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The outbreak of the coronavirus disease 2019 (COVID-19) has resulted in enormous
losses worldwide. Through effective control measures and vaccination, prevention and
curbing have proven significantly effective; however, the disease has still not been
eliminated. Therefore, it is necessary to develop a simple, convenient, and rapid
detection strategy for controlling disease recurrence and transmission. Taking
advantage of their low-cost and simple operation, point-of-care test (POCT) kits for
COVID-19 based on the lateral flow assay (LFA) chemistry have become one of the
most convenient and widely used screening tools for pathogens in hospitals and at home.
In this review, we introduce essential features of the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) virus, compare existing detection methods, and focus on the
principles, merits and limitations of the LFAs based on viral nucleic acids, antigens, and
corresponding antibodies. A systematic comparison was realized through summarization
and analyses, providing a comprehensive demonstration of the LFA technology and
insights into preventing and curbing the COVID-19 pandemic.
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INTRODUCTION

Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in
December 2019, this lethal pathogen has developed into a pandemic, causing over 6 million
deaths as of April 2022 owing to its high human-to-human transmissibility mediated by
airborne droplets (Worldometer, 2022). Studies have shown that the clinical manifestations of
SARS-CoV-2 infection are diverse, including asymptomatic infections (only positive nucleic
acid test, no clinical symptoms), acute respiratory responses (with respiratory symptoms but
no lung imaging changes) and varying degrees of pneumonia (with respiratory symptoms and
lung imaging changes) (Lai et al., 2020; Tang et al., 2021). Fever, cough, fatigue, sore throat,
and dyspnea are the most common symptoms. Severe cases can rapidly progress to acute
respiratory distress syndrome (Rodriguez-Morales et al., 2020; Hu B. et al., 2021). The
coronavirus disease 2019 (COVID-19) pandemic has exerted unprecedented pressure on
individuals, families, medical systems, and the social economy. One of the most effective
methods to control the pandemic is to develop rapid detection techniques to screen and
diagnose infected individuals, including asymptomatic carriers, as soon as possible during the
incubation period (Mei et al., 2020).
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Since the outbreak, researchers worldwide have developed
numerous rapid and sensitive diagnostic kits that can be divided
into two categories: genetic material-based molecular diagnosis and
antigen/antibody-based immunoassays. Nucleic acid quantification
methods include quantitative reverse transcription-polymerase chain
reaction (qRT-PCR), loop-mediated isothermal amplification
(LAMP)-based assays, clustered regularly interspaced short
palindromic repeats (CRISPR)-associated protein (Cas) system,
and RNA sequencing. qRT-PCR is regarded as the gold standard
for COVID-19 detection because of its high sensitivity, reliability, and
throughput (Jing et al., 2021). Two steps are essential for the detection
of SARS-CoV-2 via qRT-PCR: reverse transcription of RNA into
complementary DNA (cDNA) and amplification of cDNA by the
PCR using conserved primers and fluorescent probes (Nolan et al.,
2006; Bustin and Nolan, 2020). Although the qRT-PCR technique is
mature and accurate, it is time consuming, expensive in terms of the
equipment and reagents, and requires trained technicians for
complex sample preparation and testing procedures. These defects
restrict the application of the platform to the central laboratory and
occasionally lead to inaccurate results owing to insufficient materials
or sample transportation problems, thus making the method
unsuitable for the rapid, low-cost, and accurate detection of
COVID-19 (Li Y. et al., 2020; Liu R. et al., 2020; Kim Y. J. et al.,
2020). Similar to qRT-PCR, RT-LAMP is based on a set of four
primers and the strand displacement of active reverse transcriptase. It
can produce billions of template DNA under isothermal conditions
in less than 1 h (Nguyen et al., 2020; Yang et al., 2020). LAMP-based
assays have been used for the early detection of COVID-19 owing to
their short reaction time, high sensitivity, good stability, and
simplified sample preparation steps, such as nucleic acid
extraction. Recently, methods for SARS-CoV-2 nucleic acid
determination based on the CRISPR system combined with LFAs

have been reported. The CRISPR-Cas system was originally known
for its powerful function in gene editing (Jinek et al., 2012; Cong
et al., 2013). The novel applications of COVID-19 in vitro diagnosis
are discussed in this review.

Immune-based assays mainly include enzyme-linked
immunosorbent assays (ELISA), chemiluminescent immunoassays
(CLIA), and lateral flow immunochromatography assays (LFIA),
among which ELISA is the classical immunoassay used to detect
pathogens (Konstantinou, 2017; Noh et al., 2019). Indirect assays
(Adams et al., 2020; Liu W. B. et al., 2020; Xiang et al., 2020),
sandwich assays (Lv et al., 2019), and competitive binding
assays (Xiang et al., 2020) are common types of ELISA assay.
The main advantages of ELISA for COVID-19 diagnosis are
high sensitivity and the ability to detect multiple samples in
one test run. However, ELISA can only be carried out in the
laboratory because the protocol involves multiple steps, has a
long turnaround time, and requires both skilled personnel and
specific instrumentation. Compared to ELISA, CLIA is
frequently performed owing to its automation (Soleimani
et al., 2021), high specificity, low interference, short
incubation time, and wide dynamic range (Cinquanta et al.,
2017). However, the application of CLIA for rapid and large-
scale screening of COVID-19 is hampered by the high cost of
machinery and maintenance, inflexible operation, and strict
environmental requirements for reagent transportation and
storage. Based on the principles of molecular detection and
immunological testing, a series of new methods for the
detection of COVID-19 have been developed by combining
electrochemistry, nanomaterials, artificial intelligence, mass
spectrometry, and other technologies. They have been
summarized in several reviews, including those focused on
molecular diagnosis (ZhuH. et al., 2020; Esbin et al., 2020; Feng et al.,

