial aetiology of the condition.® Such heterogeneity
implicates several brain regions in the neuropathology
of MDD.’

Characterisation of the links between the neuropa-
thology of depression and a patient’s symptoms is of

fundamental importance to academic psychiatrists
worldwide. This is evident in the proliferation of neuro-
imaging studies over the last few years. Significant
advances have been made towards understanding the
neurobiology of MDD, with imaging studies identifying
multiple loci exhibiting volumetric differences in
depressed patients versus healthy controls. In particular,
medial temporal lobe (MTL) structures such as the
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amygdala and hippocampus, along with frontal regions,
have been implicated as potential biomarkers for
depression, with most studies demonstrating volume
reduction.®® Many studies have emerged within the
literature focusing on hippocampal and amygdalar
volumes, but these have yielded some contradictory find-
ings. Understanding these findings may aid our under-
standing of MDD neurobiology and focus targeted
research into these structures.

Background

Ambiguity surrounds the anatomical terminology of
these temporal lobe structures, and the definitions of
these terms vary in the literature. The hippocampus
proper consists of the allocortical cornu ammonis sub-
fields 1-4 (CA1-4), and the hippocampal formation con-
sists of the dentate gyrus (DG) medially along its
transverse axis, and the subiculum inferiorly.” Recent
research has also illustrated long-axis specialisation of
the hippocampus, with both anatomical and functional
segregation noted along the anterior and posterior seg-
ments.'” The CA1-4 subfields are components of the
canonical trisynaptic circuit (Figure 1). This comprises
the perforant path from the entorhinal cortex to granule
cells of the DG, which in turn project mossy fibres to
pyramidal cells in CA3 from which Schaffer collaterals
project to CA1.” The hippocampus is the cardinal neural
structure in memory, emotional and cognitive process-
ing, transmitting information across the cortex and to
the hypothalamus via the classic Papez circuit.'' The
amygdala is arguably even more critical to emotional
processing, with reciprocal connections to almost every
part of the cortex (Figure 2). There are numerous ana-
tomical and functional regions of the amygdala, which
can be further divided into nuclei and nuclear groups.
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Although multiple classification systems exist, amygdala
nuclei are commonly categorised into three groups: the
deep laterobasal amygdala containing the lateral (LA)
and basal nuclei; the superficial cortical-like nuclei; and
centromedial amygdala containing the central (CE) and
medial nuclei.'> Morphometric deviations in both hip-
pocampal and amygdalar substructures have been also
studied in MDD more recently with the advent of higher
resolution magnetic resonance imaging (MRI) and
advanced cortical segmentation.

The role of stressful life events in triggering and per-
petuating major depressive episodes (MDEs) has
received considerable attention in the literature.'* '
The hippocampus and the amygdala are key players in
mediating behavioural and neuroendocrine responses to
stress'® as well as being vulnerable to the neurotoxic
effects of stress themselves.!” Indeed, the role of stress
in the development of MDEs has been increasingly
investigated in recent years, and a number of mecha-
nisms have been proposed to explain this link including
hypothalamic—pituitary—adrenal (HPA) axis dysfunc-
tion, neuroinflammation and neurotransmitter perturba-
tions. '8

Significant heterogeneity exists in studies of these two
key MTL substructures, most notably in those of the
amygdala.>! ?* Difficulties in the analysis of multiple
papers on this topic arise for several reasons. Firstly,
there is a significant disparity in anatomical and imaging
definitions of the hippocampus and the amygdale used in
research. Automated tissue-segmentation protocols
using atlas probabilistic based segmentation, such as
the Desikan—Killiany atlas, are an emerging method of
examination of neural substructures and allow for great-
er standardisation and reduced inter-study variability in
the future. Secondly, findings must be interpreted with
caution due to inter-study variability in terms of study
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Figure 1.

