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Abstract

The dengue virus affects millions of people every year worldwide, causing large epidemic

outbreaks that disrupt people’s lives and severely strain healthcare systems. In the absence

of a reliable vaccine against dengue or an effective treatment to manage the illness in

humans, most efforts to combat dengue infections have focused on preventing its vectors,

mainly the Aedes aegypti mosquito, from flourishing across the world. These mosquito-con-

trol strategies need reliable disease activity surveillance systems to be deployed. Despite

significant efforts to estimate dengue incidence using a variety of data sources and meth-

ods, little work has been done to understand the relative contribution of the different data

sources to improved prediction. Additionally, scholarship on the topic had initially focused

on prediction systems at the national- and state-levels, and much remains to be done at the

finer spatial resolutions at which health policy interventions often occur. We develop a meth-

odological framework to assess and compare dengue incidence estimates at the city level,

and evaluate the performance of a collection of models on 20 different cities in Brazil. The

data sources we use towards this end are weekly incidence counts from prior years (sea-

sonal autoregressive terms), weekly-aggregated weather variables, and real-time internet

search data. We find that both random forest-based models and LASSO regression-based

models effectively leverage these multiple data sources to produce accurate predictions,

and that while the performance between them is comparable on average, the former method

produces fewer extreme outliers, and can thus be considered more robust. For real-time

predictions that assume long delays (6–8 weeks) in the availability of epidemiological data,

we find that real-time internet search data are the strongest predictors of dengue incidence,

whereas for predictions that assume short delays (1–3 weeks), in which the error rate is

halved (as measured by relative RMSE), short-term and seasonal autocorrelation are the

dominant predictors. Despite the difficulties inherent to city-level prediction, our framework

achieves meaningful and actionable estimates across cities with different demographic,

geographic and epidemic characteristics.
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Author summary

As the incidence of infectious diseases like dengue continues to increase throughout the

world, tracking their spread in real time poses a significant challenge to local and national

health authorities. Accurate incidence data are often difficult to obtain as outbreaks

emerge and unfold, both due the partial reach of serological surveillance (especially in

rural areas), and due to delays in reporting, which result in post-hoc adjustments to what

should have been real-time data. Thus, a range of ‘nowcasting’ tools have been developed

to estimate disease trends, using different mathematical and statistical methodologies to

fill the temporal data gap. Over the past several years, researchers have investigated how to

best incorporate internet search data into predictive models, since these can be obtained

in real-time. Still, most such models have been regression-based, and have tended to

underperform in cases when epidemiological data are only available after long reporting

delays. Moreover, in tropical countries, attention has increasingly turned from testing and

applying models at the national level to models at higher spatial resolutions, such as states

and cities. Here, we develop machine learning models based on both LASSO regression

and on random forest ensembles, and proceed to apply and compare them across 20 cities

in Brazil. We find that our methodology produces meaningful and actionable disease esti-

mates at the city level with both underlying model classes, and that the two perform com-

parably across most metrics, although the ensemble method produces fewer outliers. We

also compare model performance and the relative contribution of different data sources

across diverse geographic, demographic and epidemic conditions.

Introduction

The incidence of dengue has risen dramatically over the past few decades. With an estimated

100–400 million infections each year, dengue threatens roughly 3.9 billion people in 128 coun-

tries and poses a growing health and economic problem throughout the tropical and sub-tropi-

cal world [1]. As climate change and urbanization intensify, the geographic range of dengue is

expected to spread even further [2]. Though the disease often manifests asymptomatically,

severe cases can lead to hemorrhage, shock and death [3]. In Brazil, which we examine in this

paper, dengue has been endemic since 1986, and is today considered to be experiencing a

“hyperendemic scenario,” in which both fatalities and severe cases are rising [4,5]. In the

decades since 1986 over 40% of all dengue deaths in the country have been taken place in the

Southeast region, but mortality from the disease has been reported in all but two of Brazil’s

states.