Graphical Abstract | Viral RNA-, antibody-, antigen-Based LFAs are used for large-scale screening of COVID-19 at home, school, and under various non-
laboratory scenarios.
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2020; Mattioli et al., 2020; Rahimi et al., 2021; Yuce et al., 2021),
antibody detection (Wang J. J. et al., 2021; Ejazi et al., 2021),
nanotechnology (Mahapatra and Chandra, 2020; Qin et al., 2020;
Chintagunta et al., 2021; Kailasa et al., 2021) and others (Carter et al.,
2020; Ji et al., 2020; Pokhrel et al., 2020; Udugama et al., 2020; Yuan
et al., 2020; Chen et al., 2022; Szunerits et al., 2022). Although these
methods are sensitive, their operation is sophisticated, the reagents
including fluorophore and enzyme are vulnerable, and they are only
restricted to laboratory applications and cannot be widely promoted.
The LFA technique for the early diagnosis has great potential for
preventing, monitoring, and controlling COVID-19, especially in the
post-pandemic era. However, only a few comprehensive reviews have
focused on LFA (Habli et al., 2021; Hsiao et al., 2021; Hsieh et al.,
2021; Jia et al., 2021; Sadeghi et al., 2021; Yadav et al., 2021; Zhou et al.,
2021). In this work, LFA that could be used for large-scale screening
of COVID-19 at home, school, and under various non-laboratory
scenarios owing to its simplicity, convenience, rapidity, and cost-
efficiency is discussed. The principles, advantages and disadvantages
of these methods will be discussed in detail to provide guidance and
suggestions for the prevention and transmission control of the
COVID-19 pandemic in the post-pandemic era from the
prospective of a diagnostic strategy. Before summarizing the LFA
methods, the structural characteristics and infectivity of SARS-CoV-2
should be emphasized to better understand the molecular
mechanisms of the diagnostic approaches.

STRUCTURAL CHARACTERISTICS AND
INFECTIVITY OF SARS-COV-2

SARS-CoV-2 is a single-stranded positive RNA virus (+ssRNA)
with a genome size of 30 kb, belonging to the Coronaviridae

family and the beta Coronavirus (Zhu N. et al., 2020). The
genomic sequence of SARS-CoV-2 was first confirmed by Wu
and coworkers (Wu et al., 2020) at the National Center for
Biotechnology Information (accession no. MN908947.3).
Sequence analysis identified a genome of 29,903 nucleotides
encoding 9,860 amino acids. The genome includes 5-′
untranslated region (5-UTR), open reading frames1a/b
(ORF1a/b), and structural protein genes-3′-UTR (Figure 1).
The coding regions of nonstructural proteins are mainly
located in ORF1a and ORF1b. These two fragments occupy
approximately two-thirds of the viral genome, encoding 16
nonstructural proteins (nsps). The remaining one-third of the
genome encodes structural proteins, including spike (S),
membrane (M), envelope (E), and nucleocapsid (N) proteins,
as well as auxiliary proteins (Cui et al., 2019; Chen Y. et al., 2020).
The S protein is a large trimetric transmembrane glycoprotein
that forms a particular corolla structure on the viral surface and
contains two subunits: S1 and S2 (Ou et al., 2020). The S1 subunit
consists of a signal peptide folded into a receptor-binding domain
(RBD) and an N-terminal domain (NTD). The RBD is a crucial
component of viral infection because it can directly bind to
specific receptors on the surface of host cells (Andersen et al.,
2020; Yan R. H. et al., 2020; Lan et al., 2020). The S2 subunit
contains a fusion peptide (FP), heptapeptide repeats 1 and 2 (HP1
and HP2), a transmembrane domain, and an intracellular
domain, promoting the fusion of the viral and cell
membranes. SARS-CoV-S1 and SARS-CoV-2-S1 share
approximately 66% amino acid identity, whereas the identity
of S2 between them is as high as 90%. Therefore, the structure of
the S2 subunit is more conserved, and the antibody against the S1
subunit is more specific (Okba et al., 2020). Another structural
protein, the N protein, can interact with viral RNA to form a viral

FIGURE 1 | Schematic presentation of the genomic structure of SARS-CoV-2. (A) Virus particle and its components. (B) Genome organization of different
functional regions.
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nucleocapsid in a beads-on-a-string-type conformation. This
protein plays an important role in the protection, replication,
and synthesis of viral RNA (Rosales-Mendoza et al., 2020). The
amino acid sequences of the two structural proteins are relatively
conserved, which determines the infectivity and structural
function of the virus, and they are chosen as the target antigen
inmany rapid diagnostic tests, especially in LFA. This is discussed
in detail in the following section. The E protein is a component of
the viral envelope that participates in viral assembly, release, and
pathogenicity. It contains transmembrane alpha-helix and
hydrophobic domains and acts as an ion channel in the
pentamer structure (Verdia-Baguena et al., 2012). Similarly,
the M protein contains a conserved region and three
transmembrane domains. It is an integral part of the viral
envelope and participates in the assembly and release of
viruses. In the following paragraph, the process of pathogen
infection of the host is briefly reviewed to illustrate the
function of each viral structural protein.

In the first step of infection, the S protein of SARS-CoV-2
binds to the angiotensin-converting enzyme 2 (ACE2) receptors
on the surface of susceptible cells and attaches to them (Figure 2)
(Kuhn et al., 2004; Letko et al., 2020). The binding of the S protein
(via the RBD) to the ACE2 receptor triggers the endocytosis of

cells and exposes virus particles to cellular proteases. It releases
nucleic acids under lysosomal enzymes (Hoffmann et al., 2020).
The released viral RNA can be directly attached to the ribosome
of host cells to generate early proteins. Meanwhile, ORF1a and
ORF1ab encode the replicase polyprotein pp1a and pp1ab
respectively, and are involved in the assembly of nonstructural
proteins into the virus replication transcription complex (RTC)
(Lu et al., 2020; Zhou et al., 2020). With the generation of RTC,
the functional RNA is transcribed, translating into the structural
proteins and some auxiliary proteins of the virus. The structural
proteins then enter the endoplasmic reticulum-Golgi
intermediate compartment along the secretion pathway to
assemble viral particles (Stertz et al., 2007; Du et al., 2009;
Kim D. et al., 2020). Several steps are essential during
assembly, including nucleic acid aggregation, capsomere
assembly, and nucleic acid filling. Once assembled, the
mature virus forms a vesicle, merges with the cell
membrane, and is released from the cell by budding to
infect other host cells. All these studies provide immense
information regarding the SARS-CoV-2 genome and
functional proteins, providing the foundation for rapid
diagnosis and treatment of the variant strains (Du et al.,
2009; Feng et al., 2020).

