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 Abstract: Background: Polycomb Repressive Complex 2 (PRC2) catalyzes histone methylation at 

H3 Lys27, and plays crucial roles during development and diseases in numerous systems. Its catalytic 

subunit EZH2 represents a key nuclear target for long non-coding RNAs (lncRNAs) that emerging to 

be a novel class of epigenetic regulator and participate in diverse cellular processes. LncRNAs are 

characterized by high tissue-specificity; however, little is known about the tissue profile of the EZH2-

interacting lncRNAs. 

Objective: Here we performed a global screening for EZH2-binding lncRNAs in tissues including 

brain, lung, heart, liver, kidney, intestine, spleen, testis, muscle and blood by combining RNA immu-

no-precipitation and RNA sequencing. We identified 1328 EZH2-binding lncRNAs, among which 470 

were shared in at least two tissues while 858 were only detected in single tissue. An RNA motif with 

specific secondary structure was identified in a number of lncRNAs, albeit not in all EZH2-binding 

lncRNAs. The EZH2-binding lncRNAs fell into four categories including intergenic lncRNA, anti-

sense lncRNA, intron-related lncRNA and promoter-related lncRNA, suggesting diverse regulations 

of both cis and trans-mechanisms. A promoter-related lncRNA Hnf1aos1 bound to EZH2 specifically 

in the liver, a feature same as its paired coding gene Hnf1a, further confirming the validity of our 

study. In addition to the well known EZH2-binding lncRNAs like Kcnq1ot1, Gas5, Meg3, Hotair and 

Malat1, majority of the lncRNAs were firstly reported to be associated with EZH2.  

Conclusion: Our findings provide a profiling view of the EZH2-interacting lncRNAs across different 

tissues, and suggest critical roles of lncRNAs during cell differentiation and maturation. 
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1. INTRODUCTION 

System biology methods including Genome-Wide Asso-
ciation Studies (GWAS) and high-throughput RNA sequenc-
ing have been widely used to dissect the mechanisms under-
pinning human diseases [1-4]. Despite these successes, the 
majority of genetic architecture and gene expression profile 
of human complex diseases remains unclear [5-8]. A major 
challenge in the post-genome era is to mine novel disease 
risks from multi-level omics data using combined system 
biology methods, which may expand our knowledge of the 
causes of genetic disease [9-11]. 

Over 90% of mammalian genome is actively transcribed 
from DNA, but only 2% is destined to code proteins [12, 13]. 
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The remnant belongs to diverse categories of non-coding 
RNAs [14-16]. Traditional non-coding RNA categories in-
cluding rRNAs, tRNAs, miRNAs, snRNAs and snoRNAs 
are mainly transcribed by RNA polymerase I or III, while 
mRNAs are transcribed by polymerase II. Although it has 
long been recognized that Pol II-transcribed long non-coding 
RNAs (lncRNAs) exist, their critical functions in diverse 
cellular processes have not been explored until recently [17, 
18].  

Consistent with notion that expression of lncRNAs is 
highly tissue specific [19], emerging roles of lncRNAs in the 
development of certain organs have been reinforced [12, 20]. 
H19 is an important regulator of mammalian development 
and disease in that it inhibits cell proliferation [21]. Brave-
heart (Bvht), by modulating the core cardiovascular gene 
network, is necessary to maintain cardiac commitment [22]. 
Conversely, the lateral mesoderm-specific lncRNA Fendrr 
(fetal-lethal non-coding developmental regulatory RNA) 
controls mesodermal differentiation, as well as heart and 
body wall development [23]. Six3OS acts in trans to regulate 
retinal development by modulating Six3 activity [24]. Lin-
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cRNA1230 (linc1230) is both necessary and sufficient to 
repress neural commitment of mouse ES cells [25]. The 
smooth muscle and endothelial cell-enriched migra-
tion/differentiation-associated lncRNA (SENCR) is identi-
fied in human vascular smooth muscle and endothelial cells, 
being involved in their differentiation [26, 27]. These find-
ings emphasize that lncRNAs are crucial for the cell fate 
determination during development.  

