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INTRODUCTION

Myocardial ischemia can occur when myocardial perfusion 
cannot meet the demands of the myocardium and is a key 
prognostic factor in patients with coronary artery disease 
(1, 2). Numerous efforts are made to detect the presence of 
myocardial ischemia. Despite many available non-invasive 
tests, it is reported that about 60% of patients referred 
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for invasive coronary angiography on suspicion of coronary 
artery disease from positive non-invasive tests do not have 
obstructive disease (3).

Current advances in the concept of physiologic 
assessment, and several newly developed invasive and 
non-invasive indices are being applied in clinical practice. 
Fractional flow reserve (FFR) is an invasive physiologic index 
that can be easily measured in the cardiac catheterization 
laboratory. In this review, we discuss the clinical aspects 
of coronary physiology through the concept, physiological 
background and clinical data of FFR. In addition, we further 
discuss resting physiologic indices, non-invasive FFR and 
comprehensive physiologic assessment in patients with 
ischemic heart disease.

Concept and Rationale of Fractional Flow 
Reserve

Fractional flow reserve is defined as the ratio of maximal 
coronary blood flow in a diseased artery to maximal 
coronary blood flow in the same artery without stenosis (4-
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achieve maximal hyperemia for FFR measurement (11). 
Intravenous infusion of adenosine can cause chest 
discomfort, atrioventricular conduction delay and bronchial 
hyper-reactivity, although their incidences and clinical 
significance are low. Intracoronary bolus administration 
of adenosine is a simple method for hyperemia induction, 
and injection of 50–200 μg of adenosine is considered 
adequate for FFR measurement (12). However, due to its 
short action time, steady state hyperemia for pressure 
pullback tracing cannot be maintained with a single bolus 
administration of adenosine. Besides adenosine, nicorandil 
and regadenoson are recently introduced as novel hyperemic 
agents. Nicorandil (Sigmart®, Chugai Pharmaceutical, Tokyo, 
Japan) is a nicotinamide ester with dual mechanisms of 
action on both macro- and microvascular systems (13, 14). 
Jang et al. (13) report similar hyperemic efficacy between 
intracoronary nicorandil injection (2 mg) and intravenous 
infusion of adenosine. Compared with adenosine, nicorandil 
causes less frequent adverse effects (pressure change, heart 
rate change, chest discomfort). The excellent diagnostic 
efficacy and safety of intracoronary bolus administration of 
nicorandil are confirmed at the patient-level pooled data 
from 429 patients with 480 coronary arteries (r = 0.941, 
intra-class correlation coefficient 0.980, classification 
agreement 90.8%, kappa = 0.814, area under curve of 
nicorandil 0.980, all p < 0.001) (15). Regadenoson is 
a direct A2A adenosine receptor agonist that can be 
administered as a single bolus intravenous injection. It has 
rapid onset but longer duration of action and fewer adverse 
effects, as compared with adenosine (16, 17). Lim et al. (18) 
compared intravenous infusion of adenosine, intracoronary 
bolus injection of adenosine, intracoronary bolus injection 
of nicorandil and regadenoson and reported that FFR 
values were not significantly different among the different 
hyperemic agents. The study results on the currently 
available hyperemic agents are summarized in Table 1.

Clinical Evidence of FFR-Guided 
Revascularization

Landmark Studies of FFR-Guided Strategy
The optimal cut-off value of FFR for defining inducible 

myocardial ischemia is extensively investigated using 
non-invasive stress tests. Pioneer work of Pijls et al. 
(6) proposed a cut-off value of 0.75, based on the 
comparison of invasive FFR and the results of sequential 
tests of exercise-stressed tests, thallium scintigraphy, 

