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Abstract

Background: Polycystin-1 (PC-1) is a large plasma membrane receptor, encoded by the PKDT gene, which is
mutated in most cases of Autosomal Dominant Polycystic Kidney Disease (ADPKD). The disease is characterized by
renal cysts. The precise function of PC-1 remains elusive, although several studies suggest that it can regulate the
cellular shape in response to external stimuli. We and others reported that PC-1 regulates the actin cytoskeleton
and cell migration.

Results: Here we show that cells over-expressing PC-1 display enhanced adhesion rates to the substrate, while cells
lacking PC-1 have a reduced capability to adhere. In search for the mechanism responsible for this new property of
PC-1 we found that this receptor is able to regulate the stability of the microtubules, in addition to its capability to
regulate the actin cytoskeleton. The two cytoskeletal components are acting in a coordinated fashion. Notably, we
uncovered that PC-1 regulation of the microtubule cytoskeleton impacts on the turnover rates of focal adhesions in

Adhesion Kinase (FAK).

migrating cells and we link all these properties to the capability of PC-1 to regulate the activation state of Focal

Conclusions: In this study we show several new features of the PC-1 receptor in modulating microtubules and
adhesion dynamics, which are essential for its capability to regulate migration.
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Background

Autosomal Dominant Polycystic Kidney Disease is a com-
mon monogenic disorder characterized by the formation
of epithelial cysts in the kidney, liver and pancreas. The
disease is due to mutations in two genes: the PKDI and
the PKD2 genes, mutated in 85 and 15% of cases re-
spectively, which encode for Polycystin-1 (PC-1) and
Polycystin-2 (PC-2). PC-1 is a large protein composed
by a relatively short intracellular C-terminus (198aa),
11 trans-membrane domains that ensure its localization
at ER and cytoplasmic membrane, and a long extracel-
lular N-terminus (=3000aa) [1]. The C-terminal tail
likely mediates a series of signaling pathways [2,3],
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while the large N-terminal region contains a number of
domains possibly involved in mediating protein-protein
interaction and/or in sensing mechanical stimuli [4,5].
The protein localizes at cell-cell and cell-matrix con-
tacts as well as at the primary cilium [1]; here, PC-1 is
proposed to directly sense urine flow [6] and possibly
mediate activation of its partner PC-2, which is a cal-
cium channel of the TRPP family, although this model
has been recently challenged [7]. Consistently with the
localization at cell-cell junctions it has been shown that
Polycystin-1 is involved in cell-cell adhesion dynamics
[8,9]. Finally, at the cell-matrix interface PC-1 has been
proposed to play a role in cell-substrate adhesion [10]
and the short intracellular C-tail of PC-1 has been pre-
viously localized into Focal Adhesions (FA) [2]. How-
ever, the ability of PC-1 to mediate and control cell
adhesion to the substrate has never been investigated
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in detail, although its role in this context has been one
of the first functions proposed for this receptor, and
suggested to play a role in ADPKD phenotype [10,11].

The capability of cells to adhere to the substrate is fun-
damental for many cell biological processes, including key
aspects during embryonic development. Cell adhesion to
extracellular matrix is a highly dynamic and tightly regu-
lated process [12]. At the front edge of a migrating cell the
formation and maturation of multi-protein focal adhesions
provide the basis for setting the tension to propel the cell
forward. At the cell rear, instead, the disassembly of the
FAs mediated by a microtubule-guided process allows free
cell movement. Each of these steps is regulated by several
proteins, although details of the mechanisms remain elu-
sive. Among all, focal adhesion kinase (FAK) is an import-
ant player in these processes [13]: FAK-/- fibroblasts
display defective cell migration and an accumulation of
immature focal contacts [14,15]. Indeed, FAK directly in-
teracts with adhesion components such as integrins, and
phosphorylates paxillin, a fundamental component of focal
complexes [16]; overexpression of a mutated form of pax-
illin which cannot be phosphorylated by FAK prevents the
turnover of focal contacts and cell motility [17].

Interestingly, several studies in the past from our
and other groups have implicated a role for PC-1 in
regulation of different aspects of the migratory process
[2,9,18-21]. Indeed Polycystin-1 induces actin cytoskel-
eton rearrangements and protrusion at the cell edge in
wound healing assays, and it also favors the dynamic of
cell-cell adhesion, promoting p-catenin turnover [9] in
epithelial cells. A dual role for Polycystin-1 in regula-
tion of cell migration has been proposed: PC-1 is able
to regulate both the rate of cell movement as well as
the orientation of cells during migration [9,18].

Here we report a series of novel observations on the
role of PC-1 in cell migration. We report that PC-1 is
able to regulate the microtubule stability and dynamics
in addition to the actin cytoskeleton. Furthermore, we
report that the capability of PC-1 to influence the
microtubule cytoskeleton results in a dynamic regula-
tion of focal adhesion formation and in an enhanced
adhesion to the substrate. Interestingly, we show that
all these effects of PC-1 depend on the activity of FAK
and are important for regulation of cell migratory rates.
Of interest, we show that the actin cytoskeleton is not
essential in PC-1 mediated cell orientation during mi-
gration, a process in which the dynamic regulation of
the microtubule cytoskeleton is instead essential.