Mechanistically, lncRNA functions as a signal, decoy, 

scaffold or guide due to its unlimited capability to bind to 

DNA, RNA or protein molecules [12]. Interestingly, majori-

ty of the lncRNAs locates inside the nucleus and interact 

with epigenetic modifiers, particularly, the polycomb repres-

sive complex 2 (PRC2) [17, 22, 23, 28-34]. PRC2 catalyzes 

the tri-methylation at histone H3 lysine 27 (H3K27), and 

leads to chromatin remodeling to silence gene expression 

[35]. Though nearly all PRC2 subunits have potential to bind 

RNAs, the catalytic subunit EZH2 (enhancer of zeste homo-

log 2) has the highest affinity and is most frequently reported 

to be the molecular target of numerous lncRNAs [36]. A 

screening in embryonic stem cells using RNA Immune-

Precipitation (RIP) method identifies over 9000 EZH2-

binding RNAs [37], suggesting an indispensible feature of 

RNAs in EZH2-mediated gene programming. Nevertheless, 

how lncRNAs modify the function of EZH2 during devel-

opment remains elusive.  

Here, we performed an unbiased screening for EZH2-

binding lncRNAs using RIP-seq in ten tissues including 

brain, lung, heart, liver, kidney, intestine, spleen, testis, mus-

cle and blood. We identified both common EZH2-binding 

lncRNAs shared by diverse tissues and tissue-specific ones 

that potentially maintaining the differentiated cell status. Our 

study provides a comprehensive understanding of the molec-

ular function of EZH2 and its related lncRNAs. 

2. MATERIALS AND METHODS 

2.1. Animal Approval 

One male 2-month old C57/BL6 mouse was sacrificed by 

dislocation of infra-cervical spine. Tissues including brain, 

lung, heart, liver, kidney, spleen, intestine, skeletal muscle, 

testis and blood cells were quickly separated, washed in 

PBS, frozen in liquid nitrogen until use. All animal protocols 

were reviewed and approved by the Animal Care and Use 

Committee of Renmin Hospital at Wuhan University and 

conformed to the Guide for the Care and Use of Laboratory 

Animals, published by the US National Institutes of Health 

[38]. 

2.2. RNA Immune-precipitation 

RNA immune-precipitation (RIP) was performed essen-

tially as described [33, 39]. 200-300 mg of mouse tissues 

including brain, heart, lung, liver, kidney, spleen, intestine, 

testis, muscle and blood cells were homogenized in adequate 

volumes of polysome lysis buffer (10 mM HEPES-KOH (pH 

7.0), 100 mM KCl, 5 mM MgCl2, 25 mM EDTA, 0.5% 

IGEPAL, 2 mM dithiothreitol (DTT), 0.2 mg/mL Heparin, 

50 U/mL RNase OUT (Life Technologies, NY, USA), 50 

U/mL Superase IN (Ambion) and 1× complete protease in-

hibitor tablet (Roche)). The suspension was centrifuged at 

14,000 g at 4 °C for 10 min to remove debris. Lysates con-

taining 1 mg protein were incubated with 500 ng normal IgG 

(Cell Signaling Technologies, MA, USA; #2729, 1:200) or 

anti-EZH2 (Cell Signaling Technologies, MA, USA; #5246, 

1:200) at 4 °C overnight on an inverse rotator. Protein A-

sepharose beads (Life Technologies, 50 mL per tube) were 

first blocked in NT2 buffer (50 mM Tris-HCl (pH 7.5), 150 

mM NaCl, 1 mM MgCl2 and 0.05% IGEPAL) supplemented 

with 5% BSA, 0.02% sodium azide and 0.02 mg/mL heparin 

at 4 °C for 1 h, and then added into the lysates followed by a 

3-h incubation at 4 °C on an inverse rotator. The beads were 

subsequently washed five times in NT2 buffer. RNAs were 

released by incubating in proteinase K buffer (50 mM Tris 

(pH 8.0), 100 mM NaCl, 10 mM EDTA, 1% SDS and 1 

U/mL proteinase K) for 30 min at 65 °C, and pelleting by 

adding an equal volume of isopropanol and centrifuging at 

12,000g at 4 °C for 10 min. RNAs were washed once with 

75% ethanol and stored at -80 °C until use.  