Classic trisynaptic circuit. The classic trisynaptic circuit is demonstrated with the green arrows. Information flows into the

hippocampus from the adjacent entorhinal cortex through the perforant pathway. It is then processed through the dentate, CA3 and CAI
substructures via the mossy fibre and Schaffer collateral pathways. Information from the entorhinal cortex also bypasses the trisynpatic
circuit and enters the CA regions directly by collateral perforant pathways (blue arrows). This facilitates parallel processing of information

through the hippocampus. CA: cornu ammonis.
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Figure 2. Hippocampal and amygdalar functional connectivity. The major efferent and afferent connections of the hippocampus and
amygdala are shown. Internal and environmental information enters the hippocampus via the entorhinal cortex and outflows via the fornix,
cingulum and entorhinal cortex. The amygdala has reciprocal connections with almost every cortical area, including the hippocampus.
Amygdalar information also outflows via the stria terminalis and amygdalofugal pathways. ACC: anterior cingulate cortex; EC: entorhinal
cortex; Hypo: hypothalamus; PCC: posterior cingulate cortex; SGC: subgenual cortex.

design, including variation in clinical phenotype (includ-
ing first-episode, remitted, recurrent and treatment-
resistant depression), depression severity, patient age,
the role of stressful life events and the effects of medica-
tion. For example, it has been suggested that multiple
MDEs and stress may result in neurotoxic effects,
exacerbating global neuronal loss across multiple
neural substructures including the hippocampus.'>>>2¢
Furthermore, antidepressant medication has been
shown to ameliorate such changes in these neural struc-
tures, and therefore, patient medication status is an
important factor in the interpretation of study find-
ings.?” These factors likely contribute to the heterogene-
ity of study findings. It is, therefore, difficult to
extrapolate these findings to all patients who fall under
the broad singular clinical definition of MDD.

The aims of our study were threefold: (1) to review
studies examining global and substructural volumes in
the hippocampus and amygdala in depressed patients
compared to non-depressed individuals, (2) to generate
an approximate volume difference for each structure
(limitation of the methods not withstanding) and (3)
explore the role of stress and neurotoxic processes in
these studies. It is hoped that this review will contribute
to a deeper understanding of the role of these MTL
structures in MDD.

Methods

A targeted search of the literature was undertaken to
review recent papers on this subject. We searched
MEDLINE, Embase and Cochrane Library databases,
using the keywords ‘depression’, ‘amygdala’, ‘hippocam-
pus’, ‘MRI" and ‘volume’, along with the correct medical
subject heading codes and abbreviations. These were
paired with the appropriate Boolean operators, and the
search was conducted for papers published from 1
January 2009 to present 25 June 2019.

Inclusion criteria were (1) adult patients with a
primary diagnosis of MDD by DSM-IV/DSM-V or
ICD-10 by a psychiatrist; (2) comparison to healthy
controls who were screened for neurological, psychiatric
and other medical disorders that may affect brain struc-
ture; (3) assessment of volumetric differences using
MRI; (4) patients reporting depressive symptoms
without a formal diagnosis of MDD; and (5) systematic
reviews and meta-analyses of studies fitting the
above specifications. Studies were commonly excluded
for examining a paediatric cohort. Studies which
solely analysed volume following treatment, and articles
which assessed volumetric differences post-mortem were
also excluded. The references of the included papers
were inspected for relevant articles, and other key
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articles known to the reviewers were also included in our
review.

A Cohen’s dg effect size was calculated by extraction
of means and standard deviations of hippocampal and
amygdala volumes reported in each study. Only studies
that reported means and standard deviation were includ-
ed in this calculation. Cohen’s dy is a modified calcula-
tion of the Cohen’s d score allowing pooling of means
from samples that are not equal in size to be compared.
This metric provides a standardised difference between
means, i.e. allowing a comparison of the effect sizes
between different studies. The calculation was made
using the following equation:

M, — M,
hen’sd, = ————
Coher’s d Pooled SD

(m — 1) x SD? + (ny — 1) x SD3
ny +np

Pooled SD = \/

M, = The mean of group 1

My, = The mean of group 2

SD, = The standard deviation of group1
SD, = The standard deviation of group2
ny = The size of group 1

n, = The size of group 2

A negative Cohen’s dg value from our data denotes
that the structure volume is smaller in MDD, while a
positive value means it is larger in depression. The fur-
ther away the value is from 0, the larger the difference
between controls and depressed in each study. The use of
this metric allows for a standardised comparison of the
effect size between the means of the groups being dis-
cussed across different studies. A percentage decrease in
the size of volumes was determined by calculation of the
mean value of the average volume sizes in different stud-
ies and dividing the mean from depressed participants by
the mean from non-depressed participants.