Results

Polycystin-1 regulates microtubule stability

We have previously reported that Polycystin-1 regulates
both the rates of cell migration and front-rear polarity
of migrating cells in MDCK epithelial cells and in
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fibroblasts [9,18]. Actin and microtubule cytoskeletons
are directly involved in extending new protrusions in
the direction of migration and in generating the propel-
ling force for cell movement. PC-1 overexpression has
been reported to induce actin protrusion [9,18]. There-
fore, we carefully analyzed actin filaments and microtu-
bules by immunofluorescence staining using phalloidin
and an anti-a-tubulin antibody in cellular models of
gain or loss-of-function of PC-1 [9,18]. We analyzed
cells in wound-healing assays, in which a migration stimu-
lus is generated by scratching the cell monolayer with a
pipette tip. 1 hour after wounding, when the migration in-
volves mainly the first row of cells facing the wound, a set
of previously described MDCK cells carrying over-
expression of PC-1 (MDCK™P!#%) [22] reveals the pres-
ence of actin protrusions and elongated microtubules, while
control MDCK cells (MDCK?*®) have a strong actin stain-
ing at the cell-cell junctions and randomly oriented micro-
tubules (Figure 1A and B). Conversely, fibroblasts carrying
null alleles of the Pkd1 gene (Pkd1 ) 18] display defective
actin and microtubule organizations compared to Pkd1"'*
control cells (Figure 1B and D). To test if the absence of
PC-1 is linked with defective actin and microtubular pro-
trusions in the setting of epithelial cells, we generated a set
of mIMCD cells carrying stable silencing of the Pkd1 gene,
generating mIMCD*"*! " clones carrying a 60 to 70%
downregulation of PC-1 (C12 and C16, Figure 1C and
Additional file 1) as compared to parental mIMCD cells or
controls infected with a scrambled shRNA (mIMCD*<"!,
clones M3 and M4) (Figure 1C and Additional file 1).
Wound healing assays followed by immunofluorescence
revealed that mIMCD"“" cells tend to have more actin
and microtubule-based protrusions at the leading edge as
compared to mIMCD***#! cells (Figure 1D).

Since microtubule elongation in oriented cell migration
correlates with the presence of persistent microtubules, we
hypothesized that PC-1 can influence the rate of micro-
tubule stabilization. To formally test this hypothesis we
performed nocodazole resistance assays, which consist in
treating living cells with nocodazole (2 uM) for a short
period of time, to depolymerize only the newly formed mi-
crotubules, followed by fixation and tubulin immunostain-
ing. Quantification revealed that MDCK"P#* cells have
increased resistance to nocodazole, when compared to
control clones (Figure 1E). In line with this, we found that
Pkd1™~ fibroblasts, show decreased stabilization of the
cytoskeleton, as compared to wild-type controls (Figure 1F).
We conclude from these studies that PC-1 regulates the
microtubules in addition to the microfilaments.

Both the microtubule and the actin cytoskeletons are
involved in PKD1-dependent cell migration

We next aimed at dissecting the relative role of the two
cytoskeleton components (microtubules and microfilaments)



Castelli et al. BMC Cell Biology (2015) 16:15 Page 3 of 16

A MDCKzo( F6) MDCKPKDz¢0 (68) B+ X X8
TSy A& osg
T = =&
ey 29883

actin

L
n

1 &

B G
—

0

£

= |

- C o a.

0 O Oov

° =% 3t
E E°
e Ne
S=200
— . PC-1

———— O-tUD

nucleus/actin/a-tub

o

Pkd1-/- mIMCDshet mIMCDs"Pk"
e .

o

% cells with MT
g B D

0

nucleus/actin

F2_F6 36 68 G3
MDCKZ®® MDCKPKO1Ze0

nucleus/a-tubulin

0
Pkd1+/+Pkd1-/-

Figure 1 Polycystin-1 levels correlate with cytoskeleton protrusions formation in wound-healing assay and microtubules stabilization. (A) MDCK“®
(clone F6) and MDCK®72¢° (clone 68) cells were subjected to wound healing, allowed to migrate for one hour and stained with a-tubulin antibodies
(white/red), FITC-phalloidin (white/green) and DAPI staining (blue). Full images and zoom-in of the boxed areas show that MDCK™ P77 cells have both
actin filaments and microtubules elongated towards the wound. Bar: 20 pm. (B) Western blot analysis of PC-1 levels using LRR antibody in fibroblasts
Pkd 1" and Pkd1~~, and in control MDCK?®® (clone F2, F6) and PKD1-overexpressing MDCK™®7#€° (clone 36, 68, G3) epithelial cells. (C) Western blot
analysis using PC-1 LRR antibody of mIMCD cells: two clones isolated from shScrambled-infected (M3 and M4) and two shPkd I-infected (C12 and C16).
(D) Pkd1*"* and Pkd1™~ fibroblasts, as well as mIMCD*™" and mIMCD™™¥" were subjected to wound, allowed to migrate for one hour and stained
with DAPI (blue) and FITC-phalloidin (white) or a-tubulin antibodies (white). Images show defective protrusions in the two cytoskeletons in Pkd1™”~ and
mIMCD* " cells, compared to their respective controls. Bar: 40 um. (E) Quantification of nocodazole resistance assay in MDCK cells, revealing that
MDCKP722° cells have more persistent microtubules compared to MDCK?® cells. The graph is representative of three independent experiments;
averages and SD are shown. Statistical analysis: ANOVA; *p < 0.05, **p < 0.01, relative to both control clones (F2 and F6). (F) Quantification of
nocodazole resistance assay in fibroblasts, revealing that Pkd1~”" cells have less persistent microtubules compared to Pkd1*/* cells. The graph
is representative of three independent experiments; averages and SD are shown. Statistical analysis: T-test; ****p < 0.0001.
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in PC-1-mediated cell migration. To this end, we used two
different assays: Boyden chambers assay to assess cell motil-
ity and evaluation of Golgi re-orientation in wound-healing
assay to quantify cell orientation during migration. Import-
antly, in line with our published data, the newly generated
mIMCD"?4! cells display both impairment of cell migration
in Boyden chambers (Figure 2A) and in front-rear polarity
(Figure 2B). Treatment in the presence of CytochalasinD
(5 uM) and LatrunculinA (5 pM), both able to interfere with
the actin cytoskeleton, hindered PKDI-dependent cell mi-
gration in Boyden chamber assays in MDCK™""*° cells
and in Pkd1"* fibroblasts, reducing their motility capabilities
down to the levels of MDCK*® controls and Pkd1 ™"~ fibro-
blasts (Figure 2C). On the contrary, neither of the two toxins
had effects on the establishment of front-rear polarity
(Figure 2D, E and F). Staining of the actin cytoskeleton
revealed that both drugs are however able to disrupt
the actin filaments, excluding the possibility that the
drugs did not effectively act on the actin cytoskeleton
(Figure 2D). In previous studies we have shown that
the rearrangements in the actin cytoskeleton observed
upon over-expression of PC-1 are mediated by the PI-3
kinase cascade. In line with these previous data, we found
that the PI-3 kinase inhibitors LY294002 (20 pM) and
wortmannin (250nM) are able to inhibit cell migration in
Boyden chamber assays, but had no effect on front-rear
polarity establishment (Additional file 1), similarly to the
actin depolymerizing drugs.