2.3. Real-time PCR 

Briefly, 1 mg RNA was reverse-transcribed into first-
strand cDNA using the Superscript III first-strand synthesis 
kit (Life Technologies, NY, USA) with random primers. 
Real-time PCR was performed using the CFX96 Real-Time 
PCR Detection System (Bio-Rad, CA, USA) using the iQ 
SYBR Green Supermix (Bio-Rad). Values were normalized 
to IgG controls.  

2.4. RNA Sequencing 

Purified RIP RNAs were reverse transcribed into cDNA 
sequencing library using KAPA Stranded RNA-Seq Library 
Preparation Kit. The libraries were subjected to quality vali-
dation using the Agilent Bioanalyzer 2100, and sequenced 
using Illumina NextSeq 500 in DNA Link USA Inc.. The 
reads were mapped to mouse genome (mm10) using 
TopHat2 [33], and visualized on the UCSC browser 
(http://genome.ucsc.edu). LncRNAs were picked out accord-
ing to NONCODE database [40]. Screening criteria was set 
as reads > 1.0 in at least one tissue; ratio of anti-EZH2 group 
relative to normal IgG group > 1.5.  

2.5. In Silicon RNA Secondary Structure Prediction 

RNA secondary structure was predicted by RNAfold 
WebServer (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi) 
based on Minimum Free Energy (MFE) and partition function.  

2.6. Statistics 

Comparisons in multiple groups were analyzed with one-
way ANOVA. Data are presented as mean ± s.d. 

3. RESULTS 

3.1. Establishment of RIP Method in Different Tissues 

RNA immune-precipitation (RIP) was performed using 
200-300 mg tissues with anti-EZH2 antibody and normal 
IgG according to previous reports [33, 39]. Before RNA-seq, 
RT-PCR was used to detect known EZH2-binding lncRNAs 
to validate the success of RIP method. We measured the en-
richment of three lncRNAs, i.e. cardiac hypertrophy associ-
ated epigenetics regulator (Chaer), HOX transcript antisense 
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RNA (Hotair) and H19. The results showed that Chaer was 
substantially enriched in heart, spleen and testis (>2 folds; 
Fig. 1A), which was consistent with our previous finding 
that Chaer is a heart-specific lncRNA with detectable ex-
pression in spleen [33]. Whereas Hotair was substantially 
enriched in heart and blood (Fig. 1B), H19 was detected in 
heart, muscle and blood (Fig. 1C). These data confirm the 
success of current RIP method to enrich EZH2-binding 
lncRNAs.  

3.2. RIP-seq Identifies EZH2-interacting lncRNAs 

The pulled-down RNAs were then constructed to cDNA 
library using KAPA Stranded RNA-Seq Library Preparation 
Kit, and sequenced using Illumina NextSeq 500. The reads 
were mapped to mouse genome (mm10). LncRNAs were 
picked out according to NONCODE database [40]. After 
screening for reads no less than 1.0 and a ratio over 1.5 en-
richment (anti-EZH2 group relative to IgG control), we ob-
tained totally 1328 EZH2-binding lncRNAs in all ten tissues 
(Table 1). Spleen is the tissue with the most EZH2-binding 
lncRNAs. Whereas 470 lncRNAs were shared in at least two 
tissues, 858 lncRNAs (64.61%) were tissue-specific EZH2-
binding lncRNAs (Table 1). Most lncRNAs fell into four 

categories based on their positions in the genome; i.e. inter-
genic lncRNA, antisense lncRNA, intron-related lncRNA 
and promoter-related lncRNA (Fig. 2), suggesting an in-
volvement of both cis and trans regulatory mechanisms. 
Among the identified lncRNAs, several were well-known 
EZH2-interacting lncRNAs including KCNQ1 overlapping 
transcript 1 (Kcnq1ot1) [28], growth arrest specific 5 (Gas5) 
[41], maternally expressed 3 (Meg3) [42] and Hotair [29] 
(Fig. 3A-D), further confirming the veracity of the study. 
Gm12840 was a lncRNA detected in 5 tissues (Fig. 3E). We 
indeed identified a common motif with paired two 4-nt loop 
secondary structure (Fig. 3F) that was a typical feature re-
sponsible for the interaction with EZH2 [33, 43].  