6). Flow is proportional to pressure in the case of minimal 
and constant resistance, thus pressure can be a surrogate of 
flow during maximal hyperemia (Fig. 1). As distal coronary 
artery pressure (Pd) in a normal coronary artery is almost 
the same as the aortic pressure (Pa), normal perfusion 
pressure can be replaced by Pa. As venous pressures are 
generally negligible compared to arterial pressure, FFR 
can be simply calculated as the ratio of Pd to Pa during 
maximal hyperemia (4-6). The definition and an example 
of FFR measurement are shown in Figure 2. FFR of 0.80 
indicates that the diseased coronary artery supplies 80% of 
the normal maximal flow due to the stenosis. The strength 
of FFR is that it can assess the degree and presence of 
epicardial lesion-specific inducible myocardial ischemia, 
not only in cases with negative or ambiguous results of 
non-invasive functional tests, but also in the presence 
of multivessel disease (Figs. 3, 4). FFR also has excellent 
reproducibility, regardless of changes in hemodynamics or 
myocardial contractility (7-9).

As previously mentioned, a linear relationship between 
coronary flow and pressure is the fundamental assumption 
in the concept of FFR. As coronary blood flow and 
resistance are auto-regulated based on the myocardial 
demand, within the physiological range (10), induction 
of maximal hyperemia or minimizing microvascular 
resistance is mandatory for FFR measurement (5, 6). 
Continuous intravenous infusion of adenosine (140 μg/
kg/min) is considered as a gold standard method to 

Fig. 1. Relationship between pressure and flow during resting 
and hyperemic states. In resting state, coronary artery is under 
autoregulation to maintain adequate coronary flow according to 
oxygen demand. Pressure and flow are in linear correlation when 
microvascular resistance is minimal and constant.
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and dobutamine-stress echocardiography (sensitivity 
88%, specificity 100%, positive predictive value 100%, 
negative predictive value 88%, and accuracy 93%). Using 
the ischemic cut-off value of FFR, the first randomized 
study of FFR-guided percutaneous coronary intervention 
(PCI), the DEFER trial, tested the safety of deferral of 
functionally insignificant stenosis (19). The DEFER trial 
randomly assigned patients with functionally insignificant 
intermediate lesions (FFR ≥ 0.75) into the Perform group 
(n = 90) and the Defer group (n = 91). Patients with FFR < 
0.75 were allocated into the Reference group and underwent 
PCI (n = 144). The 2- and 5-year follow-up data show that 
both the Defer and Perform groups have no difference in 
the incidence of mortality, myocardial infarction (MI), or 
revascularization (19, 20). Recently published, 15 year 
follow-up data further support the concept that the deferral 

of functionally insignificant lesions is safe, and stent 
implantation for these lesions cannot reduce the incidence 
of clinical events (21). In recent clinical practice, FFR 
binary cut-off value of 0.80 is in use, in order to minimize 
the chance of leaving an untreated functionally significant 
stenosis.

The Fractional Flow Reserve versus Angiography for 
Multivessel Evaluation (FAME) trial enrolled 1005 patients 
with multivessel disease and randomly assigned them to 
angiography-guided PCI group (n = 496) and FFR-guided 
PCI group (n = 509). In the FFR-guided group, stents were 
placed only for stenoses with FFR ≤ 0.80. The primary end-
point was major adverse cardiac event (MACE, a composite 
of death, MI and any revascularization) at 1-year. At 1-year, 
the FFR-guided PCI group showed significantly lower rates 
of MACE (13.2% vs. 18.3%, p = 0.02) and combined death 

Fig. 2. Concept of fractional flow reserve. Fractional flow reserve (FFR) is defined as ratio of maximal coronary blood flow in diseased artery 
(Qs

max) to normal maximal coronary blood flow in same artery (Qn
max). As venous pressure (Pv) is negligible compared to aortic (Pa) and distal 

coronary pressure (Pd), FFR can be calculated as ratio of Pd and Pa. 
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and MI (7.3% vs. 11%, p = 0.04), compared with the 
angiography-guided PCI group. Furthermore, the FFR-guided 
PCI group significantly enhanced the process-of-care index, 
including fewer stents per patient (1.9 ± 1.3 vs. 2.7 ± 1.2, 
p < 0.001), less contrast (272 mL vs. 302 mL, p < 0.001), 
lower procedural cost, and shorter hospital stay (22). FAME 
2-year data shows similar benefit of FFR-guided PCI (23). 
Recently published 5-year results show that the MACE rate 
was similar between FFR-guided and angiography-guided 
groups (28% vs. 31%, relative risk 0.91, 95% confidential 
interval [CI] 0.75–1.10, p = 0.31) with significantly less 
number of stents at index procedure in the FFR-guided 
group (24).

