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Background
Tumor genomics data are being produced at an unprecedented 
rate and scale due to the rapid development of next-generation 
sequencing technologies and provide us detailed information 
on tumors at a molecular level. In addition, advances in mass 
spectrometry (MS)-based proteomics technologies have 
improved the accuracy and depth of measurements1–4 and now 
allow for observation of a large set of proteins from tumor sam-
ples. The information obtained from proteomics is comple-
mentary to genomics and transcriptomics, and it is an open 
question how to integrate them to fully use the combined 
experimental data to gain insight into tumor biology and build 
clinically useful predictive models. Basic proteogenomics inte-
gration can be applied to improve protein identification,5–11 
and mass spectral data can be used to improve genome annota-
tion.6,7,12,13 Proteogenomic integration also promises to drive 
clinical diagnosis, drug discovery, and development. Molecular 
profiling of patient tissue can enable the generation of person-
alized, individual-specific treatment based on genetic and pro-
teomic signatures.14

The increased availability of heterogeneous biomedical data 
requires computational frameworks that allow a principled joint 

processing of them. One of the major challenges in the analysis of 
such data sets is to preserve the statistical properties of individual 
modalities. Several methods have been proposed in recent years 
to combine multiple views of data from different data sets or their 
subsets. Xu et al15 identify 2 main driving principles in multiview 
learning: the consensus principle and the complementary princi-
ple. Uniform integration horizontally concatenates different 
modalities with different scales and statistical properties into a 
single view.15,16 Methods such as multiple kernel learning and 
subspace learning have been proposed to couple multiple data 
sources and model their latent interactions.16,17

Integrating classifiers from heterogeneous modalities pose 
multiple challenges. These classifiers should perform at least, as 
well as simple, unimodal classifiers; do model selection by tak-
ing into account multiple predictors; not overfit to the high-
dimensional molecular data; work for both continuous and 
categorical variables; and take into account the cost of generat-
ing the data.18 In one approach, partial least-square approach 
was used for dimensionality reduction.18 Once the partial least-
squares components were identified, random forests were used 
for outcome prediction.
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Multiview learning is tightly coupled with other areas of 
machine learning such as ensemble learning and domain 
adaptation. Le Cao et  al19 developed a mixture of experts 
model to integrate the continuous and categorical nature of 
transcript levels and clinical variables, respectively. Bovelstad 
et  al20 applied dimensionality reduction only to the high-
dimensional molecular data in their clinical-genomic mod-
els. Obulkasim et al21 combined clinical and molecular data 
in a stepwise manner. As molecular data may be expensive 
and difficult to obtain, the models were first built from clini-
cal data. Neighborhoods of samples misclassified by the clin-
ical data were identified, and subsequently, the more 
expensive molecular data were added. Multiview methods 
have been used to combine dimensionality reduction, clus-
tering of individual modalities, and then late integration of 
these matrices followed by patient subtype identification.22 
Further work has incorporated the known biological rela-
tionships between different types of molecular data (such as 
between promoters and genes) to enhance their integrated 
predictive performance.23 A recent approach for heterogene-
ous data integration have used nonparametric Bayesian 
methods to handle noisy, unstructured data with different 
modalities (transcript levels, digital pathology image data, 
and copy number data) in combination with prior informa-
tion. When this method was applied in one breast cancer 
study, while transcript data gave the best predictive perfor-
mance in most of the cases, the digital pathology data were 
much better at predicting death in estrogen (ER) receptor–
positive cases.24

Machine learning has been applied to proteomics data for 
predictive modeling of candidate proteolytic peptides, cancer 
subtypes, clinical prognosis definition, and targeted therapy 
development.25–30 Methods for recursive feature selection 
from high-dimensional, noisy molecular data have been 
developed.31 Recent work using multimodal proteogenomics 
from The Cancer Genome Atlas (TCGA) data32 (now 
hosted at the Genomic Data Commons, https://portal.gdc.
cancer.gov/), METABRIC data,33 and the Clinical Proteomic 
Tumor Analysis Consortium (CPTAC)34 has demonstrated 
that for these data sets combining multiple modalities does 
not improve the predictive performance over unimodal 
data.16,17,24 The Cancer Genome Atlas used reverse-phase 
protein array35,36 analysis of 172 proteins for measurement of 
protein levels. In contrast, MS-based proteomics can readily 
quantify thousands of proteins. A recent study from CPTAC 
has demonstrated that deep proteomics data can be more 
predictive of 10-year survival in breast cancer than the other 
data types.17 Analysis of proteogenomics data using machine 
learning techniques is a fairly new, unexplored territory and 
holds great promise of insights for cancer biology research.

The high dimensionality of unimodal and multimodal  
data, extending to tens of thousands of dimensions, requires 
dimensionality reduction techniques such as principal 

component analysis,37 independent component analysis,38 or 
nonnegative matrix factorization (NNMF).40,41 Dimensionality 
reduction techniques work by projecting the data to a new 
space of lower dimensions (fewer predictors) with each dimen-
sion being a combination of features The advantage of NNMF 
over other dimensionality reduction algorithms39,40 such as 
principal component analysis is that it is able to find meaning-
ful, interpretable modules from the data where the number of 
dimensions is constrained by the number of samples. For 
example, in imaging data, NNMF is able to identify sparse, 
parts-based components corresponding to facial features. 
Nonnegative matrix factorization has also been used to inte-
grate features from images and text from image tags for seg-
mentation of images and label prediction from annotated 
multimedia data.41 Biological molecular data, such as transcript 
profiles, usually consist of nonnegative values, but methods 
such as principal component analysis may not guarantee non-
negativity after projection onto lower dimensional subspaces. 
In contrast, NNMF is able to capture the true nonnegative 
nature of such data and provides a parts-based, sparse represen-
tation of the data. Zhang et al42 have jointly analyzed predicted 
microRNA (miRNA)-gene interactions, miRNA and gene 
level profiles, and the gene-gene interaction network con-
structed based on protein-protein interaction and DNA-
protein interaction networks in an NNMF framework. Their 
approach integrates miRNA and transcript profiles in a frame-
work of multiple NNMFs and simultaneously integrates gene-
gene interaction network data in a regularized manner where 
sparse penalties are applied to make the modules interpretable. 
In further work,43 Zhang et  al developed a joint NNMF 
method where multiple types of genomic data such as DNA 
methylation, transcript levels, and miRNAs are projected onto 
a common coordinate system, in which heterogeneous varia-
bles weighted highly in the same projected direction form a 
multidimensional module. Other variations of NNMF include 
extensions to identify localized sets of genes across the data.44