FIGURE 2 | Schematic illustration of the process of SARS-CoV-2 infecting the host and its life cycle. The receptor binding domain (RBD) of S protein of SARS-CoV-
2 mediates the infection by binding to angiotensin-converting enzyme 2 (ACE2) receptors on the surface of host cells (Inoue et al., 2007). The virus enters the cell by
endocytosis, and then releases the RNA genome. Subsequently, the specific sequence translate polyprotein (pp)1a/1ab are translated to the polyprotein pp1a and
pp1ab, respectively. Pp1a and pp1ab are self-cleaved into 16 nonstructural proteins (nsps) by proteolysis (Ji et al., 2020). The nsps coalesce to form replicase/
transcriptase complexes containing multiple enzymes. Within the complexes, the offspring RNA is transcribed, which is used as sub-RNA to translate the structural
proteins (E, N, M, S) and some auxiliary proteins of the virus (Kim D. et al., 2020). Then, the structural proteins enter the Golgi intermediate region of the endoplasmic
reticulum along the secretory pathway to complete self-assembly. Meanwhile, the replicated RNA copies bind to N protein to form a ribonucleoprotein complex. Through
the intake of ribonucleoprotein complex by the viral vesicles, the matured viruses are formed and then released outside the cell.
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DIAGNOSIS METHODS

An LFA test strip typically comprises a sample pad, a conjugate pad, a
nitrocellulose (NC) membrane, an absorbent pad, a plastic backing,
and biological reagents (Figure 3). To perform the assay, the liquid
sample is loaded onto the sample pad allowing for it to migrate to the
conjugate pad, driven by capillary force. In this process, the target in
the sample is captured by a specific antigen or antibody-coated
nanoparticle embedded in the conjugate pad. As the complexes
formed by the analytes and nanoparticles continue to flow
forward, they specifically bind to another antigen or antibody
embedded in the NC membrane. After a few minutes, the target
is captured and forms a specific signal at the test line (T line) and
control line (C line), representing the presence or absence of the
target and the successful completion of the reaction. Based on this
principle, quantitative determination of analytes can be achieved.
One of the most famous applications of the LFA is the home-use
pregnancy test strips developed in the early 1970s (Vaitukaitis et al.,
1972). Soon after, it was applied in different areas such as food safety
(Zhao et al., 2016), agriculture (Wang et al., 2007), healthcare (Choi
et al., 2017), forensic science (Old et al., 2009), animal medicine
(Shome et al., 2018), and even military (Chao et al., 2017). Currently,
it is one of the most helpful tools for controlling the spread of
COVID-19.

Viral RNA-Based LFAs
Among the five ORF regions of the SARS-CoV-2 genome
(Figure 1), ORF1ab, N, E, and S regions are usually selected
to develop molecular diagnostic tests (Chu et al., 2020; Corman

et al., 2020; Sheikhzadeh et al., 2020). The homology of the
ORF1ab, N, and S regions with other coronaviruses was low,
except in the E region (Sheikhzadeh et al., 2020). E can only be
used as a screening region. If only E is positive, it indicates the
presence of a coronavirus infection without a specific type (Cui
and Zhou, 2020; Zhang W. et al., 2020). SARS-CoV-2 infection
can be confirmed through the combined detection of the E and
ORF1ab, N or S regions. By changing the detection sensitivity and
specificity, the virus can be detected in the early stage of infection.
Timely necessary solution strategies are then performed to avoid
the occurrence of pandemics and deaths as much as possible.
Although qRT-PCR is the main approach for nucleic acid
detection, and various kits have been approved by the Food
and Drug Administration (FDA), its application has been
restricted in some countries and regions that are under
developed (FDA, 2020), owing to its high cost that many low-
income families cannot afford. Accordingly, there is an urgent
need to develop cost-effective methods for early nucleic acid
diagnosis for non-hospital and non-laboratory use.

RT-LAMP combined with LFAs is an ideal strategy for
developing an inexpensive early diagnostic approach
(Figure 4). The RNA (SARS-CoV-2 template) was reverse-
transcribed to cDNA as a template for LAMP amplification.
Subsequently, the forward inner primer (FIP) initiated
isothermal amplification at 65°C, and the new strand derived
from the FIP primer was replaced by the forward primer F3
synthesis. Then, the backward inner primer (BIP) and backward
primer (B3) anneal to the newly produced strand and extend the
sequence to generate a dumbbell-shaped product under DNA

FIGURE 3 | Schematic illustration of a typical lateral flow assay strip. The typical lateral flow strip is composed of a sample pad, conjugate pad, absorbent pad,
nitrocellulose membrane, test line (T line), control line (C line) and plastic backing. The nanoparticles (such as AuNPs) ligated with the conjugate antibody are pre-
embedded at the conjugate pad, and the capture antibodies are also pre-embedded on the T line and C line, respectively. Upon loading, the liquid sample will flow from
the sample pad to the absorbent pad by capillary force. When the analyte passes through the conjugate pad, it will be captured by the corresponding conjugate
antibody and form the analyte-conjugate antibody@AuNPs complex. The complexes will be fixed onto the NC membrane by capture antibody on the T line. Meanwhile,
another conjugate antibody will be fixed on the C line and serve as a control.
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displacement polymerase. The product containing the stem-loop
can then serve as the template for the second stage of the LAMP
reaction. A backward loop primer (BLP) labeled with biotin can
anneal to a particular product derived from the LAMP reaction
stage. The new products labeled with biotin were also used as a
template for the subsequent amplification steps using a forward
loop primer (FLP), which was modified with the hapten. As the
replication cycle was repeated, many double-labeled detectable
products were formed in the mixture (Yan C. et al., 2020; Zhu X.
et al., 2020).