The Fractional Flow Reserve versus Angiography for 

Multivessel Evaluation 2 (FAME 2) trial compared FFR-guided 
PCI plus optimal medical therapy with optimal medical 
therapy alone in patients with functionally significant 
stenosis (FFR ≤ 0.80) (25, 26). In this study, patients 
with a functionally significant lesion (FFR ≤ 0.80) were 
randomly assigned to FFR-guided PCI plus optimal medical 
therapy group and only optimal medical therapy group, 
whereas patients with FFR > 0.80 in all stenoses received 
optimal medical therapy and were assigned as a registry 
group. The study was halted prematurely because of the 
significant difference of composite of death, MI or urgent 
revascularization (4.3% for FFR-guided PCI group vs. 12.7% 
for optimal medical therapy group, p < 0.001) (25, 26). 
Accordingly, European guidelines recommend FFR-guided 

Fig. 3. Case with discrepancy between exercise stress test and fractional flow reserve (FFR).
76-year-old man with stable angina who underwent coronary CT angiography (A) and exercise stress test (B). There was intermediate stenosis 
in proximal left anterior descending coronary artery (LAD) and exercise stress test was negative. Invasive angiography revealed similar stenosis 
in LAD (C) and FFR measured in LAD was 0.70, which suggests presence of myocardial ischemia (D). Red arrows in (A) and (C) show same 
intermediate lesion in proximal LAD.
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revascularization with Class I (level of evidence A) in stable 
patients when evidence of ischemia is not available (27).

Further Evidences for FFR-Guided Revascularization 
Strategy

Recently, 5-year results of the Proper Fractional Flow 
Reserve Criteria for Intermediate Lesions in the Era of Drug-
Eluting Stent (DEFER-DES) trial demonstrated the clinical 
relevance of the FFR-guided strategy in the drug-eluting 
stent era.

Routine DES group underwent DES implantation 
without FFR measurement. At 5-year follow-up, routine 
DES implantation could not reduce the incidence of 
MACE compared to FFR-guided DES implantation group. 
Comparison of the 3 groups shows that 5-year MACE rate 
was higher in the FFR-DES (low FFR and DES implantation) 
group (24%) than the Routine-DES group (14%, p = 0.193) 
and FFR-Defer (high FFR and medical treatment) group 
(7%, p = 0.012) (28). The clinical benefit of FFR-guided 
strategy over angiography-only guided strategy is also well 
established by the large scale registry data (29-31). Park 

et al. (30) report clinical outcomes before (2008–2009) 
and after (2010–2011) the adoption of the routine use of 
FFR from the single-center ASAN PCI registry. Comparison 
of primary endpoint (a composite of any death, MI, or any 
revascularization at 1-year) was performed in propensity-
score matched population (2178 pairs). The risk of primary 
endpoint was significantly lower in patients treated by FFR-
guided strategy, compared with those who were managed 
before the adoption of routine FFR-guided strategy (4.8% 
vs. 8.6%, hazard ratio [HR] 0.55, 95% CI 0.43–0.70, p < 
0.001). The significant reduction of the risk of primary 
endpoint was mainly due to a reduction in MI and 
revascularization. The number of stents per patient was also 
significantly decreased with the adoption of FFR-guided 
strategy. In addition, Li et al. (29) compared long-term 
7-year clinical outcomes between FFR-guided strategy and 
angiography-guided strategy from 7358 consecutive patients 
in the Mayo Clinic registry (2002–2009). The Kaplan-Meier 
fraction of MACE at 7 years was 57.0% in the angiography-
guided group vs. 50.0% in the FFR-guided group (p = 0.016). 
In addition to those clinical data, cost-effectiveness of FFR-