Health services have strained to address the burden of dengue morbidity and mortality, in

the regions where it is endemic, through a variety of means. Without a reliable vaccine or an

effective treatment to manage the illness in humans, one effort, promoted by the World Health

Organization (WHO), has aimed to achieve better early case detection. By focusing on improv-

ing epidemiological surveillance and attaining more timely identification of outbreaks, public

health officials hope that preventive measures to reduce the spread of the disease can be used

more effectively (vector control methods include, for example, the distribution of mosquito

nets). However, effective real-time tracking of the spread of dengue—let alone prediction—has

proven difficult. This is particularly evident in sprawling countries like Brazil, in which health

resources are spread thin over a vast range of localities in which dengue is endemic. Govern-

ments typically rely on clinic-based reporting for case counts, but in Brazil (as in other
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countries) this information is often lagged in time and subject to post-hoc revisions, thus limit-

ing the potential effectiveness of interventions [6,7]. Thus, the development of data-informed

tools for dengue surveillance which provide accurate case counts in real-time has increasingly

become a priority.

The transmission dynamics of dengue and the time scales at which they occur lend them-

selves to tracking patterns of infection. In tropical environments, Aedes aegypti and Ae. albo-
pictus mosquitoes can transmit dengue viruses within a week of infection. Once infected by a

mosquito, a person can become ill within a week, and show symptoms for up to 10 days (other

mosquitos can subsequently pick up dengue from an infected person within a 5-day window)

[8,9]. A range of external conditions have also been shown to affect dengue transmission.

Among these are precipitation, temperature and other seasonal weather patterns, which influ-

ence the spread of the disease by affecting the development and lifespan of the dengue-carrying

mosquitos [10,11,12,13,14]. Additional factors include the human population density in a

given town or region, as well as the degree to which various mosquito control efforts have

been implemented by local health authorities [15,16].

Harnessing these various factors, a large number of models have been developed over the

years in the attempt to forecast or nowcast dengue incidence (that is, to either predict future

case counts or to accurately estimate current counts in real time). These range from compart-

mental mechanistic models, based on a set of differential equations, to statistical autoregressive

models such as Seasonal Autoregressive Integrated Moving Average (SARIMA), which lever-

age both seasonal patterns and recent trends to produce disease estimates, to models based on

various machine learning techniques [17,18,19,20,21]. Over the past few years, search activity

on internet search engines has increasingly been explored as a potential data source for these

models. As internet access in the developing world increased, researchers have shown the

potential of applying user activity data from search engines and social media to make predic-

tive estimates of dengue incidence levels [22].

However, much of the work in this field has been done at the national or state levels, with

models estimating disease incidence over vast geographical swaths with highly varying local

conditions and rates of disease [23]. At the city level, smaller population sizes and fewer reli-

able data sources makes modelling disease rates more technically challenging, as previous

work at this resolution has shown [24]. Still, while national- and state-level estimates are no

doubt helpful, estimating incidence at the city-level can be uniquely useful to local and national

health administrators (as well as to international health organizations)–for example, in guiding

a more granular distribution of resources such as mosquito nets. In recent years, more

attempts have been made to fill this gap and models for estimating disease incidence at the city

level in a number of tropical countries have been developed [21,24]. In Brazil, a joint effort by

academics and health officials has produced “InfoDengue,” a system for dengue surveillance at

the city level which has been running since 2015 [25]. Using weather time-series data, case

reports and information from social networks, InfoDengue produces a risk map and dengue

incidence estimates.

Delays and inaccuracies in reported disease surveillance data are some of the key difficulties

in detecting and monitoring epidemics, and a number of approaches, such as Bayesian hierar-

chical modelling and constrained P-spline smoothing, have been used by researchers in the

attempt to account for these delays and the uncertainty they introduce [26,27,28]. Other efforts

to mitigate the effect of delays in reporting have sought to incorporate novel real-time data

sources, such as Twitter activity, in order to improve nowcasting model performance [24].