Next, we used nocodazole which is able to interfere
with the nascent microtubules when used at nanomolar
concentrations (150nM), as well as taxol (1 uM), which
instead prevents disassembly of the already polymerized
tubulin filaments. Both these drugs were able to strongly
interfere with the capability of cells to move across the
membrane in Boyden chamber assays (Figure 2G) and
to achieve front-rear polarity (Figure 2H, I and L). We
conclude that PC-1 regulates both the actin and the
microtubules cytoskeletons, but while PC-1 mediated
cell motility depends on both the actin and the micro-
tubular cytoskeleton, PC-1-induced front-rear polarity
exclusively depends on the latter.

Polycystin-1 regulates cell adhesion and nascent focal
adhesions

During the course of our experiments we noticed that
MDCKP?#¢ cells appeared to have a different capabil-
ity to adhere to the substrate. To formally test if PC-1
can indeed modulate the rate of cell adhesion to the
substrate, we performed a colorimetric adhesion assay:
briefly, 15 minutes after plating, cells are washed with
fresh medium so that all non-adherent cells are re-
moved, while cells that have adhered are fixed, colored
and counted. We found that compared to control
MDCK?** clones, a higher proportion of MDCK”*P*#¢
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cells still adhere to the plate after the washout (Figure 3A).
Colorimetric quantification showed that adhesion is sig-
nificantly higher in MDCK”™®P"#* clones compared to
controls (Figure 3B and C). Consistently with these data,
adhesion assays performed on fibroblasts uncovered that
Pkd1™~ and mIMCD*"*#! cells have a reduced capability
to adhere to the substrate, compared to their respective
controls (Figure 3D and E). The difference in adhesiveness
is no longer statistically significant only 3 hours after plat-
ing in MEFs, while 6 hours after plating in MDCK and
mIMCD cells (Figure 3C, D and E), indicating that PC-1
controls the early steps of cell adhesion. Of interest, inter-
fering with the actin cytoskeleton abolished PC-1 effects
on adhesion (Figure 3F).

We next asked if the difference in adhesiveness is indeed
due to a different capability to assemble focal adhesions.
To test this, we analyzed by immunofluorescence cells at
early time points after plating (60 minutes), when they are
initially spreading on fibronectin matrix. In control
MDCK cells, paxillin localizes mainly at the cell periphery
and only forms relatively small clusters, very distant from
one another. On the contrary, MDCK”*P?#® cells form
many more focal adhesions at the cell periphery, as well as
some clusters in the body (Figure 3G). In both cell lines,
focal adhesions indeed localize on the basal side of the cell,
mediating the contact with the extracellular matrix as ex-
pected (Additional file 1).

These data define a role for Polycystin-1 in regulating
focal adhesions during the first phases of cell adhesion,
explaining the capability to modulate adhesion to the
substrate.

Polycystin-1 regulates focal adhesions during cell
migration

We next investigated the role of PC-1 on focal adhesion
distribution during cell migration. First, we performed
immunofluorescence analysis of MDCK clones migrating
as single cells, 5 hours after plating on fibronectin. Con-
trol MDCK?® cells show a round non-polarized shape
with large focal adhesions mostly localized at the periph-
eral actin bundles (Figure 4A). On the contrary,
MDCK?(PH2e (Jones acquire a polarized shape and have
a higher number of focal adhesions of different sizes: the
larger focal adhesions are present in the central-rear part
of the cell body, while the smaller ones are localized at
the actin protrusions of the front edge (Figure 4A). The
same difference in paxillin pattern between control and
PKD1 overexpressing cells is also visible at later time
points of migration (Figure 4B). This effect is not corre-
lated with gross clustering differences of focal adhesions,
that appear to be correctly formed at the very basal site
of the cell in all the clones (Figure 4B). Consistently with
these observations in MDCK cells, Pkdl™~ fibroblasts
have predominantly bigger focal adhesions randomly
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Figure 2 Polycystin-1-dependent migration depends on both actin and microtubules, while front-rear polarity only on microtubules. (A) Boyden
chambers on mIMCD cells, showed that silencing of Pkd1 (MIMCD**": clones C12, C16) decreases their migration capability, as compared to
controls (MIMCD™ "™ clones M3, M4). (B) Golgi orientation in wound-healing assays on mIMCD cells, showed front-rear polarity impairment upon
Pkd1 silencing. (C) Boyden chambers assay performed on MDCK cells (left panel) and fibroblasts (right panel) in the presence of CytochalasinD
(cyt) or LatrunculinA (lat), revealed the essential role of actin in migration. Graphs are representative of three independent experiments; averages
and SD are shown. (D) MDCK?* (clone F6) and MDCK™P’#° (clone 68) were wounded in the presence of CytochalasinD (cyt) or LatrunculinA (lat)
and after 3 h stained with phalloidin (actin), anti-giantin (Golgi) and DAPI (nucleus). Bar: 50 um. (E-F) Quantification of Golgi repositioning revealed no
effect of CytochalasinD (E, cyt) or LatrunculinA (F, lat) on front-rear polarity in MDCK™®'#° cells (clones 36, 68, G3). Graphs are representative of three
independent experiments; averages and SD are shown. (G) Boyden chamber assays performed in the presence of Nocodazole (noc) or Taxol
(tax) revealed the role of microtubules in migration. Graph is representative of three independent experiments; averages and SD are shown.
(H-1) Quantification of Golgi repositioning revealed a strong effect of Nocodazole and Taxol on front-rear polarity in MDCK™®'?¢° epithelial
cells (H) and in Pkd 1" (). Graphs are representative of three independent experiments; averages and SD are shown. (L) Front-rear polarity
was evaluated as in D in MDCK?® (clone F6) and MDCK™ P’ (clone 68) cells treated with Nocodazole and Taxol. Bar: 50 um. For all graphs
in this figure: Statistical analysis ANOVA; NS non-statistically significant (p > 0.05), *p < 0.05, **p < 001, **p < 0.001, referred to the relative control (ct).

localized, while in wild-type fibroblast paxillin staining
reflects the single cell migration pattern (Additional file 1).