Here, we present a novel approach for multiview molecular 
data integration that extends traditional NNMF to the joint 
factorization of different data matrices by extending an existing 
multiview approach to the joint treatment of different modali-
ties of ‘omics data.41 We extend the formulation of an existing 
method to simultaneously do dimensionality reduction using 
the alternating least squares (ALS) method and phenotype 
prediction. We introduce heuristics to approximate the impor-
tance of each modality in a data-driven way before their joint 
factorization and consider these coupled, reduced matrices for 
outcome prediction. We then apply this to CPTAC proteog-
enomics data for phenotype prediction such as ER, progester-
one (PR), and human epidermal growth factor receptor 2 
(HER2) status in breast cancer; to tumor grade, tumor stage, 
and survival prediction in ovarian cancer; and to tumor stage, 
residual tumor, and survival prediction in colon cancer. In addi-
tion, we compare results from our method with results from 

https://portal.gdc.cancer.gov/
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the uniform integration of the same data. In going beyond 
techniques such as our previous work on TCGA data which 
used uniform integration, multiple kernel learning, and ensem-
ble learning,16 this approach allows for dimensionality reduc-
tion and the joint estimation of latent components. Thereby, 
our approach captures the interactions between different data 
modalities.

Materials and Methods
In the following section, we describe the mathematical formu-
lation for NNMF followed by our extension. We then describe 
the algorithm for prediction from multimodal data using this 
approach. Finally, we describe the heterogeneous CPTAC pro-
teogenomics data used in the analysis.

Nonnegative matrix factorization

Formally, NNMF can be expressed as a least-squares optimiza-
tion problem as shown in equation (1):

	 min
,W H

X -WH 2 	 (1)

where X ∈ ×Rm n  is a data matrix with m  samples and n  fea-
tures, W ∈ ×Rm k  is the reduced k  basis factors, and H ∈ ×Rk n  
contains the coefficients of the linear combinations of the basis 
vectors to reconstruct the original data. In addition, k≤m and 
X W H, , ≥ 0 . An algorithm proposed by Lee and Seung39,45 

for solving equation (1) uses multiplicative update as shown 
below:

1.	 Initialize W  and H  as random dense matrices.
2.	 Repeat until convergence or maximum number of 

iterations:
a. H H W X W WH← [ ( )] ( ) T T
b. W W XH WHH← [ ( )] ( ) T T

where A B  represents the elementwise Hadamard product 
(elementwise multiplication) and A B  represents element-
wise division of matrices A  and B .

Adaptive multiview nonnegative matrix 
factorization

Akata et al41 extended the above formulation to multiview data. 
Their approach consisted of uncovering suitable matrices of 
basis vectors W  and V  for their multimodal imaging and text 
data implicitly coupled by the H  coefficient matrix to obtain 
2 separate low-rank approximations X ≈ WH  and Y ≈ VH . 
This was formalized as a convex combination of 2 separate 
constrained least-square problems as shown in equation (2):

	 min
,W,V H

X WH Y VH1−( ) − + −λλ λλ
2 2

	 (2)

such that W,V,H ≥ 0  and λ ∈[ , ]0 1 . λ  is a user-specified con-
stant that assigns weights for either modality. The authors 
adopt a fixed-point iterative multiplicative update solution to 
approximate W , V , and H  as shown in equations (3) to (5), 
respectively41:

	 W W XH
WHH

T

T←  	 (3)

	 V V YH
VHH

T

T←  	 (4)

	 H H
W X V Y

W W V V H

T T

T T
←

−( ) +

−( ) +( )


1

1

λ λ

λ λ
	 (5)

A more generic formulation of equation (2) extending to an 
arbitrary number of modalities is as shown in equation (6):

	 min
,W H

X W H
i i

i i

i

p

λ −
=
∑
1

2

	 (6)

such that λi
i,W , H ≥ 0 , and λλT I =1 .

One disadvantage of multiplicative updates is that once an 
element in W  or H  becomes 0, it continues to remain 0, and 
the algorithm proceeds toward a fixed point45 and therefore 
multiplicative updates are more sensitive to initial choice of 
values. In contrast, ALS updates offer more consistency and 
flexibility and are easy to implement and can be faster than 
multiplicative updates or gradient descent-based solutions. The 
ALS updates to equation (2) are shown in equations (7) to (9):

	 HH W HXT T T= 	 (7)

	 HH V HYT T T= 	 (8)

	
1 1

1 1

−( ) +  −( ) + 
= −( ) +  −( ) + 

λ λ λ

λ λ λ λ

W V W V H

W V X Y

λλ
T

T 	 (9)

The algorithm for solving equation (2) using the ALS 
methods45 is described as follows:

1.	 Initialize W , V , and H  as random dense matrices.
2.	 Repeat until convergence or maximum number of 

iterations:
a.	 Solve equation (7) for W .
b.	 Set all negative elements in W  to 0.
c.	 Solve equation (8) for V .
d.	 Set all negative elements to V  to 0.
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e.	 Solve equation (9) for H.
f.	 Set all negative elements in H  to 0.