Because the amplification product of RT-LAMP cannot be
accurately quantified for diagnosis at different stages or viral
loads, an LFA can be applied afterwards. As the amplification

products migrate along the test strip, biotin-labeled amplification
products bind to the streptavidin-coated nanoparticles and are
then captured by the specific antibody immobilized on the T line
(Figure 4). The excess unreacted BLP- labeled biotin binds to the
streptavidin-coated nanoparticles and is captured by biotin
immobilized on the C line. If the nanoparticles are colored,
the results can be easily visualized with the naked eye. The
entire test process can be completed within 30 min (Chen X.
et al., 2021). Zhu X. et al. (2020) proposed a method to diagnose
COVID-19 by combining multiple reverse transcription loop-
mediated isothermal amplification (mRT-LAMP) with
nanoparticles-based LFAs, which could simultaneously amplify
the ORF1ab and N genes of SARS-CoV-2. The limit of detection
(LOD) was 12 copies (for each detection target) per reaction, with
no cross-reactions occurring from non-SARS-CoV-2 templates.
Similarly, Zhang et al. (2021) reported a one-pot RT-LAMP assay
for SARS-CoV-2 based on LFA using clinical samples. The entire
contiguous sample-to-answer workflow was completed within
40 min without the assistance of professional instruments and
technicians. Importantly, the total accuracy of RT-LAMP for
clinical RNA samples was 100%. In another study, a molecular
beacon probe was used for the sequence-specific detection of
OFR1a amplicons of SARS-CoV-2 LAMP based on the LAMP
technique integrated with commercially available LFA strips. The
sensitivity of LFA-LAMP was similar to that of qRT-PCR
(Varona and Anderson, 2021).

Recently, the CRISPR system has been applied to SARS-CoV-2
detection with excellent performance (Flint et al., 2019; He et al.,
2020). Therefore, it has been recommended as a potential
candidate for LFA-incorporated POCT. CRISPR-LFAs possess
the advantages of a CRISPR system with high specificity and
sensitivity, as well as convenient and rapid LFAs. Viral RNA is
transcribed into cDNA for amplification using isothermal
techniques, such as RT-LAMP. The cDNA amplicons are
either added directly to the CRISPR-Cas12 system or
transcribed to ssRNA under transcriptase and then added to
the CRISPR-Cas13 system (Figure 5). This is because Cas12
targets ssDNA whereas Cas13 targets ssRNA (Abudayyeh et al.,
2017; Chen et al., 2018). Cas12 is activated by dsDNA with a
CRISPR-targeted sequence to cleave ssDNA reporters, and Cas13
recognizes RNA containing the CRISPR-targeted sequence and
cleaves its RNA reporters (Figure 5). Reporters, which are short,
single-stranded nucleic acids labeled with a fluorophore and
quencher at the end, can be used as substrates (Broughton
et al., 2020; Gootenberg et al., 2017). Cleavage of the signaling
reporter separates the quencher from the fluorophore, releasing
fluorescence signals. Subsequently, the released fluorescence
signals appear on the T line when the products are captured
by the embedded capture antibodies of the LFAs (Figure 5).
Furthermore, Patchsung et al. (2020) developed a reverse
transcription-recombinase polymerase amplification (RT-
RPA)-mediated CRISPR-Cas13a platform called the clinical
validation of the specific high-sensitivity enzymatic reporter
unlocking (SHERLOCK) assay for the detection of SARS-CoV-
2. 42 RNA copies per reaction were detected. Xiong et al. (2021)
established a triple-line LFA for the rapid and simultaneous dual-
gene detection of SARS-CoV-2 by integrating the CRISPR/Cas9

FIGURE 4 | Principle of the lateral flow assay based on RT-LAMP
technique. SARS-CoV-2 RNA is reverse transcribed to cDNA, followed by
specific amplification with the forward inner primer (FIP), backward inner
primer (BIP) and forward primer (F3), backward primer (B3), producing a
great many of dumbbell-shaped product. These products are used as
templates and amplified by specific labeled primers backward loop primer
(BLP), forward loop primer (FLP, such as hapten, biotin) to produce amounts
of amplicons. As the amplified products migrate along the FLA strip, the
conjugations of amplicons and streptavidin coated AuNPs can be captured by
the capture antibody immobilized at the T line, leading to a red visible signal.
The excess BLP primers labeled biotin coupled with streptavidin-coated
AuNPs keep moving and are captured by biotin immobilized at the C line.
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system with multiplex reverse transcription-recombinase
polymerase amplification (RT-RPA). The analysis of 64
nasopharyngeal swab samples showed 100% negative
predictive agreement and 97.14% positive predictive
agreement. Similar results have been reported by others
(Marsic et al., 2021; Osborn et al., 2021; Zhu et al., 2021).
Notably, Broughton et al. (2020) proposed a protocol using
the DNA endonuclease-targeted CRISPR trans reporter
(DETECTR) for SARS-CoV-2 RNA testing. Specifically,
isothermal amplification combined with CRISPR/Cas12
DETECTR was used to develop a rapid assay for COVID-19
diagnosis. It provided 95% positive predictive agreement and
100% negative predictive agreement compared to the qRT-PCR
assay, possessing huge value for POCT and on-site analysis of
SARS-CoV-2 or other viruses in the future.

In addition, a POCT assay based on other nucleic acid
hybridization techniques integrated with LFAs has been
reported. For instance, the application of the S9.6 monoclonal
antibody with high affinity and selectivity to DNA/RNA
heterozygotes enabled SARS-CoV-2 detection with high

sensitivity and specificity (Wang D. et al., 2020). In another
study, through screening more effective reverse transcriptase,
optimizing amplification primers, and adding RNase H to
improve the amplification efficiency of RT-RPA, the sensitive
detection of SARS-CoV-2 RNA was achieved (Qian et al., 2020).
Moreover, qRT-PCR combined with LFAs could simultaneously
detect RdRp, ORF3a, and N genes of SARS-CoV-2, with a
detection limit of 10 copies per test for each gene (Yu et al.,
2020). Furthermore, next-generation sequencing (Wu et al.,
2021), a microfluidic-integrated RPA (Liu D. et al., 2021), and
a catalytic hairpin assembly enzyme-free signal amplification
reaction (Zou et al., 2021) coupled with LFAs techniques have
been exploited as POCT for rapid diagnosis.