Next, we analyzed focal adhesions distribution during
collective cell migration, in wound healing assays [9].
After 3 hours from wounding, MDCK control clones
present a low number of small focal adhesions, localized
near the cell edge but not directly at the tips (Figure 4C
and Additional file 1); on the contrary, in MDCK”*P*#¢
paxillin staining localizes at the very end of the actin
protrusion tips (Figure 4C and Additional file 1). Con-
sistently, focal adhesions at the leading edge of control
mIMCD*"““" cells are oriented in the direction of the
wound, while Pkdl silenced mIMCD*"*! cells show
large focal adhesions parallel to the wound (Figure 4D).
From these data we conclude that during the process of
single cell and collective migration PC-1 is involved in
regulating focal adhesion distribution.

Polycystin-1 regulates focal adhesions turnover
The data above suggest that PC-1 may increase the dy-
namic of focal adhesion formation.

To test this hypothesis we first analyzed focal adhesion
disassembly with nocodazole washout assays [23].
Briefly, nocodazole (10 pM) is added to the medium of
serum-starved cells to completely depolymerize microtu-
bules, and then washed out with fresh serum-starvation
medium to allow microtubule regrowth; as microtubules
start to target focal adhesion these are disassembled.
The staining of paxillin and the related quantification
showed that in MDCK™ /%% cells the majority of focal
adhesions are disassembled 15 minutes after nocodazole
washout; on the contrary, controls do not lose focal
adhesion structures in these conditions (Figure 5A;
Additional file 1). This difference is not secondary to a
difference in microtubule depolymerization: indeed, in
both clones, microtubules are completely depolymer-
ized by nocodazole treatment and start to reform with
the same timing, 15 minutes after nocodazole washout
(Additional file 1); focal adhesions are completely

reformed 2 hours later (Figure 5A). Next, we looked at
the loss-of-function cellular systems. Similar analysis
in MEFs revealed that Pkdl™~ cells maintain their
paxillin staining 15 minutes after nocodazole washout,
while Pkd*’* cells have lost their focal adhesion struc-
tures (Figure 5B and Additional file 1).

To more precisely assess if PC-1 presence or absence
correlates with the rate of Focal Adhesions turnover, we
tested the time required for a full turnover of paxillin
using Fluorescence Recovery After Photobleaching
(FRAP) on a transfected GFP-tagged paxillin molecule
[24] (Figure 5C). The mean half-time of fluorescence re-
covery (FRAP t1/2) in the bleached area was determined
as an estimate stability of adhesion binding. MDCK"*P*#¢
cells exhibited a significantly faster recovery of GFP-
paxillin compared to control MDCK** cells (Figure 5C, D
and E; Additional files 2 and 3). Consistently, the opposite
was observed in Pkdl~’~ fibroblasts as compared to
PkdI*"* (Figure 5C, F and G; Additional files 4 and 5).

These data demonstrate that Polycystin-1 positively
regulates focal adhesion disassembly in the experimental
conditions used and suggest that the capability of PC-1
to regulate the microtubule cytoskeleton stability is likely
involved in regulation of the turnover of focal adhesions,
ultimately mediating cell adhesion and migration.

Focal adhesion kinase is important for PKD1-dependent
cell migration and adhesion

A fundamental effector of focal adhesion signaling is Focal
Adhesion Kinase (FAK), whose activity is marked by its
phosphorylation in Tyr397 [14,25]. We analyzed the activ-
ity of focal adhesion kinase in our cellular models. We first
considered single cell migration conditions, and lysed cells
plated overnight at low cell density (50%). In line with the
effects on focal adhesions described above, western blot
analysis showed that MDCK™”/#® have higher levels of
Tyr397-phosphorylated FAK compared to control cells
and that subconfluent Pkd1~~ cells have lower phosphor-
ylation levels of FAK than Pkd1 e (Figure 6A).
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Figure 3 Polycystin-1 regulates cell adhesion to the substrate. (A) Images of the colorimetric adhesion assay of MDCK“*® (clones F2, F6) and
MDCK™ P72 (clones 36, 68) cells upon wash-out. As control, images of unwashed cells are shown. (B) Experiments as in A are quantified by
measuring absorbance (OD 570 nm) of colored cells revealing that MDCK™®'2¢° cells adhere more to fibronectin. The graph is representative of
four independent experiments; averages and SD are shown. Statistical analysis: ANOVA; *p < 0.05, **p < 0.01, relative to both control clones
(F2, F6). (C-E) Time course of a colorimetric adhesion assay with: MDCK“® (clone F2) and MDCK™®™#® (clone 68) cells (C), Pkd1** and Pkd1™~
fibroblasts (D), MIMCD" (clones M3, M4) and mIMCD*"*“" (clones C12, C16) cells (E): cells plated on fibronectin were washed at the indicated time
points and values normalized for the 6 h unwashed values. Graphs are representative of three independent experiments, performed in triplicate;
averages and SD are shown. Statistical analysis: ANOVA; NS non-statistically significant (p > 0.05), *p < 0.05, **p < 0.01, ****p < 0.0001, referred
to the control (F2, Pkd1™*, mIMCD*™™™ relative bars. (F) Quantification of the colorimetric adhesion assay in MDCK?® (clone F2) and MDCK™ "%
(clone 68) cells, or in Pkd1™* and Pkd1~~ fibroblasts, in presence of cytochalasin (cyt, 5 uM) and latrunculin (lat, 5 uM). revealing an essential
role of actin in adhesion. Graph is representative of three independent experiments. Averages and SD are shown. Statistical analysis: ANOVA;
NS non-statistically significant (p > 0.05), *p < 0.05, ****p < 0.0001, referred to the relative control (ct). (G) Staining of MDCK?® (clone F2) and
MDCK™ P22 (clone 36) cells for actin (phalloidin-TRITC, red), paxillin (green) and nucleus (DAPI, blue) after 1 h on fibronectin. Zoom-in of the

boxed areas are shown. Bar: 25 pum.