Fig. 4. Case with discrepancy between myocardial perfusion imaging and fractional flow reserve. 
A. 72-year-old woman with stable angina who underwent myocardial SPECT. Reversible perfusion defect was absent. B. Invasive coronary 
angiography revealed severe 3-vessel disease (arrows). C. FFR was 0.69 in left anterior descending coronary artery and 0.73 in left circumflex 
artery, respectively. FFR = fractional flow reserve, LAD = left anterior descending coronary artery, LCX = left circumflex artery, SPECT = single 
photon emission computed tomography
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guided strategy over angiography-guided strategy is also 
demonstrated (32, 33). These investigations collectively 
support the safety and effectiveness of an FFR-guided 
strategy, which reduces unnecessary stent implantation and 
enhances patient’s clinical outcome.

In addition to the robust data supporting the FFR-guided 
decision making process, recent investigations increase our 
understanding of coronary physiology and FFR. In meta-
analysis at the study-level (n = 9173) as well as individual 
patient-level (n = 6961), Johnson et al. (34) provide new 
insight on the prognostic importance of FFR value in terms 
of a continuous variable. Study-level meta-regression 
analysis showed the significant inverse relationship between 
FFR values and normalized 1-year rate of MACE, and this 
inverse relationship was also repeated with Cox regression 
analysis of patient-level pooled data. When the regression 
lines according to treatment modality (revascularization vs. 
medical treatment) were plotted, 2 regression lines crossed 
at the point FFR value 0.75 in the study-level analysis and 
0.67 in the patients-level analysis. Thus, patients with 

low-normal range of FFR value (0.81–0.85) had higher risk 
of future events than those with higher or near normal 
FFR values. In addition, FFR measured after PCI also had 
an inverse relationship with prognosis (HR 0.86, 95% CI 
0.80–0.93, p < 0.001).

Resting Physiologic Index without Hyperemia

The concept of instantaneous wave free ratio (iFR) was 
originally derived from wave-intensity analysis using both 
intracoronary pressure and flow velocity data. Davies et al. 
(35) report a certain period in the cardiac cycle when the 
resistance is low and stable (36). iFR is calculated by Pd/Pa 
ratio at the wave-free period during resting state and does 
not require hyperemia (Fig. 5). The ADenosine Vasodilator 
Independent Stenosis Evaluation (ADVISE) is the first study 
to evaluate the concept of iFR (37). In this study, iFR was 
closely correlated with FFR (r = 0.9, p < 0.001) and showed 
excellent diagnostic performance (C-statistics 0.93) to 
predict low FFR. In the ADVISE study, the optimal cut-off 

Table 1. Summary of Clinical Studies on Hyperemic Agents

Study
Test (Vasodilator)

Reference Method
Results

P
Route Dose Test Reference

Adenosine

Jeremias et al. (82) IC bolus
15–20 ug (RCA), 
  18–24 ug (LCA)

IV AD 140 ug/kg/min 0.78 ± 0.15 0.78 ± 0.15 NS

De Bruyne et al. (83) IC bolus 20, 40 ug IV AD 140 ug/kg/min 0.62 ± 0.20/0.60 ± 0.19 0.61 ± 0.19 NS

Koo et al. (84)
IC bolus 40, 80 ug IV AD 140 ug/kg/min 0.83 ± 0.06 0.79 ± 0.07 < 0.01
IC infusion 240 ug/min IV AD 140 ug/kg/min 0.78 ± 0.09 0.79 ± 0.07 0.40

Yoon et al. (85) IC bolus
36–60 ug (RCA), 
  48–80 ug (LCA)

IV AD 140 ug/kg/min 0.77 ± 0.10 0.80 ± 0.08 < 0.05

Seo et al. (86) IC bolus
40 ug (RCA), 
  80 ug (LCA)