Although qRT-PCR is the primary tool for viral nucleic acid
detection, its requirements for a thermal cycler are not ideal for
POCT applications. Meanwhile, in recent years, various
isothermal hybridization-based LFAs have been developed to
determine viral RNA. Taking advantage of this hybridizations
and/or amplification techniques, a significant increase in
detection signal at a single temperature in a single tube can be

FIGURE 5 | The principle of the CRISPR system mediated lateral flow assay. Viral RNA is first reverse transcribed to cDNA and serve as a template to produce
cDNA amplicons. The amplicons are directly added into the CRISPR-Cas12 system and activated the Cas12 by dsDNA with the targeting sequence (the red mark) to
cleave the ssDNA (marked with specific recognition molecules at the end, such as biotin and FITC). Alternatively, the amplicons can be transcribed to ssRNA and then
added to the CRISPR-Cas13 system. The Cas13 recognizes RNA containing CRISPR targeting sequences and cleaves its ssRNA reporters. The solution
containing the cleaved reporters is added to the sample pad. Under the action of capillary tension, part of the reporter-biotin coupled with streptavidin-AuNPs will be
captured at C line, and the FITC conjugated antibody-AuNPs @FITC@FITC captured antibody leads to the signal at T line.
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achieved without the help of advanced thermal cycle instruments
(Wang D. et al., 2020; Zhang et al., 2021). Therefore, it is expected
to be developed into a simple, rapid, and widely used analytical
method.

Antibody-Based LFAs
Although viral RNA-based LFAs detection has been exploited for
the early diagnosis of COVID-19, it cannot be used to monitor
disease progression or identify past infection and recovery.
Therefore, antibody testing is important. Antibodies are
specific proteins produced by the immune system and can
specifically bind to target antigens, mainly determined by the
complementary regions at the N-terminus of the antibody. Five
types of antibodies have been found in humans:
immunoglobulins IgG, IgM, IgA, IgE, and IgD, which are

secreted by differentiated terminal B cells (Vitetta et al., 1989;
Esser and Radbruch, 1990).

The detection of SARS-CoV-2 usually includes quantitative
detection of different types of virus-specific IgG and IgM or the
total level of IgG/IgM (Figure 6). At different stages of infection,
the state of the host immune system and the characteristics of
antibody production are different. According to the accumulated
data, IgM can be detected as early as 4 days after SARS-CoV-2
viral infection, peaking around the 20th day, and then declining
(Guo et al., 2020). IgG was detected on the seventh day after
infection; it then gradually increased, reached a peak between the
21st and 25th day, and then remained at a high level (Theel et al.,
2020). IgA increased from 6 to 8 days after infection and peaked
between the 18th and 21st day, with a longer duration and higher
concentration than IgM but lower specificity (Padoan et al.,
2020). Thus, IgM and IgG levels can be used as indicators of
early, current, or previous infections. Numerous diagnostic
methods for SARS-CoV-2 have been developed through
measuring IgM and/or IgG concentrations, especially reaching
their peaks between the 20th and 25th day in the serum. LFAs are
a powerful means of antibody determination in the POCT setting.
Recently, antibody detection based on LFAs for SARS-CoV-2 has
been widely reported.

In antibody-based LFAs, fluid samples are loaded onto the
sample pad, allowing the sample to flow through an immobilized
anti-human antibody band. If anti-SARS-CoV-2 antibodies are
present, they can be conjugated with nanoparticles to indicate the
signal intensity collected at the T line; if not, the T line is empty,
and no signal is detected. Among them, colloidal gold (AuNPs)-
based LFAs antibody detection techniques have attracted wide
attention because the results can be read directly based on color
change, without the aid of instruments. Huang et al. (2020)
designed a strategy using AuNPs-based LFAs to achieve the
rapid diagnosis and on-site detection of IgM antibodies

FIGURE 6 | The dynamic process of viral load change and immune
response after SARS-CoV-2 attacks the host.

TABLE 1 | Nucleic acid amplification technique combined with the lateral flow assay for detection of SARS-CoV-2.

Target Detection technique Signal
readout

LOD Sensitivity,
specificity

Time Reference

ORF1ab & N genes CRISPR-Cas12a coupled with LFB colorimetric 2–10 copies/
reaction

100%, 100% <60 min Zhu et al. (2021)

ORF8a gene CRISPR-Cas9 coupled with LFB fluorescence — — ~60 min Osborn et al. (2021)
ORF1ab & E genes CRISPR/Cas9-mediated LFA colorimetric 4 copies/µl 100%, 97% <60 min Xiong et al. (2021)
ORF1ab & N genes mRT-LAMP coupled with LFB fluorescence 12 copies/ reaction 100%, 100% 60 min Zhu et al. (2020c)
E & N genes RT-LAMP/Cas12-based LFA fluorescence 10 copies/µl 95%, 100% 30–40 min Broughton et al. (2020)
ORF1a gene LAMP integrate with LFIA fluorescence 2300 copies/

reaction
— — Varona and Anderson,

(2021)
ORF1ab gene two sugar barrier modified LFA colorimetric 0.5 nM — — Tang et al. (2021)
ORF1ab & N genes a catalytic hairpin assembly (CHA) reaction)

coupled with LFIA
fluorescence 2000 copies/ml —, 100% <90 min Zou et al. (2021)

S & N & ORF1ab
genes

SHERLOCK lateral-flow readout colorimetric 42 copies/ reaction 97%, 100% ~30 min Patchsung et al. (2020)

N gene RT-RPA/CRISPR-Cas9 coupled with LFA colorimetric 2.5 copies/μl 96%, 100% — Marsic et al. (2021)
N gene RT-LAMP-LFA colorimetric 3.9 × 103 RNA

copies/ml
82% 15 min Agarwal et al. (2022)

N gene AuNP-LFA colorimetric 0.02 copies/μl 100%, 100% <10 min Dighe et al. (2022)
ORF1ab & N genes RT-LAMP-LFA colorimetric 40 copies/μl 100%, 100% <40 min Zhang et al. (2021)
RdRp & ORF3a & N
genes

lateral flow strip membrane assay fluorescence 10.0 copies/test 99%, — 30 min Yu et al. (2020)