Results

Thirty-nine studies were identified with 21 measuring
hippocampus volumes, 9 measuring amygdalar volumes
and 9 measuring both hippocampal and amygdalar vol-
umes. A total of 7270 MDD patients and 12,996 controls
were investigated across all studies. In addition, six
meta-analyses of hippocampal volumes in MDD and
four meta-analyses of amygdalar volumes in MDD
were also returned. Moreover, 24 studies found smaller
hippocampal volumes in MDD (80% of hippocampal
studies) and 12 studies found smaller amygdala volumes
in MDD (67%); 13 hippocampal studies used automated
segmentation, 9 used manual segmentation and 6 used a
combination of both. Eight amygdalar studies used

automated segmentation, 6 used manual segmentation
and 4 used a combination of both; 11 hippocampal stud-
ies examined the structure at a substructural level com-
pared to only 2 amygdalar studies. Sixteen hippocampal
studies investigated MDD patients with medication
compared to 8 without medication, with 4 not reporting
medication status. Moreover, 12 amygdalar studies
investigated MDD patients with medication compared
to 4 without medication, with 1 not reporting medication
status. Only two studies overall appeared to control for
medication effects.?*-*®

Using the Cohen’s dg calculation as the standardized
difference between the means, smaller bilateral hippo-
campi across all studies in MDD was revealed (mean
effect size —0.341, range —1.211 to 0.673). The left and
right hippocampi were respectively 92% and 91.3% the
volume found in controls. Similarly, Cohen’s d, calcula-
tion revealed smaller bilateral amygdalae (mean effect
size —0.701, range: —2.927, —0.0293) with the left and
right amygdalae showing 94.8% and 92.6% of the
volume of controls across all studies.

Discussion

This targeted review explored neuroimaging studies
measuring hippocampal (Table 1) and amygdala (Table
2) volumes in MDD. Of the 39 studies returned, the
majority showed smaller hippocampi and amygdalae in
the disorder. Although not a meta-analysis, by pooling
the means and standard deviations from studies that
supplied the data we were able to calculate an estimate
of the overall differences in hippocampal and amygdala
volumes in MDD (Table 3). Across the studies, both
structures were smaller in MDD, with the hippocampus
showing an approximate 8% volume difference bilater-
ally and the amygdala showing an approximate 7% dif-
ference on the right and 5% difference on the left.

Global Hippocampal Changes in MDD

Within the neuroimaging literature, smaller hippocam-
pal volumes are amongst the most widely replicated find-
ings in MDD. We identified 24 studies showing smaller
hippocampi compared to controls. Our Cohen’s d, cal-
culation strongly supports this wider consensus with an
8% hippocampal volume reduction bilaterally. This is
consistent with meta-analyses investigating the hippo-
campus as a single structure® ! or as part of a greater
limbic system analysis*'** reporting volume reduc-
tions of 4%-10%. Meta-analyses of voxel-based mor-
phometry data also provides evidence of hippocampal
grey matter loss in MDD.?>*7® Most available evidence
indicates that volume reduction is associated with longer
durations of depressive illness (i.e. MDD chronicity), a
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greater number of depressive episodes and earlier age of
onset of MDD.?*” From these findings emerged the con-
cept of the so-called cumulative depressive load, a com-
bination of duration of episodes and number of episodes
over a person’s lifetime.*® A cumulative depressive load
of longer than 2years is associated with smaller hippo-
campi in MDD.?'** This suggests that a ‘depressive
dose’ effect depending on the length of time the individ-
ual suffers from active depression may influence hippo-
campal size. However, hippocampal changes have also
been found in first episode patients,”* suggesting that
changes in the structure either occur early in the illness
or smaller hippocampal size may represent a vulnerabil-
ity for the development of MDD.