IV AD 140 ug/kg/min 0.81 ± 0.10 0.80 ± 0.10 NS

Lim et al. (18) IC bolus
40 ug (RCA), 
  80 ug (LCA)

IV AD 140 ug/kg/min
Overall agreement = 92.9%, 

Cohen’s kappa = 0.887, p < 0.001
Nicorandil

Jang et al. (13) IC bolus 2 mg IV AD 140 ug/kg/min 0.82 ± 0.09 0.82 ± 0.10 0.180

Kang et al. (15) IC bolus 2 mg IV AD 140 ug/kg/min
Overall agreement = 90.8%,

Cohen’s kappa = 0.814, p < 0.001

Lim et al. (18) IC bolus 2 mg IV AD 140 ug/kg/min
Overall agreement = 91.2%, 

Cohen’s kappa = 0.817, p < 0.001
Regadenoson

Arumugham et al. (87) IV bolus 400 ug IV AD 140 ug/kg/min ΔFFR = 0.0040, r2 = 0.933
Prasad et al. (88) IV bolus 400 ug IV AD 140 ug/kg/min 0.79 ± 0.09 0.79 ± 0.09 NS

Lim et al. (18) IV bolus 400 ug IV AD 140 ug/kg/min
Overall agreement = 100%, 

Cohen’s kappa = 1.000, p < 0.001
van Nunen et al. (89) IV bolus 400 ug IV AD 140 ug/kg/min ΔFFR = 0.00 ± 0.01, r = 0.994, p < 0.001

AD = adenosine, FFR = fractional flow reserve, IC = intracoronary, IV = intravenous, LCA = left coronary artery, NS = not significant, RCA = 
right coronary artery
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value of iFR to predict FFR < 0.80 was 0.83 with sensitivity, 
specificity, positive predictive value, and negative 
predictive value of 85%, 91%, 91%, and 85%, respectively 
(37). Subsequent to the introduction of iFR, its diagnostic 
accuracy and validity during resting period have been under 
debate (38-40). In this regard, the large scale RESOLVE 
study was designed to investigated the data of 1768 
patients from 15 international centers. In this study, iFR 
was measured using a uniform calculation algorithm in the 
independent physiologic core laboratory (41). As a result, 
the optimal cut-off value of iFR was 0.90 for FFR ≤ 0.80 and 
C-statistics was 0.81 (95% CI: 0.79 to 0.84). The optimal 
cut-off value of resting Pd/Pa was 0.92 for FFR ≤ 0.80 and 
C-statistics was 0.82 (95% CI: 0.80 to 0.84). There was no 
significant difference in diagnostic performance between 

resting Pd/Pa and iFR (41). Despite its convenience, more 
evidence is needed to support the routine use of resting 
index, such as iFR, in daily clinical practice. The currently 
ongoing randomized controlled trials, which compare the 
clinical outcomes between iFR- and FFR-guided strategy, 
will clarify the clinical relevance of an iFR-guided strategy 
(DEFINE-FLAIR NCT02053038, SWEDEHEART NCT02166736) 
(42).

Non-Invasive Assessment for FFR: CT-Derived FFR

Coronary CT angiography (cCTA) provides accurate 
anatomical information. However, the discrepancy between 
anatomical severity and functional significance is well-
known (8, 43-50). With the advancement of computational 