We also tested FAK phosphorylation levels in condi-
tions of collective cell migration, analyzing confluent
cells in response to wound. Also in these conditions,
MDCK”P*#¢ cells have enhanced phospho-FAK levels
as compared to controls, which is visible prior to chal-
lenging with the wound and is maintained upon wound-
ing at all the time points analyzed (Figure 6B). These
results show that in different migration conditions,
Polycystin-1 expression correlates with higher activation
of FAK.

Next, to assess if differences in FAK phosphorylation
can also be observed in the initial phases of cell adhe-
sion, we serum-starved cells and plated them on fibro-
nectin and collected them at different time points.
MDCK?* control cells show a small increase of FAK
phosphorylation after plating. However, MDCK”*P*#¢
cells display a much higher activation rate of FAK in all
the time points considered (Figure 6C). These data are
consistent with the increased rates of adhesion of these
cells.

To test if FAK activity is necessary for MDCK<P#¢
cell adhesion, we performed adhesion assays in the pres-
ence of a specific kinase inhibitor (PF-228, 10 uM) [26].
The inhibitor decreases adhesion of both MDCK™P*#¢
clones and PkdI** fibroblasts (Figure 6D), suggesting
that early adhesion to fibronectin mediated by PC-1 de-
pends on this kinase. Importantly, PF-228 also had a
profound effect on the capability of cells to migrate
(Figure 6E) and to achieve front-rear polarity in wound
healing assays (Figure 6F). Next, we tested if FAK inhib-
ition also impairs PC-1 dependent increase in focal adhe-
sion disassembly. Indeed, nocodazole washout assays
performed in the presence of PF-228 inhibitor revealed
that the disassembly of focal adhesion in MDCK ™ P/#¢
cells is sensitive to this drug (Figure 6G). Interestingly,
PI-3 kinase does not seem to mediate the regulation of
FAK phosphorylation in these conditions, as the PI-3
kinase inhibitor wortmannin does not revert PC-1 induced
upregulation of FAK (Figure 6H).

Discussion

Previous studies from our and other groups have impli-
cated PC-1 in mediating cell migration and regulation of
the actin cytoskeleton [9,18,20].

We have previously shown that PC- 1 is able to regu-
late two distinct aspects of cell migration: cell polarity
(front-rear polarity, i.e. orientation during migration)
and cell motility. Pkdl mutants display defective Golgi
orientation in wound-healing assay and defects in per-
sistent cell migration [18], defining a role for PC-1 in
front-rear polarity establishment. Second, overexpression
of the full length PKD1 ¢cDNA or the only C-terminus of
PC-1 protein increases cell migration rate in epithelial
cells [9,21], implicating PC-1 in cell motility.

In the present study we show that PC-1 not only acts
by enhancing actin cytoskeleton protrusions [9], but it
also regulates both elongation and stabilization of the
microtubules. We also discerned the relative involve-
ment of the two cytoskeletal components in PC-1-
dependent cell migration, uncovering that cell motility
requires both actin and the microtubules, while front-
rear polarity depends only on the dynamics of the
microtubule cytoskeleton. Interestingly, a well docu-
mented relationship between the actin and the micro-
tubule cystoskeleton has been described in many
different cellular processes, including cell migration [27].
During cell migration the actin cytoskeleton pushes the
edge of the cell forward and allows for contraction and
retraction of the tail. This process intimately depends on
the capability of cells to assemble and disassemble focal
contacts. The microtubule cytoskeleton plays a key role
in this last process by facilitating exocytosis and endocytosis
of key adhesion molecules. Thus, it is not surprising that
we find in this study that the coordination of the two types
of cytoskeletons is crucial for PC-1 induced migration.

Furthermore, we uncover an essential function of PC-
1 in modulating the adhesive properties of cells to the
substrate. This property is linked to PC-1 ability to regu-
late the dynamic formation of FAs, although this must
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are shown. Bar: 25 um.

Figure 4 Polycystin-1 modulates focal adhesions distribution during migration. (A) Immunofluorescence images of MDCK”*° (clone F2) and
MDCK™ P28 (clone 36) cells plated for 5 h on fibronectin. Cells were stained for actin (Phalloidin-TRITC, red), paxillin (green) and nucleus (DAPI,
blue). MDCK?®® cells have a round shape and peripheral clusters of paxillin; MDCK™P7#%° cells acquire a polarized and migratory phenotype, with
focal adhesions of different dimensions. Bar: 25 pum. (B) Confocal images of immunofluorescence on MDCK?®® (clone F6) and MDCK™P7%%° (clone
36), plated overnight on fibronectin. Cells were stained for actin (Phalloidin-TRITC, red), paxillin (green) and nucleus (DAPI, blue). Images represent
one confocal Z-section of the cell, on the right and below each image are projections along x and y axis, reconstructed with Volocity software. In
all cell lines, paxillin staining is found on the ventral side and localizes in clusters (focal adhesions). MDC
and present numerous focal adhesions, while MDCK?® cells have a round shape and a limited number of paxillin clusters, mainly localized at
the periphery of the cell. Bar: 15 um. (C-D) Representative confocal images of MDCK”®® (clone F2) and MDCK™P7#¢° (clone 36) cells (C), and
of MIMCD™ (clone M4) and mIMCD*"™?" (clone C16) cells (D), allowed to migrate in a 3 hours wound-healing assay on fibronectin and subsequently
stained for actin (Phalloidin-TRITC), paxillin (green) and nucleus (DAPI, blue). Merged images, single channels and zoom-in of the boxed areas of paxillin