After dimensionality reduction, we use these reduced matrices 
to train and test a support vector machine (SVM)46 binary classi-
fier as described in the “Approach” section. We selected SVMs 
because of their robustness to overfitting and good performance 
in similar problems with high variable to sample ratios.46–48 We 
evaluated the predictive performance of the classifier using the 
area under receiver operating characteristic (ROC) curve 
(AUC).49 We first evaluated the performance of unimodal data. 
Dimensionality reduction in unimodal data was performed using 
NNMF, and the reduced matrix was used for classification. For 
our example of matrices X  and Y , let AUCW  and AUCV  rep-
resent the AUC performance of the reduced, unimodal matrices 
W  and V . We scaled the AUC performance of the unimodal 
data to obtain a sense of the relative importance of each modality 
as shown in equation (10) for 2 data modalities and in equation 
(11) for an arbitrary p  number of modalities:

	 λ =
+

AUC
AUC AUC

V

W V
	 (10)

	 λi
i

jj

AUC
AUC

=
∑

	 (11)

This is then used as the λi  in our Adaptive Multiview 
NNMF method for multimodal data. Instead of an arbitrary 
choice of λ , our choice is now data driven. Unlike multipli-
cative updates which explicitly guaranteeing nonnegativity, 
ALS does a simple projection step to approximate nonnega-
tivity and speeds up implementations, which is especially 
useful for high-dimensional biomedical data.

Approach

Our approach is summarized in the pseudocode below. Assume 
we have 2 nonnegative matrices X  and Y  representing 2 het-
erogeneous modalities of ‘omics data.

Algorithm: Adaptive Multiview Nonnegative Matrix Factorization

Input: Nonnegative matrices X ∈ ×Rm n  and Y ∈ ×Rm n  ( m  samples and n  features); Number of reduced basis factors k
Output: Predictive performance as measured by average area under ROC curve

Procedure:

    1: Repeat until maximum iterations

        a. For each resampling iteration do:

              i. Hold out specific test samples Xte  and Yte .

              ii. Initialize W Vtr tr,  and H  to random positive values sampled from a Gaussian.

              iii. �Perform dimensionality reduction on unimodal matrices Xtr  and Ytr  using NNMF and prespecified number of dimensions, 
k, to obtain Wtr  and Vtr .

              iv. Train model on Wtr  and Vtr  using a support vector machine classifier.

              v. �Test model on Wte  and Vte . To give the test samples a projection in the same space as the training data to get the reduced 
test data Wte , we do the following transformation: X H Wte te

− ≈1  and Y H Vte te
− ≈1 .

    2: Average cross-validation performances from Wte  and Vte .

    3: Scale AUC performance, AUCW  and AUCV , from unimodal matrices Wte  and Vte  to [0, 1] to obtain λ  as shown in equation (10).

    4: Repeat until maximum iterations

        a. For each resampling iteration do:

              i. Hold out specific samples Xte  and Yte .

              ii. �Perform dimensionality reduction on Xtr  and Ytr  using multiview approach outlined in equations (7) to (9) iteratively until 
convergence to get W Vtr tr, , and H . Use λ  from step 3.

              iii. �Train model on support vector machine classifier using concatenated, multimodal matrices Wtr  and Vtr  where 
Xtr ≈W Htr  and Ytr ≈ V Htr .

              iv. �To give the test samples a projection in the same space as the training data to get the reduced test data Wte  and Vte , we 
do the following transformation for the test data: X H Wte

− ≈1
te  and Y H Vte

− ≈1
te

              v. Test model on uniformly integrated matrices Wte  and Vte .

    5: Average cross-validation performance to obtain final AUC.
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Linear SVMs are supervised classification algorithms that 
classify samples into 2 classes, here, the presence or absence of 
a clinical phenotype, by calculating the maximal-margin hyper-
plane separating them. We have used a LIBSVM50 MATLAB 
interface with a linear SVM and a default cost parameter of 1. 
Missing values were imputed using the k-nearest neighbor rule 
in MATLAB.51

We used repeated nested 10-fold cross-validation52 and 
averaged results over the 10 repetitions from random subsam-
pling of the original data. The cross-validation procedure 
divides the subsamples drawn into 10 nonoverlapping balanced 
subsets. The process is then repeated 10 times with 9 sets used 
for training and 1 for testing. Classifier performance was evalu-
ated using the AUC, ie, the area under the curve obtained by 
plotting sensitivity against 1-specif icity at different thresholds, 
where sensitivity is the number of true positives in the gold 
standard that are correctly classified and specificity is the num-
ber of correctly classified true negatives.49 Paired sample t tests 
were used to compare the performance between pairs of mod-
els. The adjustment for multiple comparisons in all statistical 
tests was performed using the Benjamini-Hochberg false dis-
covery rate correction.53 The statistical significance was deter-
mined at .05 level using adjusted P values.

Data
The CPTAC analyzed the proteome and phosphoproteome of 
genome-annotated TCGA32,54–56 tumor specimens34,57–59 The 
analysis of the tumor specimens was done by high-resolution 
tandem MS. Prior to MS analysis, extensive peptide fractiona-
tion and phosphopeptide enrichment were performed to 
increase the depth of the analysis. The peptide mass spectra 
were identified using different database search algorithms that 
match the target spectra against known fragmented spectra of 
peptides contained in a protein sequence database.57–59 A label-
free quantitation approach was used for the colon tumors, and 
an isobaric peptide labeling approach was used for breast and 
ovarian tumors.