Fig. 5. Wave intensity analysis and concept of instantaneous wave-free ratio (iFR). Upper panel shows example of wave intensity 
analysis. Different types of waves originating from proximal and distal (from microcirculatory beds) sites during entire cardiac cycle are 
presented. After beginning of diastole and before start of systole, there is wave free period in which microvascular resistance is minimized and 
constant. iFR is calculated by ratio of proximal and distal pressures during this period (lower panel).
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fluid dynamics (CFD) technology, CT-derived FFR (FFRCT) has 
been developed to provide a non-invasive estimate of FFR 
(Fig. 6). The FFRCT technology possesses a robust scientific 
basis that is well described in previous reviews (51-53). 
Briefly, a three-dimensional patient specific anatomic 
model of coronary artery is first constructed from the cCTA 
data. For assigning boundary conditions of CFD simulation, 
the basal coronary outlet resistances at resting state are 
determined from the principle of an allometric scaling law, 
which allows the estimation of total coronary flow from 
myocardial mass; and a morphometry law, which relates the 
resistance of the downstream vessel to the vessel size at 
each outlet. A mathematical model of hyperemic condition 
is derived from the effect of adenosine on reducing the 
resistance of the coronary microcirculation. Lastly, on the 
basis of discretized model of patient-specific geometry 
and boundary conditions, CFD analysis is performed to 
numerically solve the governing equations of fluid dynamics, 
i.e., Navier Stokes equations, as a Newtonian fluid. The 
numerical solutions of coronary flow and pressure fields are 
used to compute a complete spatial distribution of FFRCT.

Table 2 summarizes the previous studies that evaluate 
the clinical relevance of FFRCT technology. Three prospective 
trials (DISCOVER-FLOW, DeFACTO, NXT) validate the efficacy 
of FFRCT technology and establish a role of FFRCT as a novel 
gate-keeper for patients with suspected coronary artery 
disease (54-56). The obvious benefit in cost-effectiveness 
of a FFRCT-guided clinical decision making process is also 
presented using the previous trial populations, as compared 
with traditional clinical decision making process (57, 58).

Furthermore, the recently published Prospective 
LongitudinAl Trial of FFRCT: Outcome an Resource Impacts 
(PLATFORM) trial evaluates clinical outcomes of FFRCT-guided 
diagnostic strategy, compared with usual care of patients 
with suspected coronary artery disease in real-world 
practice (59). Among those with intended invasive coronary 
angiography (FFRCT-guided = 193; usual care = 187), no 
obstructive coronary artery disease was found at the time 
of invasive angiography in 24 (12%) in the cCTA/FFRCT arm 
and 137 (73%) in the usual care arm (risk difference 61%, 
95% CI 53–69, p < 0.0001), with similar mean cumulative 
radiation exposure (9.9 mSv vs. 9.4 mSv, p = 0.20). In 

Table 2. Summary of Clinical Studies on cCTA-Derived FFR

Study
Number 

of Lesions
Sensitivity (%) Specificity (%) PPV (%) NPV (%) Diagnostic Accuracy (%)
FFRCT cCTA FFRCT cCTA FFRCT cCTA FFRCT cCTA FFRCT cCTA

DISCOVER-FLOW (54) 103 93 94 82 25 85 58 91 80 84 61
DeFACTO (55) 252 90 84 54 42 67 61 84 72 73 64
NXT (56) 254 86 94 79 34 65 40 93 92 81 53

PLATFORM (59) 584

Study about impact of FFRCT on clinical practice
FFRCT guided group showed significantly lower portion of no obstructive CAD than usual group 
  in ICA (12% vs. 73%)
Also, cCTA/FFRCT guided strategy decreased ICA about 61%
Early adverse events for 90 days were similar between cCTA/FFRCT guided group and usual group

CAD = coronary artery disease, cCTA = coronary computed tomography angiography, FFRCT = computed tomography derived fractional flow 
reserve, ICA = invasive coronary angiography, NPV = negative predictive value, PPV = positive predictive value

Fig. 6. Non-invasive hemodynamic assessment using coronary CT angiography and computational fluid dynamics.
With recent advancement of computational fluid dynamics, non-invasive hemodynamic assessment has become feasible. Adding physiological 
modeling to coronary CT angiography-derived 3-dimensional coronary artery geometry enables assessment of several hemodynamic parameters, 
such as wall shear stress (A), pressure gradient (B), and fractional flow reserve (FFRCT) (C).

A B C
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addition, invasive coronary angiography was ruled out in 
61% after FFRCT (59). These results suggest the potential of 
FFRCT as a non-invasive diagnostic modality in the clinical 
decision-making process.