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 8663688

Zhang et al. Point-of-Care-Test for Early COVID-19 Diagnosis

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


against SARS-CoV-2. In this study, the SARS-CoV-2
nucleoprotein was coated on an analytical membrane for
sample capture, and anti-human IgM was labeled with AuNPs
to form the detection reporter. The result coincided with those of
RT-PCR by testing the serum samples of COVID-19 patients and
healthy individuals. Similar works have been reported by other
laboratories (Wen et al., 2020; Cavalera et al., 2021; Elter et al.,
2021). Because the results of AuNP-based LFAs are mainly
judged visually, the sensitivity is not sufficiently high and will
inevitably lead to bias. To improve the sensitivity, a variety of
antibodies (such as IgG/IgM) can be measured simultaneously.
Alternatively, advanced nanoparticles can also be used. To
determine IgG/IgM, Peng et al. (2021) developed the detection
of IgG/IgM against the nucleocapsid protein, anti-N IgG/IgM,
and RBD in the spike glycoprotein, anti-S-RBD IgG/IgM, of
SARS-CoV-2. Any virus targeting IgG/IgM found in the
clinical sample was considered positive. The strategy achieved

high sensitivity and accuracy. As expected, sensitivity and
specificity were 96 and 100%, respectively. A series of similar
studies have been reported by other researchers (Li Z. et al., 2020;
Peng et al., 2020; Hu X. et al., 2021; Higgins et al., 2021; Hung
et al., 2021). For the latter, selenium nanoparticles synthesized by
the ascorbic acid reduction of seleninic acid were used to
conjugate with nucleoprotein and simultaneously detect anti-
SARS-CoV-2 IgM and anti-SARS-CoV-2 IgG on the platform of
lateral flow. Based on this technique, the detection limits of IgG
and IgM in human serum were approximately 20 ng ml−1 and
5 ng ml−1, respectively (Wang Z. et al., 2020).

In another study, a lateral flow system based on
superparamagnetic nanoparticles (SMNPs) was developed
for the simultaneous determination of anti-SARS-CoV-2
IgM and anti-SARS-CoV-2 IgG. In the system, magnetic
signal intensity varied with the concentration of IgG/IgM in
the clinical sample, with LODs of 10 ng ml−1 and 5 ng ml−1,

TABLE 2 | Antibody-targeting SARS-CoV-2 detection on the basis of lateral flow assay.

Target Detection technique Signal readout LOD Sensitivity,
specificity

Time Reference

IgG & IgM selenium nanoparticle-based LFAs fluorescence 5 ng/ml, 20 ng/ml 93%, 97% <10 min Wang et al. (2020c)
IgG & IgM colloidal gold-based LFAs colorimetric — — — Hu et al. (2021b)
IgG & IgM time-resolved fluorescence immunoassay with

LFAs
colorimetric 0.121 U/L,

0.366 U/L
97%, 99% 15 min Zhang et al. (2020a)

IgG hybrid capture fluorescence immunoassay with
LFIA

fluorescence 1000 TU/ml 95%, — <60 min Wang et al. (2020b)

IgM AuNP-LF assays colorimetric 12 copies/
reaction

100%, 93% 15 min Huang et al. (2020)

IgG AuNP-LFIA colorimetric 186 pg/ml 10–15 min Hung et al. (2021)
IgG lanthanide-doped nanoparticles-based LFIA fluorescence — — 10 min Chen et al. (2020c)
IgG AuNP-LFIA colorimetric — 69%, 100% 15–20 min Wen et al. (2020)
IgG AuNP-LFA colorimetric 107 particles/µl — 5 min Peng et al. (2020)
IgA LFIA Optical

/chemilumine
scence

— — 15 min Roda et al. (2021)

IgG & IgM LFIA fluorescence — 82%, 95% 15 min Nicol et al. (2020)
IgG & IgM a giant magnetoresistance based LFIA sensing

system
colorimetric 5 ng/ml, 10 ng/ml — 10 min Bayin et al. (2021)

IgG & IgM colorimetric-fluorescent dual-mode LFIA biosensor fluorescence 1.2 mg/ml,
0.9 mg/ml

100%, 100% 15 min Wang et al. (2020a)

IgG & IgM AuNP-LFAs colorimetric — 89%, 91% 15 min Li et al. (2020b)
IgG & IgM colloidal gold-based lateral flow immunoassay test

strips
colorimetric — 96%, 100% 15 min Peng et al. (2021)

IgG & IgM selenium nanoparticle-based LFIA colorimetric 20 ng/ml,
60 ng/ml

95%, 96% <10 min Chen et al. (2022)

IgG & IgM a commercial POCT LFA colorimetric — 88, 93; 93, 100% — Hoffman et al. (2021)
IgG & IgM three different commercial POCT LFIAs (Bioclin,

Brazil; Livzon, China; Wondfo, China)
colorimetric — 86, 100; 48, 100;

44, 100%
— Chen et al. (2020c)

IgG & IgM LFA colorimetric — 87, 100; 50, 80% <15 min Ragnesola et al. (2020)
IgG & IgM SERS-based LFIA SERS 1 pg/ml, 1 pg/ml — 25 min Liu et al. (2021b)
IgG & IgM SERS-based LFIA SERS 1 ng/ml,

0.1 ng/ml
— 15 min Chen et al. (2021c)

IgG & IgM SERS-based LFA SERS 100 fg/ml — — Srivastav et al. (2021)
IgG & IgM quantum dot (QD) nanotag-integrated LFA fluorescence 1:107 dilution 97%, 95% 15 min Wang et al. (2021a)
IgG & IgM AIE nanoparticle-labeled LFIA fluorescence 0.125 μg/ ml,

0.236 μg/ ml
95%, 78% 10 min Chen et al. (2021b)

IgG & IgM
& IgA

colloidal gold-coupled LFAs colorimetric — 94%, 100% 20 min Cavalera et al. (2021)

Total
antibodies

colorimetric lateral flow immunoassay colorimetric — 92% 5–10 min Ghorbanizamani et al.
(2021)
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respectively (Bayin et al., 2021). Moreover, aggregation-
induced emission (AIE) dye-loaded nanoparticles were
designed to detect IgM and IgG against SARS-CoV-2 in
serum samples at early stage of infection. The auto-
fluorescence from the nitrocellulose membrane sample and
the excitation background noise were effectively eliminated
owing to the emission of AIE dye in the near-infrared (NIR)
window. Thus, the signal background ratio was considerably
improved, and the signal of IgM and/or IgG could be detected
at 1–7 days after symptoms onset, which was earlier than that
of the AuNP-based test strip (8–15 days) (Chen L. et al., 2021;
Chen R. et al., 2021). Additionally, other composite
nanoparticles containing time-resolved fluorescent
microspheres (Zhang C. et al., 2020), Ag shells on SiO2 core
(SiO2@Ag) formed SERS nanoparticles (Liu H. et al., 2021),
and SiO2@Au@QD nanobeads (Wang C. et al., 2020) have
been used for the early diagnosis of SARS-CoV-2 based on the
principle of LFAs. These assays are summarized in Table 2.