The CPTAC breast cancer data set consists of a subsample 
of the 77 breast tumors selected from TCGA for MS-based 
proteomics and phosphoproteomics analyses.57 All PAM50-
defined intrinsic subtypes were represented in the cohort: 25 
basal-like, 29 luminal A, 33 luminal B, and 18 HER2 (ERBB2)-
enriched tumors, and in addition 3 normal breast tissue sam-
ples. A total of 12 553 proteins (10 062 genes) and 33 239 
phosphosites were quantified for the tumors. The phenotypes 
used for prediction from the breast cancer data set were ER 
status, PR status, and HER2 status (Table 1). The ER or PR 

Table 1.  Characteristics of data sets/tasks used in this study.

Breast cancer N(0) N(1) Phosphoprotein Protein 
level

Copy 
number

Transcript 
level

PR status (negative vs positive) 34 43 X X X X

ER status (negative vs positive) 23 54 X X X X

HER2 status (negative vs positive) 58 19 X X X X

Ovarian cancer  

Tumor stage (IC, IIA, IIB, IIC, IIIA and IIIB) vs IIIC 19 50 X X X X

Tumor grade (G1, G2) vs G3 57 12 X X X X

Survival ≥ 1 y 12 57 X X X X

Survival ≥ 2 y 22 47 X X X X

Survival ≥ 3 y 36 33 X X X X

Survival ≥ 4 y 49 20 X X X X

Survival ≥ 5 y 55 14 X X X X

Colon cancer  

Tumor stage (I, IIA, IIB) vs (IIIA, IIIB, IV) 52 38 X X X

Residual tumor R0 vs (RX, R1, and R2) 68 12 X X X

Survival ≥ 1 y 45 45 X X X

Survival ≥ 2 y 70 20 X X X

Survival ≥ 3 y 79 11 X X X

Abbreviations: ER, estrogen; HER2, human epidermal growth factor receptor 2; PR, progesterone.
N(0) and N(1) denote the number of subjects for classes 0 and 1, respectively. The encoding of classes is given in the first column.
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status indicates whether the hormone ER or PR is supporting 
the spread and growth of the cancer cells.60,61 An abnormal 
activity of the HER2 can also play a role in cancer develop-
ment.62 For our analysis, we retained the 5508 genes which 
were measured across all 4 modalities.

The CPTAC ovarian cancer data set consists of a subsample 
of the MS-based proteomic characterization of 174 ovarian 
tumors previously analyzed by TCGA. In total, 169 of the 174 
tumors were high-grade serous carcinomas.58 The CPTAC 
conducted an extensive MS-based proteomics and phospho-
proteomic characterization of ovarian tumors. This resulted in 
quantitative measurements for a total of 9600 proteins from 
174 tumors and 24 429 phosphosites from 6769 phosphopro-
teins in a subset of 69 tumors.58 In total, 69 samples had all the 
4 modalities—copy number, transcript, protein, and phospho-
protein levels—measured. The phenotypes for prediction were 
tumor stage, tumor grade, and survival at greater than 1, 2, 3, 4, 
and 5 years of follow-up. For tumor stage prediction, stages IC, 
IIA, IIB, IIC, IIIA, IIIB, and very few samples from stage IV 
were considered to be in class 0, and samples from stage IIIC 
were considered to be in class 1 (Table 1). Ovarian cancer is 
difficult to diagnose in its early stages. Stages I and II represent 
cancer on one or both the ovaries, extensions to the uterus, fal-
lopian tube, and other pelvic organs.63 Stages IIIA and IIIB are 
characterized by cancer in the upper abdomen less than 2 cm.63 
Stage IIIC ovarian cancer represents visible cancer greater than 
2 cm on one or both ovaries, fallopian tubes, and metastasis to 
nearby abdominal organs.63 In stage IV ovarian cancer, the 
cancer has metastasized to the fluid in the lungs.63 For tumor 
grade, G1 and G2 were considered in class 0 and G3 in class 1. 
Based on the International Federation of Gynecology and 
Obstetrics system, G1 and G2 represented well and moder-
ately differentiated cells from normal cells that grow slowly. G3 
represented highly differentiated cancer cells, which are widely 
different from normal cells, grow quickly, and are more likely to 
metastasize than G1 or G2 cells.64 In conjunction with pre-
dicting tumor grade and stage, we also built models to predict 
survival greater than 1, 2, 3, 4, and 5 years in ovarian cancer. 
Only a subset of 1441 genes was measured across all 4 modali-
ties and retained for analysis of our proposed novel method.

The CPTAC colon cancer data set consists of a subsample 
of the 95 TCGA analyzed by liquid chromatography-tandem 
MS–based proteomics.59 A total of 3764 genes had both 
miRNA and protein measurements, and 90 samples had all 
the 3 modalities—copy number, transcript, and protein level—
measured. The phenotypes for prediction were tumor stage, 
residual tumor, and survival at 1, 2, and 3 years of follow-up. 
For the purpose of binary classification, we considered sam-
ples in stages I, IIA, IIB to be in class 0 and samples in stages 
IIIA, IIIB, and IV to be in class 1. Class 0 represents different 
grades of tumor invasion—through the submucosa or the 
muscularis propria (stage I), through the muscularis propria 
into pericolorectal tissues (stage IIA), or penetration to the 