Some studies show that hippocampal volumes are
smaller during depressive episodes and resolve upon ill-
ness resolution.*® Hippocampal size may represent a
state marker of the illness, i.e. present during episodes
and absent in recovery. The neuroplastic capacity of the
hippocampus is illustrated by normalization/recovery of
volumes following pharmacological treatment for
MDD,**4 % further giving weight to the notion that
hippocampal volume may serve as a biomarker of dis-
ease state. One study found that hippocampal volumes
increase greater than controls following long-term (three
years) antidepressant treatment.** Neurogenesis in the
DG of the hippocampus has been proposed as a poten-
tial mechanism for the action of antidepressants.*’

A minority of studies found hippocampal volumes
were not smaller in MDD. In particular, two large stud-
ies with a combined sample size of 1767 patients failed to
demonstrate volumetric differences in the hippocampus
between depressed and non-depressed individuals.'*®
There are some difficulties in interpreting these results.
Shen et al. used a composite of self-reported symptoms
and hospital admission data to estimate probable MDD,
rather than an operational MDD diagnosis based on
strict structured clinical interviews.*® Ancelin et al. inves-
tigated a community-based sample and most of the
MDD patient group only had one episode at some
point in their lifetime, potentially accounting for the
lack of hippocampal findings.'

Although care is needed when interpreting these find-
ings in their totality, the majority of available evidence
points towards a disease process at work in the hippo-
campus in MDD. Hippocampal atrophy may already be
present at first episode, with greater volume reduction
occurring with further depressive episodes as the discase
progresses.”>>?° However, the hippocampus is not a uni-
tary structure and has many individual yet interdepend-
ent parts. Changes may occur discretely in subfields
rather than across the whole structure. Recently,
increased efforts have been made to localise differences
found in MDD to individual substructures.

Dentate Gyrus

Various structural neuroimaging studies have found
dentate volume reductions along with other substructure
changes in depression.”***** A study comparing
52 medication-free patients to 51 healthy controls
found that the number of prior depressive episodes
was correlated with reduced dentate volumes using
FreeSurfer 5.3 automated segmentation.*® Using the
same methods, 20 medication naive females with MDD
were found to have smaller dentate regions compared to
21 controls.*” A high-field (4.7 T) manual segmentation
study showed smaller dentate volume in nine unmedi-
cated patients compared to eleven medicated patients
and twenty seven controls as well as smaller CA (1-3)
in the depressed patients.*” The dentate was also found
to be smaller in a study of 83 depressed individuals com-
pared to 80 controls, using FreeSurfer 6.0 with the dif-
ference more pronounced on the left and in those with
recurrent depression.’

The dentate represents the input circuitry of the hip-
pocampus (Figure 1), funnelling information from the
entorhinal cortex into the hippocampus.'' It is one of
only two locations where adult neurogenesis occurs.*’
Decreased dentate neurogenesis may play a role in
MDD,” and increased dentate neurogenesis may be a
mechanism for the action of antidepressants.*> The gran-
ule cells of the dentate express high concentrations of
glucocorticoid and mineralocorticoid receptors™® and
appear to be exceptionally vulnerable to circulating cor-
tisol levels compared to other brain regions.” This may
be particularly important in MDD which is associated
with HPA axis and cortisol perturbations.

Subiculum

The subiculum has been shown to be smaller in some
MRI studies in depression (see Table 1).>*7>! A high-
field (7 T) manual tracing study of 13 patients with one
episode of MDD and 5 patients with multiple episodes,
showed smaller subicular volumes with multiple epi-
sodes, but these findings are limited in power by small
sample size.”! Moreover, 20 medication naive females
with MDD were found to have smaller subiculum
regions compared to 21 controls in a FreeSurfer 5.3
study.*” Using the same automated technique, the sub-
iculum was found to be smaller in a study of thirty older
patients with MDD.> A FreeSurfer 6.0 study found the
subiculum to be smaller in 83 depressed individuals com-
pared to 80 controls, with the difference more pro-
nounced on the left and in those recurrent depression.’
The left subiculum was also smaller in a similar study of
102 patients with MDD and 135 controls.>
Hippocampal atrophy has also been found in individuals
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Nolan et al. 13