Generally, antibody-based LFAs are sensitive and accurate. It
can also evaluate the stages of SARS-CoV-2 infection according to
the level of IgG and/or IgM in the test samples to provide a
theoretical reference for early quarantine, treatment, and
prognosis recovery. For infection monitoring and
epidemiology studies, it can be a crucial tool in the post-
pandemic era.

Antigen-Based LFAs
The purpose of antigen detection is to directly determine the viral
proteins of SARS-CoV-2, such as N or S proteins. When SARS-
CoV-2 attacks the host, its structural proteins increase along with
the proliferation of the virus. At the early stage, the
corresponding antibodies produced by the immune system
are not sufficiently high to be detected. If a virus can be directly

detected earlier, more time could be left for subsequent
quarantine and treatment. Therefore, there is an urgent
need to develop an approach to determine antigens with
high sensitivity and specificity. The LFA-based method has
unique advantages in antigen detection, such as convenient,
speed, and suitability for various application scenarios.

The principle of LFAs antigen detection is based on the
double-antibody sandwich method. Therefore, it is essential to
screen for an antibody pair, named capture antibody and
detection antibody, for the antigen capture by SARS-CoV-2. It
often requires tremendous labor to screen for the correct antibody
pairs. The selected antibody needs to be specific to avoid cross-
reaction with severe acute respiratory syndrome coronavirus
(SARS-CoV) or middle east respiratory syndrome coronavirus
(MERS-CoV) because the essential functional domains of SARS-
CoV-2 are highly homologous (Park et al., 2020). Kim et al.
(2021) used phage display technology (Ledsgaard et al., 2018) to
screen single-chain variable fragment (scFv)-crystallizable
fragment (Fc) fusion proteins as specific antibodies for the
detection of SARS-CoV-2 N protein.

In this study, specific clones for the SARS-CoV-2 N protein
were primarily selected by three rounds of biopanning and ELISA
in the phage library, which contained many phages displaying
different scFvs. scFv-Fc fusion proteins were then generated
based on the above sequences and confirmed by confirmatory
ELISA. Newly developed scFv-Fc antibodies are specifically
bound to the antigen of SARS-CoV-2. When the sample is
loaded onto the platform, the virus protein is captured by
detection antibodies, and a double-antibody sandwich complex
(capture antibody-antigen-detection antibody) is formed in the
test region. The S protein can be a candidate for antigen selection
because there is no cross-reaction with other coronaviruses such
as MERS-CoV and SARS-CoV (Yan R. H. et al., 2020). Moreover,

TABLE 3 | Antigen-based lateral flow assay of SARS-CoV-2.

Target Detection technique Signal readout LOD Sensitivity,
specificity

Time Reference

S protein nanozyme and enzymatic
chemiluminescence immunoassay with
the lateral flow strip

fluorescence 0.1 ng/ml — 15 min Liu et al. (2020a)

N protein fluorescence immunochromatographic
lateral flow assay

fluorescence — 98%, 100% 10 min Diao et al. (2020)

N protein fluorescence immunochromatographic
lateral flow assay

fluorescence — 85%, 100% <15 min Escrivá et al. (2021)

S & N protein up-conversion nanoparticles labeled lateral
flow immunoassay

fluorescence 1.6 ng/ml, 2.2 ng/ml — 10 min Guo et al. (2021)

N protein half-strip lateral flow assay fluorescence 0.65 ng/ml — 20 min Grant et al. (2020)
N protein open-access lateral flow assay colorimetric 2.5 × 104 copies/swab 69, 97;

83, 97%
— Grant et al. (2021)

recombinant
antigen

microfluidic immunoassay system fluorescence — — <15 min Lin et al. (2020)

spike RBD
protein

LFA based on gold nanospheres thermal contrast
amplification
reading

0.016 fg/ml (in buffer),
0.125 fg/ml (in

nasopharyngeal wash)

— 30 min Liu et al. (2021c)

N protein phage display technology integrated with
LFIA-based biosensor

colorimetric 2 ng — 20 min Kim et al. (2021)

antigen
cocktail

colorimetric lateral flow immunoassay colorimetric — 93% 5–10 min Ghorbanizamani
et al. (2021)
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Liu D. et al. (2020) screened antibody pairs for S-RBD antigens
using ELISA and nanoenzyme colorimetric strip approaches. The
assay for the antigen S protein of SARS-CoV-2 based on the LFAs
platform was then performed. This method demonstrated high
sensitivity and specificity and the results could be detected using a
simple signal reader. Similar antigen detection approaches for
SARS-CoV-2 have been reported in other literatures (Grant et al.,
2020; Lin et al., 2020; Guo et al., 2021).

Generally, in the early stage of SARS-CoV-2 infection, when
the nucleic acid test is negative and the antibody level is
undetectable, antigen detection has a specific value. A series of
experiments were performed to evaluate the sensitivity and
specificity of the SARS-CoV-2 antigen diagnostic test. The
results showed that when the viral load was high in the first
week, the sensitivity and specificity were more than 90 and 100%,
respectively (Porte et al., 2020). As more LFA-based antigen
detection kits are approved, they will be more widely used in
pandemic prevention, especially in public places such as homes
and airports.