surface of the visceral peritoneum (stage IIB).65 In addition, 
for samples in class 0, no regional lymph node or distant 
metastasis is observed. For class 1, the tumor invades the sub-
mucosa or the muscularis propria or through the muscularis 
propria into the pericolorectal tissues (stage IIIA).65 In addi-
tion, for stage IIIB, the tumor can invade through the muscu-
laris propria into the pericolorectal tissues or it can penetrate 
to the surface of the visceral peritoneum.65 In stages IIIA and 
IIIB, no distant metastases are observed. However, local 
metastases can happen in 1 to 3 lymph nodes and can deposit 
in regions such as the mesentery and subserosa. The different 
stages of residual tumor in colon cancer were R0, R1, R2, and 
RX. We considered samples with residual tumor as R0 to be 
class 0 and samples with residual tumor R1, R2, and RX to be 
in class 1 for binary classification (Table 1). R0 indicates the 
absence of residual tumor, whereas R1 denotes microscopic 
and R2 macroscopic tumors. R1 is reserved for tumors identi-
fied by histologic examination and R2 for tumors detected by 
clinical and pathologic examination.66 When the presence of 
tumor cannot be assessed even after extensive clinical and 
pathologic assessment, the category is denoted as RX. We also 
built models for predicting survival greater than 1, 2, and 
3 years for this same cohort. There were very few samples in 
class 1 (Table 1) beyond year 3 for colon cancer. In total, 3756 
genes were measured across all 3 modalities.

Details of the data sets and the clinical phenotypes consid-
ered are summarized in Table 1. The obtained data sets have 
been processed and normalized. We have performed rescaling 
of all data features to [0, 1] range to facilitate classifier learning. 
We included clinically relevant phenotypes for which there 
were at least 50 samples available and which were well defined 
in the data. Our initial cross-validation experiments indicated 
50 to 60 components from NNMF to have comparable perfor-
mance to using all the dimensions/features. Hence, for our 
experiments, we retained 50 to 60 components after dimen-
sionality reduction.

Results
Combining multiple modalities of data did not 
improve predictive performance in the current 
experimental setting

Different data fusion strategies such as uniform integration 
and our proposed Adaptive Multiview NNMF algorithm did 
not overall improve the performance of multimodal data over 
unimodal data with any statistical significance in our present 
experimental settings (Figure 1). In the case of breast cancer 
clinical phenotypes, unimodal transcript levels were the most 
predictive of ER and PR status and copy number of HER2 
status. In case of ovarian cancer, phosphoprotein levels were the 
most predictive of tumor stage and tumor grade, and protein 
levels were the most predictive of survival ≥1 year. In colon can-
cer data, protein levels were most predictive of tumor stage and 
residual tumor. In our previous work,16 we have demonstrated 
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that the difference in the improvement in performance due to 
uniform integration compared with other state-of the-art data 
fusion strategies is statistically significant. We therefore com-
pared the performance of our adaptive multiview NNMF with 
the performance of uniform integration (Figure 5). From 
Figure 5, we can observe that although overall multimodal data 
did not outperform unimodal data with any statistical signifi-
cance, multiview learning with just 50 to 60 components did 
improve the performance of multimodal data integration as 
opposed to uniform integration. When multimodal data were 
fused using multiview NNMF, the proportion of cases in which 
multimodal models outperformed unimodal data increased to 
14.6% of the cases from 4.6% of the cases in case of uniform 
integration. In addition, the percentage of cases where multi-
modal and unimodal data had comparable performances is 
greater in the case of the multiview methodology (20.8%) as 
compared with uniform integration (16.9%).

Breast cancer: transcript levels outperformed other 
modalities in predicting ER and PR status and 
copy number outperformed other modalities in 
predicting the HER2 status

For the CPTAC breast cancer data, 77 had all 4 modalities—
copy number, transcript, protein, and phosphoprotein levels. 
Our phenotypes of interest were PR and ER receptor status 
and HER2 status (Table 1). Our results from uniform integra-
tion are summarized in Supplemental Tables 1a and 1b. We 
built predictive models using both unimodal data and uniform 
integration of modalities. The best performing models for PR 
and ER status were based on transcript levels. For HER2 sta-
tus, copy number outperformed all the other models. We per-
formed additional analysis by excluding the main gene ERBB2 
in case of HER2, PGR in the case of PR status, and ESR1 in 
the case of ER status. No statistically significant difference in 
performance was observed after excluding the main genes. 
Furthermore, we generated a consolidated gene list with 5508 
genes measured across all the modalities. With the reduced 
gene set, the best performing models for PR and ER status 
were based on transcript levels. For HER2 status, copy num-
ber outperformed all the other models. We then applied 
NNMF to identify the top 50 to 60 components in case of 
both the original data and the consolidated gene set. From 
Figure 2, we can observe that the best performing modalities 
for PR status and ER status were the transcript levels (mean 
AUC ± standard error: 0.90 ± 0.02 and 0.98 ± 0.02, respec-
tively). Other modalities such as protein levels and phospho-
proteins had comparable performance with transcript levels in 
predicting PR and ER status but did not statistically outper-
form transcript levels. The best performing modality for 
HER2 receptor status was copy number (0.96 ± 0.01). Other 
modalities such as protein levels had statistically comparable 
performance (P > .05) but did not outperform copy number 
variation in predicting HER2 receptor status.

We generated the λ  for the Adaptive Multiview NNMF 
method using the AUC performance of the unimodal data from 
Table 2 using equation (11). The results of our multiview method 
(Table 2) in combining modalities for the CPTAC breast cancer 

Figure 1.  Comparison of the area under ROC curve performance for predictive models built with unimodal data and multimodal data integration using 

uniform integration and Adaptive Multiview NNMF averaged over all the phenotypes from each Clinical Proteomics Tumor Analysis Consortium data set. 

The average performance of the best unimodal data was overall comparable with the best models from uniform integration or Adaptive Multiview NNMF. 

AUC indicates area under ROC curve; NNMF, nonnegative matrix factorization algorithm; ROC, receiver operating characteristic.