K12 cells maintain a polarized morphology

be a fine regulation, since cells lacking the Pkd1 gene do
finally form focal adhesions properly. In addition, during
the initial phases of cell adhesion, the PC-1-deficient
cells display lower focal adhesion number and higher
heterogeneity, further suggesting that PC-1 regulates
focal adhesion dynamics and localization. The role of
cell adhesion dynamics in cell migration is well recog-
nized. Adhesion to the substrate at the front of the cell
generates the tension forces required to propel the cell
forward, whereas disassembly of focal adhesions at the
cell rear allows retraction of the tail [28]. Importantly,
these properties must be balanced within the cell since a
misbalance towards focal adhesions formation and matur-
ation can prevent cell motility, while an excessive disas-
sembly might decrease the proper intracellular tension. In
migrating cells, PKD1 overexpression increases focal con-
tacts at the cell protrusive edge and the size of focal adhe-
sions in the tail. We further observed that PC-1 deficient
cells show defective focal adhesions disassembly, which
explain the presence of large focal adhesions in these cells.
Indeed, detailed analysis using Fluorescent Recovery after
Photobleaching (FRAP) in cells transfected with a GFP-
paxillin molecule as previously described [24], evidenced
that PC-1 can influence the rate of focal adhesions turn-
over. In particular, cells carrying over-expression of PC-1
have an enhanced turnover, while cells lacking PC-1 have
a reduced turnover.

The role of PC-1 that we observe in favoring focal ad-
hesion turnover is most likely exerted by Focal Adhesion
Kinase (FAK) activity. FAK is a master regulator of adhe-
sion; in particular, it appears to be involved mostly in
focal adhesion dynamic and disassembly, more than in
their formation or maturation [13]. Consistently, FAK
activation is higher in PKDI overexpressing cells, and is
lower in Pkdl mutants. Furthermore, its inhibition de-
creases PC-1-dependent focal adhesion disassembly and is
able to revert PC-1 capability to regulate cell migration
acting both on the motility and on front-rear polarity. Our
data taken together suggest that FAK might act quite up-
stream in PC-1-mediated cell migration. Moreover, in line
with our previously reported data, while inhibitors of PI-3

kinase are able to revert cell motility, but not front-rear
polarity, FAK inhibitors act at both levels. In addition the
PC-1 mediated upregulation of the PI-3 kinase/Akt signal-
ing pathway that we have previously described [29] is
inhibited by FAK inhibitors, while PI-3kinase inhibitors
are unable to revert FAK upregulation. These data taken
together suggest that FAK acts upstream of PI-3 kinase/
Akt in the PC-1 regulated pathway, although further
studies will be required to better understand the mo-
lecular details of this regulation.

Conclusions

In this study we have uncovered a previously unrecognized,
though hypothesized, role for PC-1 in regulating cell
adhesion and the dynamics of focal adhesion contacts
via its capability to regulate the microtubule cytoskeleton.
Furthermore, we show that PC-1 can modulate the activity
of the focal adhesion kinase (FAK) to exert its function on
cell adhesion and migration.

One important question that rises from our study is in
which physiological context this role of PC-1 might be
important? While additional studies will be necessary to
answer this question, here we speculate that this might
be relevant during renal development. We have recently
shown that during development of the kidney, the mor-
phogenesis of renal tubules is achieved by convergent
extension-like movements which are impaired in Pkd1
mutant tubules [18,30,31]. We speculate here that the
cellular movements required during this process might
require that PC-1 is able to properly regulate the cyto-
skeletons and the adhesiveness of cells to the substrate
for cells to achieve proper intercalation and eventually
convergent extension.

Methods

Cell culture

Cells (MEF-Mouse Embryonic Fibroblasts [9,18];
MDCK-Madin Darby Canine Kidney [22] and mIMCD3
lines) were grown in 37°C, 5% CO, incubators, in high
glucose medium (Gibco, 41965), 10% FBS (Gibco,
10270), 1% Penicillin-Streptomycin (Life technologies,
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Figure 5 Polycystin-1 regulates focal adhesion dynamics. (A-B) Quantification of focal adhesion disassembly in MDCK“®® (clones F2 and F6) and
MDCK™P77¢° (clones 36 and 68) cells (A), and in Pkd 1™ and Pkd1™~ fibroblasts (B). Each graph is representative of three independent experiments; in
each experiment 3 groups of at least 100 cells were counted. Averages and SD are shown. Statistical analysis: ANOVA; NS (non-significant)
p>0.05,** p < 0.01,**p < 0.001, ***p < 0.0001, referred to the relative control bars. (C-G) MDCK?® (clone F6) and MDCK™*P'?¢ (clone 36),
as well as Pkd1™* and Pkd1~~ fibroblasts, were transfected with GFP-paxillin. GFP-paxillin-positive adhesions were subjected to FRAP analysis. The panel
(C) show images of whole cells (bar: 10 um) and zoom-in of the individual focal adhesions (bar: 2 um) at crucial time points: pre-bleaching time (—10s),

at bleaching completed time (0 s), post-bleaching corresponding at about t1/2 recovery times of the different cell lines (8 s, 13 s), and at long time
point (200 s). Bleached focal adhesions are indicated with arrows in the first image and asterisks in the higher magnification images. The
results showing the half time (t1/2) of fluorescence recovery are reported in the box plots (D, F); average values are indicated above each
box. Statistical analysis: t-test, ****p < 0.0001. F6, n = 22; 36, n = 30, Pkd1™*, n=16; Pkd1~~, n =28 (n, number of focal adhesion analyzed). In
the box plot: the line indicates the median value, the box indicates the 1st and 3rd quartile values, the points indicate the minimum and
maximum values. Sample fluorescence recovery curves of FRAP are shown in (E) and (G). The fluorescence intensity in the recovery curves
corresponds to the fluorescence at each time point after photobleaching, background subtracted, and normalized to the pre-bleaching intensity.