3.3. EZH2-interacting lncRNAs Shared in Different Tis-
sues 

The common lncRNAs identified in different tissues 
could serve as self-proof candidates. We identified 64 
lncRNAs shared by at least three tissues (Table 2), including 
the well-established lncRNAs, metastasis associated lung 
adenocarcinoma transcript 1 (Malat1) and Meg3 [30, 42, 44-
47]. Malat1 has been reported to regulate diverse biological 
processes including development, differentiation and 

 

Fig. (1). Validation of the RNA immune-precipitation samples. (A-C) Real-time PCR was used to detect EZH2-binding lncRNAs includ-

ing Chaer (A), Hotair (B) and H19 (C), with the arbitrary values in normal IgG and anti-EZH2 groups in left and ratio of anti-EZH2 to IgG 

in right. Data were mean ± SD. SKM: skeletal muscle. 
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Table 1. EZH2-binding lncRNAs in different tissues. 

Tissues EZH2-binding LncRNAs With Tissue Specificity Percentage (%) 

Brain 87 38 43.68 

Lung 41 6 14.63 

Heart 52 23 44.23 

Liver 76 36 47.37 

Spleen 582 488 83.85 

Kidney 62 29 46.77 

Intestine 150 98 65.33 

Testis 131 80 61.07 

Muscle 112 53 47.32 

Blood 35 7 20.00 

Total 1328 858 64.61 

 

 

Fig. (2). Distribution of lncRNA categories in different tissues. (A-J) Pie chart analyses for EZH2-binding lncRNAs classified into inter-

genic, antisense, intron and promoter related lncRNAs in brain (A), lung (B), heart (C), liver (D), kidney (E), spleen (F), intestine (G), testis 

(H), muscle (I) and blood (J). 
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Fig. (3). Validated EZH2-binding lncRNAs. (A-E) Ratio of reads in anti-EZH2 group relative to IgG control for EZH2-binding lncRNAs, 

Kcnq1ot1 (A), Gas5 (B), Meg3 (C), Hotair (D) and Gm12840 (E) in different tissues. (F) Secondary RNA structure of a paired 4-nt loop 

motif responsible for the interaction with EZH2 in Gm12840. 

 

Table 2. EZH2-binding lncRNAs shared in at least 3 tissues.  

Gene Name 

Detected Tissue 

Bn Lg Ht Lv Sp Kd In Ts Mu Bd 

Gm37494 Y - - - Y Y Y Y Y - 

Gm37917 Y - Y Y Y - - Y - - 

Gm17131 Y - - Y Y - - - Y Y 

Gm13727 - - Y Y Y - - Y Y - 

Gm12840 - - Y Y Y - - - Y Y 

Snord13 - - - Y - - Y Y Y - 

Snora23 - Y - Y - - - Y Y - 

Snhg20 - - - Y - - Y Y Y - 

Gm27206 Y - Y - - - - - Y Y 

Gm25776 - - Y Y - Y - - Y - 

Gm25395 Y Y - Y - - - - Y - 

Gm25117 Y - - Y - - - Y - Y 

Gm24407 - - - Y - Y - Y Y - 

Gm23143 - - - - - - Y Y Y Y 

(Table 2) contd…. 
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Gene Name 
Detected Tissue 