Figure 2.  The AUCs for predictive models built with linear support vector 

machines on the Clinical Proteomic Tumor Analysis Consortium breast 

cancer data. Models built with transcript levels performed better than 

models built with other data modalities for PR status and ER status. For 

HER2 status, copy number was the most predictive modality. The error 

bars represent standard errors of the mean. AUC indicates area under 

receiver operating characteristic curve; ER, estrogen; HER2, human 

epidermal growth factor receptor 2; PR, progesterone.

http://journals.sagepub.com/doi/suppl/10.1177/1176935117725727
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data set, while comparable with individual modalities, did not 
overall statistically outperform individual modalities.

Ovarian cancer: phosphoprotein levels outperformed 
other modalities in predicting tumor stage and 
tumor grade, and protein levels outperformed other 
modalities in predicting survival ≥1 year

We then analyzed the CPTAC ovarian cancer data. We only 
retained samples (69) that had all 4 modalities—copy number, 
transcript, protein, and phosphoprotein levels. Our phenotypes 
of interest and encoding are summarized in Table 1. Our results 
from uniform integration are summarized in Supplemental 
Tables 2a and 2b. We built predictive models using both uni-
modal data and uniform integration of modalities. The best per-
forming models for predicting tumor stage and tumor grade 
were from the phosphoprotein data. For survival ≥1 year, protein 
levels were the most predictive modality. For survival ≥2 years 
and beyond, all the modalities had comparable performance. 
Our results are consistent with a similar analysis on the breast 
cancer data existing in literature using multiple kernel learning.17 
Furthermore, we generated a consolidated gene list with 1441 
genes measured across all the modalities. With the reduced gene 
set, the best performing models for tumor grade and tumor stage 
were phosphoprotein data. We then applied NNMF to identify 
the top 50 to 60 components in case of both the original data 

and the consolidated gene set. The best performing modalities 
for tumor stage and tumor grade were again from the phospho-
protein data. For survival, protein data had the best predictive 
performance for short-term (≥1 year) survival.

We generated λ  for the Adaptive Multiview NNMF 
method using the AUC performance of the unimodal data 
(Table 3). Our results on both the unimodal data and the mul-
timodal data are summarized in Table 3. The results of our 
multiview method in combining modalities while comparable 
with individual modalities did not statistically outperform 
individual modalities. The overall best performing modalities 
for tumor stage and tumor grade were phosphoprotein 
(0.73 ± 0.01 and 0.82 ± 0.01, respectively) and protein data for 
survival ≥1 year (0.81 ± 0.01) (Figure 3). Other modalities had 
statistically comparable but not superior performance with 
phosphoprotein and protein levels in predicting tumorigenesis 
and survival ≥1 year, respectively. All the modalities had com-
parable performance (Table 3) in predicting survival ≥2, 3, 4, 
and 5 years and were not statistically distinguishable.

Colon cancer: protein levels outperformed other 
modalities in predicting tumor stage and residual 
tumor

For the CPTAC colon cancer data, we retained samples (90) 
that had all 3 modalities—copy number, transcript, and protein 

Table 2.  AUC performance for the CPTAC breast cancer data using NNMF for unimodal data and Adaptive Multiview NNMF method for multimodal 
data (top 50-60 components and 5508 genes).

CPTAC breast cancer PR status ER status HER2 status

Phosphoprotein (PP) level 0.82 (0.02) 0.93 (0.02) 0.83 (0.05)

Copy number (CN) 0.71 (0.03) 0.88 (0.02) 0.96 (0.01)

Transcript (T) level 0.90 (0.02) 0.98 (0.02) 0.92 (0.03)

Protein (P) level 0.85 (0.04) 0.94 (0.02) 0.93 (0.04)

PP, CN 0.78 (0.03) 0.91 (0.03) 0.97 (0.03)

PP, GE 0.86 (0.03) 0.98 (0.02) 0.87 (0.03)

PP, P 0.85 (0.03) 0.93 (0.03) 0.91 (0.02)

CN, T 0.82 (0.03) 0.98 (0.03) 0.97 (0.03)

CN, P 0.75 (0.04) 0.92 (0.04) 0.97 (0.04)

T, P 0.88 (0.03) 0.99 (0.02) 0.92 (0.04)

PP, CN, T 0.84 (0.04) 0.98 (0.02) 0.86 (0.04)

PP, CN, P 0.82 (0.02) 0.94 (0.03) 0.85 (0.03)

PP, T, P 0.86 (0.03) 0.98 (0.03) 0.84 (0.02)

CN, T, P 0.85 (0.03) 0.97 (0.02) 0.85 (0.04)

PP, CN, T, P 0.87 (0.01) 0.96 (0.01) 0.88 (0.01)

Abbreviations: AUC indicates area under receiver operating characteristic curve; CPTAC, Clinical Proteomic Tumor Analysis Consortium; ER, estrogen; HER2, human 
epidermal growth factor receptor 2; NNMF, nonnegative matrix factorization algorithm; PR, progesterone.
Bold values indicate the best unimodal performance. The numbers in parentheses indicate standard error.

http://journals.sagepub.com/doi/suppl/10.1177/1176935117725727
http://journals.sagepub.com/doi/suppl/10.1177/1176935117725727
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levels. Our phenotypes of interest were tumor stage, residual 
tumor grade, and survival greater than 1, 2, and 3 years. Our 
results from uniform integration are summarized in 
Supplemental Tables 3a and 3b. We built predictive models 
using both unimodal data and uniform integration of modali-
ties. The best performing models for tumor stage and residual 

tumor were protein data. Furthermore, we generated a consoli-
dated gene list with 3764 genes measured across all the modali-
ties. With the reduced gene set, the best performing models for 
tumor grade and residual tumor were the protein data. For sur-
vival status, all the modalities showed comparable performance. 
We then applied NNMF to identify the top 50 to 60 compo-
nents in case of both the original data and the consolidated 
gene set. The best performing modalities for tumor stage and 
residual tumor grade were protein data.