. E § £ who reported depressive symptoms,>* and this atrophy is
g = § § 2 g g £ correlated to an increasing course of these symptoms.””
s 2RRs ¥|¢ & The subiculum is part of the exit circuitry of the hip-
01388F23 2 8 pocampus (Figure 1) and, along with CAl, outputs
é 8 information back to the adjacent entorhinal cortex and
2 ; to the wider cortex and hypothalamus via the fornix.'!
w3 Subicular output inhibits HPA activity resulting in
zlgg Somum % £ .reduced circulaj[ing cortisol. Smaller subiculums fqund
:;. g in MDD may disrupt the negative feedback mechanisms
L% of the HPA axis causing escalating cortisol levels, known
38 to be detrimental to mood and cognition®®>’ as well as
S - o g g directly damaging brain areas including the DG.*>
& cal
E % The CA1 has been found to be bilaterally smaller in a
g5 study of 102 patients with chronic MDD and 135 con-
§ 3R $§ ”n gg trols.>® The left CAl region was also smaller in 83
T | RRRBSI| 5T depressed individuals compared to 80 controls and was
E"E" reported as a predictor of depressive illness duration.’
% g': Previous studies that have identified changes in various
55 - other hippocampal substructures, however, have failed
Z|oo g ¥ o g é % to demonstrate CA1 changes.” Failure to do so may be
5 §.§ accounted by the well-documented methodological
E g T issues with previous versions of automated segmentation
- G2 that have underestimated the size of CA1.”!
'% © o %g '3 The CA1 region has a particularly high expression of
g 2|« RSN &| TS5 2 multiple 5-HT receptor subtypes® and is the most vul-
3 TMMTSS |5 H nerable hippocampal substructure to excitotoxicity.®!
3 § ] g Long-term corticosteroid exposure, a model of MDD
g > and chronic stress in rats, has been shown to lead to
c ~ X S g attenuated serotonin responses in the CAl region.®
g a A g § % E “-q.S) ? Evidence 6ihowing extensive post-mortem CA1l neural
NaRwea S E apoptosis® and reduced CA1 thickness® in MDD also
s X 8 strongly suggests CAl involvement in the disorder.
o ¢ ..
5§22
153328 ca2ls
« g g g § g‘: g Hippocampal segmentation often combines these two
g i§o§>‘3 % % % % E g 2 :ub(fli.eltc.ls m.t(;laﬂimgcleAgAstB r;%londc.iue t(t) ?Z;nablhty
ez 5868 o distinguis e rom the adjacen region
% cEEZEE e s é‘ using MR imaging, the diminutive size of CA2 and the
© 5’@0 8 8 (% E % ¢ similarity between the pyramidal layers of both sub-
23 g fields. Left CA2/3 volume in MDD was reduced in a
9 § é study of 83 depressed patients compared to 80 controls,
gg;ﬁ particularly in patients with recurrent depression,” and
2 20 also of 102 patients with MDD and 135 controls.” CA3
- © - | B E £ was also found to be reduced in Parkinson’s patients
g ; o e E %‘; with comorbid depression. ThesS% volumes normalized
5 é b ”"_v 'i 279 e following L-DOPA treatment. .Slmllar redufzuons
O T ° =8 —g £ 6 3 were found in CA2/3 subfields in an unmedicated
~ T g9 gs|LE*- MDD female only cohort.*” Smaller CA2/3 subfields
9 ~| ¢ eg&c|l 28 ; . . 5 .
i Tls 2033| 8ot have been found in later life patients’ and associated
= & Z9g with cerebrovascular events.®



Chronic Stress

Although small, the CA2 subfield receives prominent
hypothalamic input, including directly from the para-
ventricular nucleus, suggesting a role in HPA feed-
back.®® The CA3 displays rich connectivity within the
hippocampus and has roles as a hippocampal ‘pacemak-
er’ critical for encoding and decoding of informa-
tion.>>%” Smaller CA2 and CA3 in MDD could result
in the aberrant stress/HPA responses found in the disor-
der as well as the neurocognitive difficulties found in
some individuals with MDD.