Bn Lg Ht Lv Sp Kd In Ts Mu Bd 

Gm22513 - - - - - Y Y Y Y - 

Gm20528 - - - - Y Y Y Y - - 

Uckl1os Y - - - - - Y Y - - 

Snora57 - Y - Y - - - - Y - 

Snhg12 - Y - - - - Y Y - - 

Meg3 - - - - Y - Y - - Y 

Malat1 Y - - Y - - - - - Y 

Gm9864 - - - - Y Y - - Y - 

Gm38393 - Y Y - - Y - - - - 

Gm38271 - Y - Y Y - - - - - 

Gm38194 - Y - - Y - - - Y - 

Gm37954 - Y - - Y - - - Y - 

Gm37601 - Y - Y Y - - - - - 

Gm37515 Y - - Y Y - - - - - 

Gm37376 Y - Y Y - - - - - - 

Gm37349 - Y - - Y - Y - - - 

Gm29055 Y - - - Y - - Y - - 

Gm29044 - Y - - Y - Y - - - 

Gm28268 Y - - - Y - - - - Y 

Gm27350 - - - - Y - - - Y Y 

Gm26917 - Y - - Y - - - Y - 

Gm26905 Y - - - Y - - - - Y 

Gm26870 Y - Y - - - - - - Y 

Gm26397 - - Y - - - - - Y Y 

Gm25939 - - - Y - - - Y Y - 

Gm25835 - - - - - Y - Y Y - 

Gm25099 - - - - - - Y Y Y - 

Gm24574 - - Y - Y - - - - Y 

Gm24265 - Y - - - Y - - Y - 

Gm23442 - - - - - - Y Y Y - 

Gm22486 - - - - - Y - Y Y - 

Gm22442 Y - - - - Y Y - - - 

Gm22285 Y - - - Y - - - - Y 

Gm17132 Y - Y - Y - - - - - 

Gm16579 - Y - - Y - - - - Y 

Gm15662 - - - - - - Y - Y Y 

(Table 2) contd…. 
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Gene Name 
Detected Tissue 

Bn Lg Ht Lv Sp Kd In Ts Mu Bd 

Gm15635 - - - Y - Y - - Y - 

Gm15280 Y Y - - Y - - - - - 

Gm14493 - - - Y - Y - Y - - 

Gm13722 - Y - Y Y - - - - - 

Gm10516 - - - - Y Y Y - - - 

Gm10125 - Y - Y Y - - - - - 

Gm10011 Y - - - - Y - - Y - 

E130102H24Rik - - Y Y - Y - - - - 

D930048G16Rik - - - - - Y - - Y Y 

5830428H23Rik Y - Y Y - - - - - - 

3110053B16Rik Y - - - Y - Y - - - 

1700034H15Rik - - - - Y - Y Y - - 

1700020I14Rik - - - - Y - - - Y Y 

1600010M07Rik - - - - Y - Y Y - - 

Bn: brain; Lg: lung; Ht: heart; Lv: liver; Sp: spleen; Kd: kidney; In: intestine; Ts: testis; Mu: muscle; Bd: blood. Y: present. 

diseases [47-52]. At the gene locus of Malat1, two antisense 
lncRNAs are also expressed: Gm37376 at 5’ region and 
Gm20417 at 3’ region (Fig. 4A). Interestingly, both of them 
were identified as EZH2-binding lncRNAs, and showing 
similar tissue-specific pattern as Malat1 (Fig. 4B-D), impli-
cating the complexity of epigenetic regulation by lncRNAs.  

3.4. Tissue-specific EZH2-interacting lncRNAs 

Despite of their low conservation among species, the ex-
pression of LncRNAs have been shown to be highly tissue 
specific [19], implying a role of lncRNAs in the determina-
tion of cell fate and the maintenance of differentiated cell 
function. Among the EZH2-binding lncRNAs identified in 
this study, 64.61% were detected in only one tissue. An ex-
ample is Hnf1aos1, which locates at the promoter region of 
hepatocyte nuclear factor 1-alpha (Hnf1a; Fig. 5A). Hnf1a is 
a hepatocyte-specific transcription activator required for the 
expression of several liver genes [53-56]. Consistently, 
Hnf1aos1was only detected in the liver (Fig. 5B). There are 
three isoforms of Hnf1aos1 due to alternative splicing; and 
within the third one, we identified an EZH2-recoganizing 
motif with the typical two 4-nt loop structure (Fig. 5C). 