We generated λ  for the Adaptive Multiview NNMF 
method using the AUC performance of the unimodal data 
(Table 4). Our results are summarized in Table 4. The results of 
our multiview method in combining modalities while compa-
rable with individual modalities did not statistically outper-
form individual modalities. The statistically significant best 
performing modalities for tumor stage and residual tumor for 
colon cancer were protein data (0.72 ± 0.02 and 0.82 ± 0.02, 
respectively, P < .05) (Figure 4). All the modalities had compa-
rable performance (Table 4) in predicting survival.

Detailed results for all CPTAC data sets from uniform inte-
gration can be found in an additional file (see Supplemental 
Tables 1a, 1b, 2a, 2b, 3a, and 3b). The P values from the statisti-
cal tests for comparing performance from Adaptive Multiview 
NNMF and adjusted P values after corrections due to multiple 
comparisons have been reported in Supplemental Table 4.

Figure 3.  The AUCs for predictive models built with omics data and 

linear support vector machines on the Clinical Proteomic Tumor Analysis 

Consortium ovarian cancer data. The best performing models for tumor 

stage and tumor grade were based on phosphoprotein levels. For survival 

≥2 years and beyond, all the modalities showed comparable performance. 

For survival ≥1 year, protein expression was the most predictive modality. 

The error bars represent standard errors of the mean. AUC indicates area 

under receiver operating characteristic curve.

Table 3.  AUC for the CPTAC ovarian cancer data using NNMF for unimodal data and Adaptive Multiview NNMF method for multimodal data (top 
50-60 components and 1441 genes).

CPTAC ovarian cancer Tumor 
stage

Tumor 
grade

≥1 y ≥2 y ≥3 y ≥4 y ≥5 y

Phosphoprotein (PP) level 0.73 (0.02) 0.82 (0.01) 0.79 (0.02) 0.71 (0.01) 0.69 (0.01) 0.69 (0.01) 0.75 (0.01)

Copy number (CN) 0.71 (0.01) 0.80 (0.01) 0.77 (0.02) 0.70 (0.01) 0.69 (0.01) 0.70 (0.01) 0.74 (0.01)

Transcript (T) level 0.72 (0.01) 0.76 (0.01) 0.75 (0.02) 0.71 (0.01) 0.69 (0.01) 0.69 (0.01) 0.75 (0.02)

Protein (P) level 0.72 (0.01) 0.70 (0.02) 0.84 (0.02) 0.71 (0.02) 0.68 (0.03) 0.71 (0.02) 0.74 (0.02)

PP, CN 0.70 (0.02) 0.82 (0.01) 0.79 (0.01) 0.71 (0.02) 0.69 (0.01) 0.70 (0.02) 0.75 (0.02)

PP, GE 0.71 (0.02) 0.78 (0.01) 0.76 (0.02) 0.71 (0.02) 0.68 (0.01) 0.70 (0.02) 0.72 (0.02)

PP, P 0.71 (0.02) 0.80 (0.02) 0.84 (0.02) 0.72 (0.02) 0.67 (0.01) 0.69 (0.02) 0.75 (0.02)

CN, T 0.74 (0.02) 0.79 (0.02) 0.75 (0.02) 0.70 (0.02) 0.70 (0.02) 0.71 (0.02) 0.74 (0.02)

CN, P 0.69 (0.02) 0.80 (0.02) 0.79 (0.02) 0.71 (0.02) 0.68 (0.01) 0.68 (0.02) 0.76 (0.02)

T, P 0.72 (0.02) 0.73 (0.02) 0.76 (0.02) 0.71 (0.02) 0.69 (0.02) 0.71 (0.02) 0.76 (0.02)

PP, CN, T 0.72 (0.02) 0.77 (0.02) 0.77 (0.02) 0.72 (0.01) 0.70 (0.02) 0.68 (0.02) 0.74 (0.02)

PP, CN, P 0.73 (0.02) 0.81 (0.02) 0.85 (0.02) 0.71 (0.02) 0.70 (0.02) 0.70 (0.02) 0.76 (0.02)

PP, T, P 0.72 (0.02) 0.76 (0.02) 0.77 (0.02) 0.74 (0.02) 0.70 (0.02) 0.71 (0.01) 0.76 (0.2)

CN, T, P 0.72 (0.02) 0.76 (0.02) 0.78 (0.01) 0.71 (0.02) 0.69 (0.02) 0.69 (0.02) 0.75 (0.02)

PP, CN, T, P 0.73 (0.01) 0.78 (0.01) 0.77 (0.01) 0.73 (0.01) 0.70 (0.01) 0.71 (0.01) 0.76 (0.01)

Abbreviations: AUC indicates area under receiver operating characteristic curve; CPTAC, Clinical Proteomic Tumor Analysis Consortium; NNMF, nonnegative matrix 
factorization algorithm.
Bold values indicate the best unimodal performance. The numbers in parentheses indicate standard error.

http://journals.sagepub.com/doi/suppl/10.1177/1176935117725727
http://journals.sagepub.com/doi/suppl/10.1177/1176935117725727
http://journals.sagepub.com/doi/suppl/10.1177/1176935117725727
http://journals.sagepub.com/doi/suppl/10.1177/1176935117725727
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Discussion
Predictive modeling of proteogenomics data is a fairly new and 
unexplored research area driven by developing bioinformatics 
methods. In this work, we extended and simplified a model for 
multiview integration of modalities. The method extends 
NNMF to the joint analysis of different types of heterogeneous 
data. Multiview NNMF is cast as a convex combination of 
individual optimization problems and we solve it using the 
ALS method. Prior to uniform integration, the individual opti-
mization problems in the formulation for unimodal matrices 
are coupled via a common coefficient matrix. Thereby, the 
approach avoids ad hoc combinations of different types of fea-
tures and thus preserves their statistical properties.