Global Amygdala Changes in MDD

While a relative abundance of literature exists detailing
structural alterations of the hippocampus in MDD,
there is a relative dearth of research detailing amygdala
volumes in the illness. We identified 12 studies showing
smaller amygdala compared to controls. Our Cohen’s dg
calculation showed a 5.2% reduction in amygdala
volume on the left and a 7.4% reduction on the right
in MDD patients. This largely corresponds with previ-
ous meta-analyses focusing on the amygdala as a single
structure®® or part of a broader brain analyses.>>3>%
Structural neuroimaging studies of the amygdala in the
literature are hindered by the same inter-study variabil-
ity as those of hippocampal studies. Due to the particu-
lar difficulties in categorization and identification of
amygdalar nuclei, there has been less focus in measuring
amygdalar subregions. However, effort has focused on
identifying global changes and also the lateralisation of
differences. Debate has also centred around whether
amygdala volume alterations represent a state marker
for depression.

Amygdala Substructures

Unfortunately, due to difficulties in substructure defini-
tions and visualization on MRI, only a handful of stud-
ies have investigated the amygdala at a deeper level in
MDD. A recent automated segmentation study of
25 patients and 28 controls reported specific subregional
volumetric loss not apparent when examining global
amygdala volume.”® Specifically, the lateral and basolat-
eral ventromedial nuclei were bilaterally smaller in
MDD, along with right central and anterior cortical
nucleus volume reductions. Smaller laterobasal nuclei
were found bilaterally in a manual tracing study of
twenty MDD patients.”' A recent 7T automated seg-
mentation of study of 24 patients and 20 controls
found no reduction in whole volumes or nuclei volumes
in MDD, but did find the right lateral and left cortical
and accessory basal nuclei correlated negatively with
depressive symptoms.”?

Amygdala as a State Marker of lliness

It is clear that there is significantly greater heterogene-
ity in the findings from studies of the amygdala, partic-
ularly when comparing studies with differing disease
stages. Many have established the case that volumetric
alterations may represent a trait of neurobiological vul-
nerability for depression.””> A trend towards increasing
atrophy with increasing number of depressive episodes
has also been detected.”* A previous meta-analysis
has found evidence of reduction of volume in the
right amygdala in first episode depression.®® Younger
patients aged 18-39years reporting depressive symp-
toms but not formally diagnosed with MDD have
also been shown to display atrophy in the right amyg-
dala.”® No relationship between depression severity and
smaller amygdala volume has been found.”® This is in
contrast to conflicting studies showing enlarged amyg-
dalae in first-episode depression is correlated to episode
severity.’®

These volume changes have been shown to resolve in
patients treated with antidepressant medication. A meta-
analysis shows that smaller amygdala volumes found in
MDD increase in size with medications, even beyond
that seen in controls.®® Conversely, normalisation of vol-
umes of initial enlarged amygdala after treatment has
also been described.’”® This may be underpinned by pro-
tection from excess glucocorticoid stimulation. In one
study there appeared to be a correlation between
bilateral normalization of amygdalar volumes following
medication administration (in the context of
pre-treatment bilateral atrophy) with reductions in
HPA-axis activity.”’ Suggesting that the effects of
antidepressants on circulating cortisol may reverse
amygdala volume loss from MDD. Additionally,
others have concluded that amygdala volume may be a
predictor of treatment response, finding higher amygda-
la volumes in treatment-resistant patients versus non-
treatment resistant patients.”” However, it must be
noted that comorbid anxiety may be present in these
cohorts, and this could have an effect on amygdala
volumes.”®

Although amygdalar volume has been suggested
to be a marker of treatment response, one study did
not demonstrate volumetric differences between current-
ly depressed individuals and controls; however, there
was volumetric enlargement in patients in remission
not related to the use of medication.”> This was
suggested to represent a vulnerability factor for depres-
sion relapse and may constitute a reaction to the
stress induced by previous depressive episodes enhancing
synaptogenesis in the amygdala. This is in contradiction
to other findings whereby stress in the previous six
months has been associated with atrophy of the left
amygdala.”
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Stress, Neurotoxicity and Temporal Lobe
Structures in MDD