Other Emerging LFAs
Apart from detecting viral RNAs, the corresponding antibodies
and the surface antigens, LFAs-based detection of a whole virus
particle or other new biomarkers may be an interesting detection
strategy in the field of rapid detection. Deng J. Q. et al. (2021)
designed a method using an aptamer and polyethylene glycol
(PEG) to directly detect viral particles of SARS-CoV-2. The assay
relied on the high-affinity binding to the S protein by the screened
aptamer and rapid accumulation of viral particles towards the
laser spot through PEG-enhanced thermophoresis. The
advantages of high-affinity aptamer include their good
specificity, high sensitivity, and rapidity. Thus, aptamers can
be widely used for the detection of SARS-CoV-2. Similar
studies have been reported by others (Chen et al., 2020b;
Zhang L. et al., 2020; Song et al., 2020; Acquah et al., 2021;
Devi and Chaitanya, 2021; Sun et al., 2021). Although aptamers
have not been combined with LFAs for direct diagnosis of virus
particles so far, it is believed that the assay, combined with the
merits of aptamers and LFA is a promising tool for rapid
detection of SARS-CoV-2 in the future.

Besides, it has been reported that there exists an abnormal
microRNA expression in patients with COVID-19 (Kim W. R.
et al., 2020; Sacar Demirci and Adan, 2020; Donyavi et al., 2021;
Marchi et al., 2021). An abnormal expression of microRNA is
closely related with the occurrence and development of various
diseases and can be used as a potential biomarker for specific
conditions. Therefore, it is feasible to develop a method based on
LFAs to simultaneously detect a variety of differentially expressed
microRNAs related to SARS-CoV-2 to achieve an indirect
diagnosis of the virus of COVID-19 infection rapidly. In
addition, other biomarkers such as D-dimer, CD4+, CRP
protein, or cytokines can be used to exploit some rapid
detection methods for SARS-CoV-2 in the POCT setting.

Furthermore, with the continuous emergence of new strains of
SARS-CoV-2, their infectivities and pathogenicities are different
(Volz et al., 2021; Zhang et al., 2022). The corresponding
aptamers can be screened according to the characteristics of

the variant strain, including the shape of the virus particles,
characteristics of the RNA conserved region, and structure of
functional proteins. Combined with LFA, methods that can
rapidly distinguish between various mutated viruses have been
developed. Moreover, the severity of symptoms caused by variant
viruses may lead to differential levels of these biomarkers. Thus, a
novel method can be developed based on LFA to detect different
subviruses by comparing the differences in these biomarkers.

CONCLUSION AND FUTURE
PERSPECTIVES

Compared to the SARS-CoV-1 outbreak in 2003, SARS-CoV-2
has caused unprecedented damage to society. Over the past
2 years, progress has been achieved in all aspects to control
the dissemination of the virus, especially in terms of
establishing a medical record system, improvements in
medication, vaccine development, and developing diagnostic
test kits. Based on the data collected thus far, diagnostic kits
mainly entail detecting the RNA of SARS-CoV-2 with the
assistance of PCR techniques and viral proteins via ELISA
assays. Most of these approaches are expensive and/or require
operation in a central laboratory or with the help of complicated
equipment. Their application is limited, especially in developing
countries and regions where the laboratory infrastructure is weak.
LFA-based diagnostic assays possess significant merits such as
low costs, rapid testing, and easy deployment in any setting.
Herein, we focus on the structure and infection process of SARS-
CoV-2 and summarize novel LFA-based methods for detecting
the virus. The principles and properties of these methods are
described in detail to facilitate better understanding and
comparison. LFA-based virus tests are suitable for various
detection scenarios, including homes, schools, factories and
shopping malls. This shows considerable potential for the
mass screening of the SARS-CoV-2.

Although numerous LFA-based COVID-19 detection
methods have been developed in a short time, few POCT
diagnostic kits has been approved by the FDA. A great
challenge lies in the robustness and effectiveness of these
methods. For example, deformed nanoparticles affect the flow
uniformity, the properties of the dye loaded in nanoparticles will
deteriorate, and the antibody embedded in the conjugate pad or
cellulose membrane will be denatured. There are also non-specific
adsorption and steric hindrance effects. All of these factors may
affect the stability and reproducibility of the results. Additionally,
various other methods have some drawbacks. For viral RNA-
based LFAs diagnosis, sample pretreatment involves shipping and
storage of specimens, extraction, and purification of RNA, which
are critical for the accuracy of diagnosis. Moreover, with the
emergence of novel variant strains (Deng X. et al., 2021; Wang
et al., 2021c; Davies et al., 2021;Wang et al., 2021d; Lu et al., 2021;
Rao Us et al., 2021), the development of effective LFA kits for the
detection of mutated strains is challenging. Although the
availability of updated genomic data enables the adoption of
these assays for mutants, the assays cannot provide information
for patients who have already recovered from COVID-19.
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Immunological assays can avoid this issue because of the
relatively conserved structure and amino acid sequence of the
viral protein. However, it also faces other problems, such as the
specificity, sensitivity, and effectiveness of antibody pairs. Efforts
should be made to further improve the performance of these
assays and make them more applicable for the early detection of
COVID-19.

The following strategies should be implemented for all
these challenges. More durable materials and reagents are
essential to improve the performance of LFAs system. A
standard workflow of LFAs diagnostic assays needs to be
established. In addition, it is necessary to conduct a multi-
prong diagnosis to confirm the test results and reduce the
percentage of false positives and false negatives. For instance,
one strip can simultaneously detect the RNA, virus antigen,
and the corresponding antibody. In the same case, more than
two methods can be simultaneously used at the same time.
The complementary advantages of these methods can
significantly improve detection accuracy. Furthermore,
establishing a monitoring network is of great importance
in controlling the spread of COVID-19. For example,
smartphone-based automated reader technology has been
used to test drug dosage in patients (Carrio et al., 2015).
In this regard, a smartphone-based LFA can be used to
monitor COVID-19 on time by uploading data to the
network. The internet of medical things (IoMT) of a 5G-
enabled fluorescence sensor can also be adopted to
determinate and monitor COVID-19 online. Various

artificial intelligence algorithms, including IoT, big data,
and cloud computing, can make collective efforts to
achieve a rapid and accurate diagnosis and control of
COVID-19. This convenient and fast diagnosis will become
a regular practice in the post-pandemic era, whether for
SARS-CoV-2 or other viruses.
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