The investigators in DISCOVER-FLOW evaluate the 
potential of FFRCT technology in planning the treatment 
strategy using the so-called “Virtual PCI technology” (60). 
Modification of the computational model to restore the 
area of the target lesion according to the proximal and 
distal reference areas (i.e., virtual stenting), allows for 
estimation of post-interventional FFRCT values (60). Kim 
et al. (60) evaluated this novel strategy in 44 patients 
who had functionally significant coronary stenoses with 
available pre-intervention coronary cCTA and pre- and post-
intervention FFR values. Both pre- and post-interventional 
values of invasive FFR and FFRCT showed an excellent 
correlation. The mean difference between FFRCT and FFR 

was 0.006 for pre-intervention (95% limit of agreement: 
-0.27 to 0.28) and 0.024 for post-intervention (95% limit 
of agreement: -0.08 to 0.13). Diagnostic accuracy of FFRCT 
to predict ischemia (FFR ≤ 0.8) prior to stenting was 77% 
(sensitivity: 85.3%, specificity: 57.1%, PPV: 83%, and 
NPV: 62%) and after stenting was 96% (sensitivity: 100%, 
specificity: 96%, PPV: 50%, and NPV: 100%). The value of 
FFRCT as a “treatment planner” is still under development 
and needs further investigation.

In addition to FFRCT, several investigators are working 
with new methodologies for non-invasive estimation of FFR 
using cCTA or angiograms (61-63). Furthermore, the clinical 
relevance of comprehensive hemodynamic assessment using 
cCTA and CFD is under active investigation (64). However, 
any non-invasive FFR from cCTA requires adequate anatomic 
geometries and physiologic boundary conditions for CFD 
analysis. Adherence to established best image acquisition 

Table 3. Clinical Evidences on IMR
Study (Year) Study Population Results

Studies about distribution of IMR
Melikian et al. (72) 101 patients vs. 15 controls IMR values of controls were lower than 25 U

Luo et al. (74) 18 with CXS vs. 18 controls
IMR values of CXS were higher than controls 
  (33.1 ± 7.9 vs. 18.8 ± 5.6, p < 0.001)

Echavarría-Pinto et al. (73) 79 patients with FFR, CFR, and IMR 75th percentile value of IMR was 29 U
Studies about clinical implication of IMR

Fearon et al. (76) 29 patients with STEMI

Patients with IMR > 32 U had worse    
  echocardiographic wall motion score than those  
  with IMR ≤ 32. IMR was only significant  
  predictor of recovery of left ventricular function

Cuisset et al. (75)
50 patients with stable angina who  
  underwent elective PCI

Patients with conventional stenting had  
  significantly higher value of post-PCI IMR than  
  direct stenting (24 ± 14 U vs. 13 ± 3 U, p < 0.01)

McGeoch et al. (77)
57 patients with STEMI 
  who underwent CMR

Patients with microvascular obstruction had higher  
  IMR values than those without microvascular  
  obstruction (38 U vs. 27 U, p = 0.003)

Fujii et al. (78)
80 patients with stable angina with or    
  without pravastatin therapy after PCI

Pravastatin therapy lowered IMR significantly  
  after PCI (12.6 U vs. 17.6 U, p = 0.007)

Layland et al. (79) 50 patients with elective PCI
IMR before PCI was higher in patients with PPMI  
  (21.2 ± 2.1 vs. 15.6 ± 1.8, p = 0.02) and  
  strongest predictor of PPMI (beta 0.7, p = 0.02)

Ng et al. (80) 50 patients with elective PCI
IMR value of > 27 was independent  
  predictor of PPMI  
  (odds ratio, 22.7; 95% CI, 3.8–133.9)

Fearon et al. (81) 254 patients with STEMI
Rate of death or re-hospitalization was higher  
  in patients with IMR of > 40 U than those with  
  IMR of ≤ 40 (17.1% vs. 6.6%, p = 0.027)

CFR = coronary flow reserve, CMR = cardiac magnetic resonance imaging, CXS = cardiac X syndrome, FFR = fractional flow reserve, IMR = 
index of microcirculatory resistance, MACE = major adverse cardiovascular event, PCI = percutaneous coronary intervention, PPMI = peri-
procedural myocardial infarction, STEMI = ST-elevation myocardial infarction
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practices, including heart rate control and use of pre-scan 
nitroglycerin, is essential to improve cCTA image quality. 
Further refinement of this technology is expected to 
improve its diagnostic accuracy and contribute to better 
patient care in clinical practice.