15070); for MDCK medium was supplied with 0.5 pg/
ml Geneticin (Life technologies, 11811) and 0.05 pg/ml
Zeocin (Life technologies R25001). For mIMCD clones
medium was supplemented with 1 pg/ml puromycin
(Invitrogen).

Generation of murine Inner Medullary Collecting Duct
Cells (mIMCD) silenced for Pkd1

Pre-screening of shRNAs targeting murine Pkdl was
performed as follow: 500,000 Pkd14/"4 [32] MEFs were
seeded onto pl00 dish and after 24 h transduced with
viral vectors expressing shRNA encoding scrambled
(shScr) sequences (MISSION TRC2 Control Transduc-
tion Particle puro Non-Target shRNA 3,8x10° TU/ml
SHC202V from SIGMA) or 6 different PkdI-targeting
shRNA (shPkdl a-e) sequences (MiSSION Lentiviral
Transduction Particles SHCLNV from SIGMA, batch A
TRCN0000302260 4,0x10” TU/ml, batch B TRCN000030
4611 3,2x10" TU/ml, batch C TRCN0000304612 1,8x10’
TU/ml, batch D TRCN0000304664 1,9x10” TU/ml batch
E TRCNO0000331808 3,1x10” TU/ml) using MOI (Multi-
plicity of infection) 1. 48 h after transduction cells were
collected, lysed and analyzed by SDS-PAGE on a 3-8%
gradient gels (Invitrogen) before transfer onto a PVDF
membrane (Millipore). Membranes were probed with
primary : anti-HA (Roche) and anti-tubulin (Sigma) anti-
bodies. Pre-screening of shRNAs targeting murine Pkdl,
identified shPkd1C as the most efficient (Additional file 1).
For stable transduction, 200,000 murine Inner Medullary
Collecting duct (mIMCD) cells were seeded into 6-well
plate and grown in DMEM (Invitrogen), supplemented
with 10% v/v Fetal Calf Serum and 1:100 Penicillin 5000
U/ml/ 5000 pg/ml Streptomycin solution (Invitrogen).
mIMCD cells were transduced with viral vectors express-
ing shRNA encoding scrambled sequences (shScr) or the
selected PkdI-targeting shRNA sequence (shPkdl1C)
under puromycin selection, using MOI (Multiplicity of in-
fection) 2 or 4 (Additional file 1). 48 h after transduction,
cells were splitted and medium containing 1 pg/ml puro-
mycin (Invitrogen) was added. Untransduced cells were

treated with the same puromycin concentration to estab-
lish the maximal toxicity of puromycin. After 5 days no
untransduced cells survived, and selection of puromycin
resistant cells was concluded. Resistant cells were analyzed
for PC-1 expression levels as above. Resistant cells treated
with MOI 4 and diluted 9:10 were chosen for subcloning.
For subcloning 1000 cells were seeded into a pl00 dish
and 18 clones for shPkd1C and 6 clones for shScr were se-
lected and picked. At confluency cells were analyzed for
PC-1 expression levels. Two clones carrying high silencing
levels (C12 and C16) and two control clones (M3 and M4)
were selected for further use (Figure 1C).

Inhibitors and antibodies

CytochalasinD (C8273), LatrunculinA (L5163), Noco-
dazole (M1404) and Taxol (T7402) were from Sigma;
FAK inhibitor II/PF 573-228 (324878) and Wortmannin
(681675) were from Calbiochem; LY-294002 (V120A) was
from Promega.

Fluorescein Isothiocyanate-labeled Phalloidin (P5282),
Tetramethylrhodamine B isothiocyanate-labeled Phalloidin
(P1951), antibodies for a-tubulin (T5168) and acetylated
tubulin (T6793) were from Sigma; DAPI (sc-3598), anti-
bodies for PC-1 (sc-130554) and FAK (sc-558) were from
Santa Cruz; antibody for phospho Y397-FAK (44624G)
was from Life technologies; paxillin (610052) antibody
was from BD Bioscience; antibody for Giantin (PRB-114C)
was from Covance. All antobodies were diluted according
to the manufacturer’s instructions. For immunofluores-
cences: fluorescent-conjugated secondary antibodies were
from Life Technologies (AlexaFluor A21202, A21203,
A21207), and diluted 1:1000. For western blot: HRP-
conjugated secondary antibodies were from GE Healthcare
(NA934V, NXA931), diluted 1:10000, and detected with
ECL system (Amersham).

Immunofluorescence

Cells plated on coverslips at low confluence or in
wound-healing assay (see below) were fixed in 4% PFA-
PBS or methanol for 10 min, permeabilized with 0.2% or
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0.5% Triton X-100-PBS (for MEF or MDCK, respect-
ively) and blocked with 3% BSA-PBS. Primary antibodies
were diluted in blocking solution and incubated for 1 h
at RT or ON at 4°C; subsequently, secondary antibodies

or conjugated-antibodies were diluted in blocking solu-
tion and incubated for 1 h at RT; after, DAPI-PBS solu-
tion was addes for 10 min at RT; coverslips were
mounted with Mowiol.
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Digital images of representative fields were taken
with Zeiss Axiophot or UltraView spinning disk con-
focal (PerkinElmer) microscope. Confocal Z-stacks
were acquired and reconstructed with Volocity software.

Migration assay

The experiment was performed as previously described
[9]. Briefly, after filling the lower chamber of Boyden
chambers with DMEM (with or without inhibitors),
fibronectin-coated polycarbonate 8 pm-pore filters
(Costar, Acton) were inserted, and 50000 cells in
DMEM were added above, in the upper chamber; after 3 h
(for fibroblasts) or O/N (MDCK/mIMCD) incubation cells
on the upper surface of the filter were mechanically re-
moved, while cells that pass to the bottom surface were
fixed with ethanol, stained with Giemsa dye (Sigma, GS)
and counted in 10 random fields per filter; fields have an
approximate diameter of 0.5 mm. Within the experiment,
each condition was plated in triplicate, and at least three
independent experiments with the same conditions were
performed.