4. DISCUSSION 

Histone methylation-mediated epigenetic barrier is the 
fundamental basis to explain tissue differentiation, which can 
hardly be reversed [57, 58]. Albeit that lncRNA has long 
been involved in epigenetic regulations, their functions in 
cell fate determination remain to be elucidated. Our findings 
using an unbiased screening for EZH2-binding lncRNAs in 
ten tissues provide a comprehensive understanding of the 
tissue-specific non-coding regulators of PRC2.  

The interaction of PRC2 with lncRNAs has been shown 
to be promiscuous; i.e. thousands of RNA targets, including 
both lncRNAs and mRNAs, are identified as PRC2-

interacting RNAs [37, 59, 60]. Even so, specific structural 
features are described to be responsible for the high-affinity 
interaction between lncRNAs and PRC2 subunits. An 89-
mer motif with two paired 4-nt loop “Crab-claw” structure 
was shown to bind EZH2-Embryonic Ectoderm Develop-
ment (EED) dimer [43]. We previously reported a 66-mer 
motif with similar structure from the lncRNA cardiac hyper-
trophy associated epigenetics regulator (Chaer) was the mo-
lecular basis for its interaction with EZH2 [33]. In this study, 
the identified lncRNAs Gm12840 and Hnf1aos1 also possess 
similar structural motifs that may contribute to their interac-
tion with EZH2. Nevertheless, majority of the lncRNAs do 
not show such obvious structural features. One possible rea-
son is that lncRNAs might bind to EZH2 at different entity 
sites. Moreover, Kaneko et al. [30] reported that another 
component of PRC2 JARID2 assists with the interaction 
between PRC2 and lncRNAs. Ounzain et al. [61] found that 
lncRNA CARMEN interacts with both SUZ12 and EZH2 to 
regulate cardiomyocyte determination. In addition to PRC2, 
lncRNAs may simultaneously bind different factors to coor-
dinate signaling transduction [62]. These evidence implies 
that other factors may modify the specificity and affinity of 
EZH2-lncRNA interaction.  

More than half of the lncRNAs identified in our study are 
accompanying with a coding gene, either antisense or at the 
promoter region (Fig. 2), suggesting an involvement of local-
ly cis-regulation [30, 36]. It is still not clear whether such 
interaction keeps PRC2 away from the promoter or leads to 
spatial accessibility for histone modification. The fact that 
Hnf1aos1 and Hnf1a both exhibit liver-specific expression 
seemingly supports the latter. Han et al. [63] identified an 
lncRNA termed myheart (Mhrt), which locates at the 3’ of 
the cardiac fetal gene beta-myosin heavy chain (Myh7). Un-
der hypertrophic stress, Mhrt is upregualted and causes the 
induction of Myh7 through inhibiting the Brg1-Hdac-Parp



282    Current Gene Therapy, 2018, Vol. 18, No. 5 Wang et al. 

 

Fig. (4). EZH2 binds to Malat1 locus-derived lncRNAs. (A) Shematic of the Malat1 genomic structure together with two antisense 

lncRNAs, Gm20417 and Gm37376. (B-D) Ratio of reads in anti-EZH2 group relative to IgG control for Malat1 (B), Gm20417 (C) and 

Gm37376 (D) in different tissues. 

 

 

Fig. (5). An example showing a liver-specific EZH2-binding lncRNA locating near a liver-specific transcription activator. (A) Shemat-

ic of the genomic structure of lncRNA Hnf1aos1 and its neighbor gene Hnf1a. (B) Ratio of reads in anti-EZH2 group relative to IgG control 

for Hnf1aos1 in different tissues. (C) Predicted RNA structure of the motif identified in Hnf1aos1 responsible for its interaction with EZH2. 

chromatin repressor complex. This evidence may provide a 
working model for EZH2-binding cis-regulatory lncRNAs. 
Importantly, the EZH2-binding lncRNAs turn to be abundant 
in the spleen compared with other tissues. This may not be a 
sequencing bias considering that the absolute reads in both 
anti-EZH2 group and the IgG control group resemble that 
observed in other tissues. The finding might imply a special 
requirement for lncRNA regulation in the spleen, the largest 
immune organ containing complicated cell types [64].  