Microvascular Assessment and Comprehensive 
Physiologic Evaluation

Although FFR is now regarded as the gold-standard 
invasive method to assess the functional significance of 
coronary artery stenosis (65), there is still room for further 
improvement in the diagnosis and treatment of patients 
with high FFR. In the FAME 2 study, 14.6% of the registry 
arm (FFR > 0.80 and deferral of PCI) experienced persistent 
angina, and 9.0% of these patients had clinical events 
during a 2-year follow-up period (66). This observation 
suggests that the ischemic heart disease cannot be fully 
explained by epicardial stenosis alone. The coronary 

artery system has 3 components with different functions 
(conductive epicardial coronary arteries, arterioles, and 
capillaries), hence, failure of any one of these systems 
could result in myocardial ischemia. Thus, the presence of 
epicardial coronary artery stenosis is not the sole factor for 
ischemic heart disease (67).

In this regard, previous studies have suggested that 
the measurement of coronary flow reserve (CFR) could 
be helpful in risk stratification for patients with high 
FFR (> 0.80). Previous studies report that low CFR has 
worse clinical outcome than normal CFR in the setting of 
normal FFR patients, implying that dysfunction or disease 
in microvascular circulatory beds are also contributors 
to ischemic heart disease, especially in the case of 
functionally insignificant epicardial stenosis (68-70). An 
index of microcirculatory resistance (IMR) is currently 
introduced, since CFR is largely influenced by variations 
in the resting coronary flow and not a microcirculatory 
bed-specific index. IMR is a pressure-temperature derived 

Fig. 7. Case example of microvascular disease. 
69-year-old female patient presented with stable angina. Despite positive exercise stress test (ST segment depression in inferior and lateral 
leads) (A), there was no significant coronary artery stenosis (B). Invasive physiologic assessment was performed and fractional flow reserve, 
coronary flow reserve (CFR) and index of microcirculatory resistance (IMR) were 0.94, 1.4, and 39, respectively (C). As there was no significant 
epicardial disease (high fractional flow reserve), low CFR and high IMR indicate presence of microvascular disease.

A

C

B
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parameter for quantifying microcirculatory resistance (71). 
As distal coronary pressure is used in the calculation of 
IMR, this index can be used to interrogate selectively the 
microcirculation of vessels with a coronary stenosis, in 
contrast to CFR, which is a combined assessment of the 
macro- and microcirculation. Table 3 summarizes previous 
evidence regarding IMR (72-81). According to the evidence 
of CFR and IMR, high FFR, low CFR and high IMR suggest 
the presence of microvascular disease in the coronary 
circulatory bed. Figure 7 shows an example of a patient 
with microcirculatory disease.

Therefore, comprehensive evaluation using multiple 
physiologic indices should be regarded as a diagnostic 
approach to enhance the stratification of patients, 
according to major compartment(s) involved in the 
development of ischemic heart disease.

Conclusions and Future Perspectives

This review focuses on the invasive physiologic assessment 
of ischemic heart disease, and presents evidence for its 
clinical relevance and effectiveness in the enhancement of 
patient’s clinical outcomes. Despite the low prevalence of 
invasive physiologic assessment in daily practice, recently 
developed novel indices and hyperemic agents are expected 
to reduce the current barriers. Furthermore, comprehensive 
assessment of both macro- and microvascular systems and 
practical application of cCTA-derived non-invasive FFR will 
further improve clinical outcomes of patients with ischemic 
heart disease.
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