More recently, a comparative study has found that dengue incidence forecasts tended to do

well in situational awareness late in the season, whereas early season forecasts needed improve-

ment, and suggested the use of multiple-model ensemble approaches to improve accuracy, an
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approach that had previously shown promise [29,30]. When recently applied to data from

Vietnam, this “superensemble” approach to probabilistic seasonal dengue forecasting was

indeed shown to be more accurate, on average, than the models that comprised it [31].

Another approach shown to improve forecasting performance in urban areas, in both mecha-

nistic models and artificial neural networks, has been to incorporate human mobility data as

features [32].

Our contribution

We seek to estimate dengue activity at the city level up to 8 weeks ahead of the publication of

epidemiological reports, and to identify the degree to which different sources of data contrib-

ute to the performance of these models. In examining cities with a range of demographic and

geographic characteristics, as well as varying epidemic histories, we hope to point to the spe-

cific circumstances in which different data sources and the underlying models leveraging them

perform best—and thus to suggest which model set-ups be used in practice in the future, in

different epidemic scenarios. In order to achieve those goals, we extend methodological frame-

works previously used for flu surveillance. We assess the predictive performance of a collection

of models by comparing their estimates, produced in a strictly out-of-sample fashion (only

using information that would have been available at the time of prediction), with the subse-

quently observed dengue incidence. The underlying statistical methods we compare are both

regression-based (LASSO) and non-parametric ensembles (Random Forest), and the data

sources we leverage for these estimates are: (a) weekly incidence counts from prior years (sea-

sonal autoregressive terms), (b) weather measurements, and (c) real-time dengue-related Goo-

gle Search Trends data. We evaluate the performance in tracking dengue in 20 cities in Brazil

and highlight the conditions in which this framework achieves more accurate predictions. Our

results show that despite the difficulties inherent to predictions at the city level, our framework

achieves meaningful, actionable estimates, and highlights the conditions in which our models

perform most accurately. Finally, we find that our approach is capable of identifying whether

or not an upcoming season will experience an epidemic with accuracies above 75%, up to 8

weeks ahead of available reports.

Materials and methods

Data

We used three distinct sources of information for our study: (a) historical dengue incidence

from Brazil’s Ministry of Health, (b) Google search frequencies of dengue-related queries,

aggregated at the state-level, for the states in which the 20 chosen cities are located, and (c)

Weather data, obtained from the Modern-Era Retrospective analysis for Research and Appli-

cations, Version 2 (MERRA-2) [33].

We analyzed weekly dengue activity in 20 cities in Brazil: Aracaju, Barra Mansa, Barretos,

Barueri, Belo Horizonte, Eunápolis, Guarujá, Ji Paraná, Juazeiro do Norte, Manaus, Maran-

guape, Parnaiba, Rio de Janeiro, Rondonópolis, Salvador, Santa Cruz do Capibaribe, São Gon-

çalo, São Luı́s, São Vicente, Sertãozinho, and Três Lagoas. We chose these Brazilian cities

based on several criteria. First, they all had populations over 100,000 by July 2016 (the end of

the time range we examined) and varied widely in population size above that threshold. Sec-

ond, the cities were all chosen to be “dengue endemic” locations, experiencing between 7 and

10 epidemic years between 2001 and mid-2016 (following the definition of the Brazilian Minis-

try of Health, an epidemic year is one in which the number of confirmed cases of dengue fever

exceeds 100 per 100,000 persons [34]). Finally, they were chosen from a wide geographic range

of 13 different states in Brazil and have a wide range of population densities, both of which are
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epidemiological factors known to influence disease dynamics. For the full summary of the

demographic and geographic characteristics of the different cities, see Table B in the S1 Text.