An arbitrary choice of weight given to each modality can be 
suboptimal for the learning algorithm. Therefore, we propose 
to use the AUC of the unimodal data performance as the 
weight for each modality. Other possible heuristics to weight 
the importance of each modality include the inverse of the 

number of mislabeled samples or the number of uniquely mis-
labeled samples by each modality. The weights can also be gen-
erated from a completely different data set and considered to 
be prior information.

Our algorithm did not improve the performance of multi-
modal data beyond individual data with any statistical signifi-
cance. The combination of data sets did not result in an 
improvement for the particular phenotypes such as tumor 
stage, tumor grade, and survival that we considered. In general, 
we found that the modality with a global coverage closest to 
molecular function contains the most predictive information. 
Our results are in agreement with existing literature on similar 
data sets.16,17,24 However, for predicting more complicated phe-
notypes such as chronic fatigue syndrome or body mass index 
where multiple genetic, lifestyle, and environmental factors are 
at play, combining data sets may result in an improvement of 
performance. The method also shows promise in improving 
the performance of multimodal data beyond uniform data inte-
gration in addition to dimensionality reduction (Figure 5). 
Results from the breast cancer data set are in agreement with 
earlier existing studies with transcript levels being the most 
predictive modality.16,24 Results for survival prediction from the 
ovarian cancer data and colon cancer data set are in agreement 
with an existing study on survival prediction for breast cancer 
showing that large-scale proteomics data being the most pre-
dictive modality for survival greater than 1 year.17 For tumor 
phenotypes from both ovarian and colon cancers, proteomics 
data had superior predictive performance compared with tran-
script levels and copy number variation data. This result is 
unsurprising as most cellular, regulatory processes in diseases 
such as cancer happen at the level of proteins.

One limitation of our experimental setting is we have used 
only 1 classifier, SVM, for comparison of uniform integration 
and our proposed algorithm for multimodal data integration. A 
thorough benchmarking classification and additional data 
fusion methods can be more effective in comparison. 

Table 4.  AUC performance for the CPTAC colon cancer data using NNMF for unimodal data and Adaptive Multiview NNMF method for multimodal 
data (top 50-60 components and 3764 genes).

CPTAC colon cancer Tumor stage Residual tumor ≥1 y ≥2 y ≥3 y

Copy number (CN) 0.67 (0.01) 0.78 (0.02) 0.67 (0.01) 0.70 (0.03) 0.79 (0.04)

Transcript (T) level 0.67 (0.01) 0.76 (0.03) 0.68 (0.01) 0.70 (0.03) 0.78 (0.03)

Protein (P) level 0.72 (0.02)* 0.82 (0.02)* 0.67 (0.02) 0.70 (0.03) 0.79 (0.03)

CN, T 0.68 (0.02) 0.66 (0.03) 0.66 (0.01) 0.69 (0.01) 0.79 (0.02)

CN, P 0.71 (0.02) 0.72 (0.03) 0.66 (0.01) 0.69 (0.01) 0.79(0.03)

GE, P 0.71 (0.02) 0.73 (0.03) 0.67 (0.02) 0.69 (0.02) 0.79 (0.02)

CN, T, P 0.71 (0.02) 0.71 (0.03) 0.66 (0.01) 0.69 (0.02) 0.76 (0.02)

Abbreviations: AUC indicates area under receiver operating characteristic curve; CPTAC, Clinical Proteomic Tumor Analysis Consortium; NNMF, nonnegative matrix 
factorization algorithm.
Bold values indicate the best unimodal performance. The numbers in parentheses indicate standard error.
*P < .05.

Figure 4.  The AUCs for predictive models built with omics data with 

linear support vector machines on the Clinical Proteomic Tumor Analysis 

Consortium colon cancer data. The best performing models for tumor 

stage and residual tumor were based on protein levels. The error bars 

represent standard errors of the mean. AUC indicates area under 

receiver operating characteristic curve.
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Furthermore, the study has limited sample sizes of 77, 69, and 
90 patients for breast, ovarian, and colon cancers, respectively. 
Wider profiles and numbers of patients than have been cap-
tured in these studies and additional modalities such as imag-
ing data,67 laboratory results, and social and environmental 
markers can augment these models.

Tumor grade and lesion stage can be important factors in 
predicting survival and individualizing treatment,68 and resid-
ual tumor after surgery can be the best predictor of survival for 
ovarian cancer.69 Earlier studies have shown that stage IIIA in 
colon cancer is associated with a statistically significant 
improved survival than stage IIB patients.70 In our study, we 
can further map predicted survival outcome to tumor stage or 
grade. A study such as ours, which focuses on biologically and 
clinically meaningful phenotypes such as individual stages and 
grades of tumors, can be useful in clinical decision support and 
can further advance diagnosis and personalized targeted 
therapies.

The superior performance of phosphoprotein and protein 
data in predicting tumor stage, tumor grade, and residual tumor 
in ovarian cancer and colon cancer data encourages the multi-
omics profiling of wider tumor subtypes, grades, and stages to 
drive targeted therapies than have been captured in this study. 
As more and more complicated phenotypes and modalities of 
data than have been incorporated in this study are generated, 
we foresee that multiview dimensionality reduction methods 
such as the one proposed here become more useful and 
important.
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