HPA axis dysfunction, neuroinflammation and neuro-
transmitter perturbations are implicated in the link
between MDD and stress. Belleau et al. proposed a uni-
fying model of these mechanisms.'® In this model, chron-
ic life stress is proposed to trigger dysregulation of the
HPA axis, ultimately resulting in altered levels of basal
cortisol in those with MDD.'" This finding has been
widely replicated with a majority of studies indicating
HPA-axis overactivity, perhaps underpinning the associ-
ation between MDD and chronic metabolic and neuro-
degenerative diseases.'®*%! HPA activity depends on
balanced integration of amygdalar activation and hippo-
campal inhibition of the periventricular nucleus of the
hypothalamus.®*%* MDD may cause a shift from hippo-
campal inhibition to amygdala-mediated release of cor-
ticotrophin releasing hormone from the hypothalamus.?’
These increased cortisol levels have been associated with
damage to both amygdala and hippocampal neurons.

This hyperactive endocrine state cultures a neuroin-
flammatory milieu, coupled with direct immune activa-
tion by stress itself.'> Chronic stress, therefore, promotes
the expression of pro-inflammatory cytokines such as
interleukins 6 and 1 and tumour necrosis factor
alpha. This is supported by reports of elevations in
inflammatory marker levels in the hippocampus in
animal models of chronic unpredictable stress.** The
effects of peripheral pro-inflammatory cytokines on
central nervous system microglia may result in reduced
hippocampal  neurogenesis.”®  Additionally,  pro-
inflammatory cytokines have been shown to activate
indoleamine 2, 3-dioxygenase, an enzyme that shunts
tryptophan into the kynurenine pathway, yielding neu-
rotoxic end-products such as 3-hydroxykynurenine and
quinolinic acid. Kynurenine pathway activation and
associated elevated immune response has been shown
to be associated with smaller hippocampi in MDD.%?
Abnormal membrane turnover in the hippocampus in
MDD is greater in patients with highly recurrent illness
and is further evidenced by magnetic resonance spectros-
copy (MRS) studies.®

Following from the shift to a pro-inflammatory state
and the production of neurotoxic end-products, as well
as a direct effect from chronic stress, perturbations in
neurotransmission also occur in the pathogenesis of
MDD. In particular, there are changes in glutamatergic
signalling, as seen in MRS studies.®”*® Glutamate, the
primary excitatory neurotransmitter in the central ner-
vous system exerts an excitotoxic effect on neurons.
Disruptions in glutamatergic signalling may result from
excessive release and reduced clearance from the synap-
tic cleft, thereby facilitating direct neurotoxic effects.

Stress Sensitisation and Recurrent
Depressive Episodes

The ‘stress sensitisation’ or ‘kindling” model of affective
illness'? proposes that while an initial MDE often fol-
lows a period of intense life stress, the strength of the
relationship between life stressors and subsequent
MDEs declines as a function of the number of MDEs.
This leads to the unfortunate situation where progres-
sively lower levels of stress have the ability to trigger
recurrent MDEs as the disease progresses. An extension
of the kindling model is the ‘stress autonomy’ model,
which proposes that recurrent MDEs can generate inde-
pendent of life stressors.'> Assuming that the above for-
mulation of pathogenesis correctly encapsulates the
neurobiological underpinnings of MDD, it could be pos-
tulated that lesser levels of stress may trigger these
increasing neuroendocrine and inflammatory disturban-
ces with each successive MDE. One strong line of evi-
dence for the kindling model is the clear association
between early life stressors and MDD.'* Opel et al.
have recently reported a significant association between
childhood maltreatment and hippocampal volume in
both healthy controls and individuals with MDD, and
to the development of MDD.'*!” Childhood maltreat-
ment has also been linked to an earlier onset of MDD,
perhaps explained by the induction of HPA-axis and
immune dysregulation.®” In contrast to this, Lenze
et al. did not find an association between childhood mal-
treatment and hippocampal volume.