Wound-healing assay

The experiment was performed as previously described
[9,18]. Briefly, cells were grown as high-density mono-
layers, scratched with a pipette tip, and after three
washes to remove detached cells, allowed to migrate for
the indicated time. For biochemical analysis: cells were
grown on dishes at least O/N, multiple scratches in two
perpendicular directions were performed, and after indi-
cated time cells were lysed with 1% Triton X-100-lysis
buffer. For immunofluorescences: cells were grown on
coverslips in multiwells, 3-5 scratches were performed,
and after indicated times cells were fixed in 4% PAF-PBS
or methanol for immunofluorescence. For front-rear po-
larity quantification: cells were stained by immunofluor-
escence for Golgi and nucleus and front-rear polarized
cells were counted: cells were considered polarized if
they have re-positioned Golgi apparatus in front of the
nucleus in a 120° angle towards the wound [18]. Each
condition was plates in triplicate, and 3 groups of at
least 100 cells were counted.

Colorimetric adhesion assay

Cells were plated at a density of 60-70% and the day after
resuspended and plated in 96 wells plates (70,000 MDCK
cells/well; 100,000 MEF/mIMCD cells/well), previously
coated with 1 pg/ml fibronectin in PBS for 1 h and
blocked with 1% BSA-PBS 30 min; cells were forced to
reach the bottom by spinning the plate (time 0). At differ-
ent indicated times (10 min, 15 min, 30 min, 1 h, 3 h, 6 h),
a wash with warm DMEM removed non-adherent cells,
while remaining cells were fixed and colored with 0.5%
crystal violet-20% methanol-H,O. Unbound dye was well
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washed and plate was left to dry hair. Equal amount of 1%
SDS-H>O was added to the wells, and the concentration
of the dye in the wells (proportional to the protein
content, so to cell number) was read at the absorbance
of 570 nm. Because PC-1 regulates cell size [33], we
normalized each value with the absorbance value of
unwashed cells 6 h after plating, representing 100%
plated cells. Also, to each value blank/water absorbance
value was substracted. Each condition was plated in
triplicate.

Nocodazole resistance assay

Cells were plated at low density and treated the day after
with 2 uM nocodazole (45 min for MDCK cells, 30 min
for MEF cells) to induce depolymerization of non-stable
microtubules. After 3 minutes extraction in Triton X-
100-PBS (0.2% for MDCK and mIMCD, 0.1% for MEF
cells) at RT to remove monomeric tubulin, cells were
fixed and immunofluorescence was performed for o-
tubulin. Cells that remained with microtubule filaments
were counted.

Nocodazole washout assay

The experiment was performed as previously described
[33]. Cells were plated at low confluence on fibronectin-
coated coverslips and treated the day after with 10 uM
nocodazole for 4 h to induce complete depolymerization
of microtubules. Nocodazole was washed and fresh
medium (with or without inhibitors) was added (time 0).
At different indicated time (15 min, 30 min, 1 h, 2 h) cells
were fixed with 4% PFA-PBS, and immunofluorescence
for actin, tubulin and paxillin was performed. Cells con-
taining focal adhesion (with at least 10 visible focal adhe-
sions) were counted; at least 100 cells for every condition
were counted.

Fluorescence Recovery after Photobleaching (FRAP) of
paxillin-GFP

Fluorescence Recovery After Photobleaching (FRAP) was
performed as described in [24] on an UltraVIEW VoX
spinning disc confocal system (PerkinElmer), equipped
with an EclipseTi inverted microscope (Nikon) provided
with a Nikon Perfect Focus System, an integrated FRAP
PhotoKinesis unit (PerkinElmer), a C9100-50 emCCD
camera (Hamamatsu) and driven by Volocity software
(Improvision, Perkin Elmer).

Cells were placed in an environmental microscope incu-
bator (OKOLab) set to 37°C and 5% CO, perfusion. All
images were acquired through a 60x oil immersion object-
ive (Nikon Plan Apo VC, NA 1.4). Cells were transiently
transfected, 48 hours before FRAP, with GFP-paxillin and
plated on glass 24 hours before imaging. From 2 to 5
bleach regions, corresponding to selected focal adhesions,
with a size of 4x2 pm were positioned on cells.
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Photobleaching was performed using fifty iterations with
the 50 mW solid state 488 nm laser set to the maximum
power. We calculated the efficiency of the bleaching
process as the difference between the mean fluorescence
intensity in the FA area before the bleach and at the first
post-bleach time point, normalized with respect to the
first. The percentage of bleaching efficiency calculated on
a sample of 20 FAs was 86,3 + 8,8 (mean value + SD). To
determine the recovery kinetics of peripheral adhesions,
post-bleaching images were recorded for 350 seconds: the
first 60 seconds with a speed of 1 frame/sec and then of
0.2 frame/sec. Quantitative analyses were performed with
Image] software: the mean intensity values over time were
measured, background subtracted and corrected for acqui-
sition photobleaching. A single exponential function was
used to fit the recovery curves of focal adhesions.

Statistical analysis

Differences between averages were established with
Student’s T-test or one way ANOVA analysis of vari-
ance, as indicated in the figure legends; Bonferroni’s
post-test was carried out for multiple comparisons.
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one selected FA from control MDCK? and PKD1-overexpressing
MDCK P12 cells.

Additional file 4: Movie S3. FRAP analysis of GFP-paxillin turnover in
control Pkd1*/* and in Pkd1™~ fibroblasts.

Additional file 5: Movie S4. FRAP analysis of GFP-paxillin turnover in
one selected FA from Pkd1™"* and Pkd1~’ fibroblasts.
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