Though some studies suggest that lncRNAs might guide 
the locus-specific recruitment of epigenetic modifiers on 
genome [30, 65-72], other reports raised controversy mecha-
nisms that lncRNAs might prevent the binding of PRC2 to 
specific gene promoters, and act as an activator of specific 

gene expression [73, 74]. Furthermore, the competition be-
tween different lncRNAs for the accessibility of available 
PRC2 apparatus should be carefully evaluated by researchers 
[74]. More efforts are required to investigate the molecular 
basis underpinning lncRNA-mediated gene regulation. 

Epigenetic regulation is a highly dynamic process [75, 76]. 
In this study, all samples were isolated from one 2-month old 
adult male mouse. Due to experimental limitations per se, we 
did not perform experimental duplication on the RIP-seq as-
say. Nevertheless, EZH2-binding lncRNAs may vary with 
age, sex, circadian rhythm, and etc. Our study only reflects a 
snapshot of one epigenetic status. More details need to be ac-
complished to get a panoramic profiling of the lncRNAs sur-
rounding PRC2 under different conditions in future.  
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With the development of novel gene delivery systems 
and gene editing toolkits, gene therapy has become a promis-
ing option to treat human diseases. One recent advancement 
is in Duchenne muscular dystrophy (DMD), which is caused 
by mutations in the X-linked dystrophin gene and is charac-
terized by fatal degeneration of striated muscles. By using 
CRISPR-Cas9 and -Cpf1, the mutations could be corrected 
in human cells and animal disease model [77, 78]. In addi-
tion to inherited germline mutations, somatic mutations ran-
domly occur at high rates and accumulate along with age 
[79, 80]. These mutations have been shown to contribute to 
the development of cancer and other lethal diseases [81]. 
Different tissues suffer from various environmental stresses 
that could lead to genetic alterations. The variance in ge-
nomic architecture define differential mutation hot spots 
across tissues where specific genes are expressed and differ-
ential DNA repair systems are implemented. Nevertheless, 
how to deliver genes to specific tissues without affecting 
others remains a technical barrier in this field. It would be 
favorable if the target gene displays high tissue specificity so 
that sequence-dependent treatment would not interfere with 
the normal function of tissues other than that hosting the 
target gene. To this end, microRNAs and siRNAs have been 
intensively explored as a therapeutic approach to silence 
causal genes of specific diseases. This field is further boost-
ed by the prosperous nanoparticle mediated in vivo gene de-
livery [82]. So far, there is no reports about targeting 
lncRNAs in human diseases, albeit obvious advantages in-
cluding high tissue specificity, scalable regulation on gene 
expression and low side effects. Considering that EZH2 is an 
important drug target for treatment of cancer and heart dis-
eases, EZH2-binding lncRNAs can be leveraged to facilitate 
the medicine translation in clinic. Meanwhile, further inves-
tigations are required to clarify in detail the mechanisms how 
lncRNAs modify the epigenetic status and cell function. 

Taken together, our findings reveal numerous tissue-
specific EZH2-binding lncRNAs that display multiple inter-
action and regulation mechanisms. The data may help ex-
plain how an end-differentiated cell maintains its function 
and the genomic stability. 

CONCLUSION 

EZH2 RIP-seq identifies epigenetic lncRNAs with di-
verse genetic architectures. Whereas some lncRNAs are 
shared in multiple tissues, majority of the identified EZH2-
binding lncRNAs show high tissue specificity, and may play 
an important role during organ development.  
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EZH2 = Enhancer of Zeste Homolog 2 

EED = Embryonic Ectoderm Development 
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RIP = RNA Immunoprecipitation 

lncRNA = Long Non-coding RNA 
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