Ultimately, a cumulative effect of chronic stress, and
of the neurotoxic implications of such stress in MDEs,
may be reflected in morphometric disturbances.
Naturally, numerous investigators have proposed the
hippocampus as a marker of illness progression, with
increasing atrophy with each successive depressive epi-
sode.!32%26 Zaremba et al. proposed that atrophy is not
related to total illness duration, but to the number of
hospitalisations, suggesting that increasing atrophy
may be linked to the severity of the depressive episodes.
Attempts have also been made to localise these volume
reductions. CAl-4 and DG have consistently been

shown to display the most marked
changes 41:42:709091.92

Limitations

The main limitation of any review of hippocampal and
amygdalar volumes is the difficulty in comparing results
across the variety of different techniques used. Of the 39
studies examined, 30 utilised automated tissue segmen-
tation protocols in some fashion and the remainder
relied solely on manual tracing. Although automated
tissue segmentation and increasingly capable analysis
software allow for more reliable and replicable
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identification of hippocampal and amygdalar subfields,
there is some debate over the validity of these techniques
compared to the °‘gold standard’” manual tracing.
Automated techniques allow much faster assessment of
greater numbers of subjects and will probably become
more common in the future as dataset numbers increase.
Voxel-based methods have been shown to exhibit rela-
tive insensitivity in segmenting tissue into grey and white
matter in regions such as the hippocampus wherein grey
and white matter sheets are convoluted into each other,
perhaps resulting in non-significant findings in some
cases.®’ Similarly, studies use different definitions of
amygdalar and hippocampal volumes. A review of
MRI volumetrics has suggested that approximately 60
different anatomical guidelines exist for hippocampal
volumes.”* To view ‘volume reduction’ in the hippocam-
pus and amygdala as the sole characteristic of MDD-
related changes in brain structure may also be overly
simplistic. Rather, both differences in structure and con-
nectivity/function may serve as more accurate illness
biomarkers. Clearly, these subtle changes in MDD
have yet to be fully elucidated. The Cohen’s d metric
used in this study facilitates a standardised comparison
of the effect sizes across different studies, yielding an
easily interpretable if somewhat blunt measure of overall
effect size for each structure. Unfortunately, a full meta-
analysis identifying a common effect size, controlling for
the multiple confounders and causes of heterogeneity
across all these studies is outside the scope of this
review. This is currently in progress.

Future Directions

Considerable work is needed to further elucidate the pre-
cise link between neuropathology of MTL structures and
the clinical presentation of depression. Larger studies are
needed with standardised patient groups (age, sex,
demographics, etc.), disease characteristics (numbers of
episodes, medication status, etc.), MRI protocols and
anatomical definitions. As MRI technology and comput-
er processing advances, greater focus on individual
substructures, particularly with respect to the under-
studied substructures of the amygdala, may provide
further insight. As noted above, homogenisation of the
definitions of these MTL structures and their substruc-
tures will permit greater standardisation across studies
and inter-study comparison. No study to date has
focused on automated segmentation of the hippocampal
subfields into their anterior and posterior components. It
is known that the hippocampus has anatomical and
functional differences along its anterior—posterior
axis'® (e.g. a lower proportion of dentate is found in
the anterior division of the hippocampus than in the
posterior hippocampus).”® Newer automated techniques
are now able to divide the hippocampus and

substructures longitudinally along this axis. Not only
will future use of these fine grain techniques improve
standardisation, but the greater anatomical specificity
may form the basis for future hypotheses based on pre-
cise substructure localisation. This may yield a more
specific and sensitive biomarker — a holy grail of academ-
ic psychiatry.

Conclusion

On balance, the overwhelming consensus across all the
studies is that both the hippocampus and amygdala are
smaller in MDD. The hippocampus most commonly
exhibits atrophy proportional to disease chronicity and
the amygdala potentially representing a state marker of
illness. Several factors contribute to the heterogeneity of
study findings, including the impact of stress, number
of depressive episodes, impact of medication and the
age of depression onset. It is therefore necessary to be
cognisant of the impact of these factors in the interpre-
tation and extrapolation of study findings. Recent devel-
opments in automated tissue segmentation software
have allowed a more nuanced examination of the volu-
metric changes in the hippocampal and amygdalar sub-
structures. This presents an exciting prospect for future
research in this field. Future understanding of the rela-
tionship between stress, cognitive and affective process-
ing in depression, and these key temporal lobe structures
may help elucidate the pathophysiology of MDD.
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