Epidemiological data

Weekly dengue case counts from January 2010 to July 2016 were obtained from the Ministry

of Health of Brazil directly. We confirmed that the ministry-reported annual totals, which are

based on a combination of PCR testing and syndromic diagnosis by local physicians and other

health practitioners, match the sum of case counts over each year at the state level (as can be

found on the DataSUS service). Nevertheless, this observable data from reported cases likely

underestimates the total number of cases, due to non-comprehensive testing, as well as cases

that were diagnosed but ultimately not reported. This effect might vary through time and

across different geographies.

Online search volume data

Weekly Google search frequencies for dengue-related queries were obtained from Google

Trends (www.google.com/trends) using the Google Health Trends API. The Google Trends

API was accessed using the gtrends-tools interface (https://github.com/fl16180/gtrends-tools).

The search terms were downloaded at the state-level, for the states in which each of the 20 cit-

ies is located (Google Trends data at the city-level are not currently available in Brazil).

For online search term selection, we initially sought to use Google Correlate (www.google.

com/correlate), which is designed to identify search terms correlating highly with a given time

series. This method has been used in the past with success [22]. However, since most of the

search terms returned by Google Correlate for our time series of dengue incidence were unre-

lated to dengue, and since it was discontinued in the course of our work (in December of

2019), we instead used the Google Trends (www.google.com/trends) tool to identify queries

which are highly correlated with the term ‘dengue’ (a feature enabled by the Google Trends

interface). In order to ensure the model was robust and generalizable, we ignored terms unre-

lated to dengue, and verified the terms with a native Portuguese speaker. The weekly aggre-

gated search frequencies of these terms were then downloaded within the time period of

interest. Importantly, since we intended the method to generalize to states and cities across

Brazil, we used the same terms for the 20 cities. The query terms are presented in Table A in S1

Text.

Weather data

Weather data were collected from MERRA-2 (Modern Era Retrospective-analysis for Research

and Applications). The MERRA-2 data are publicly available through the Global Modeling

and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. For each of the 20

cities, daily weather indicators from Jan 1 2000 to Dec 31 2016 were created, with the following

features: mean daily 2-meter air temperature (K), precipitation (mm), mean daily wind speed

(m/s), and 2-meter specific humidity (kg/kg, dimensionless). We calculated the total accumu-

lated rainfall in a day (mm) as the sum of hourly precipitation (kg/m2/hr, which is equivalent

to mm/hr) over the 24-hour period. These data were then aggregated into weekly reports, in

the range of dates between January 2010 and July 2016, to align with the epidemiological den-

gue incidence data.

The weather data were produced at a naive resolution of 0.5 x 0.625 degrees, which works

approximately to a ~50 square km grid cell. Attributing these data to a specific city, then,

involved overlaying the rectangular grid of weather data onto a spatial file outlining city

boundaries, and taking the weighted average of grid cells covering that city’s boundary. Given
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the modelled nature of the MERRA-2 data, the data are never missing (there is full temporal

coverage in the range of dates studied).

Methods

Our model draws on a range of data sources that have been used in the multivariate linear

regression modeling framework ARGO (AutoRegressive model with GOogle search queries as

exogenous variables), previously used to track flu incidence using flu-related Google searches

[35,36]. But the underlying machine learning methodology in our model differs fundamen-

tally, and we extend other aspects of previous models significantly. We introduce Random For-

est-based prediction in addition to previously tested L1-based (LASSO) regularized regression

models. This new model was used to combine information from historical dengue case counts

and dengue-related Google search frequencies, as well as weather data, with the goal of esti-

mating dengue activity at different time ranges ahead of the publication of official health

reports.

At a high level, our models are re-trained each week on data available at the time of predic-

tion in order to estimate an out-of-sample nowcast of dengue incidence for that week. The

weekly generated training sets consisted of a growing time-window which contained incidence

data from time points up to 8, 6, 3 or 1 weeks prior to the time of estimation. The minimal

time-window used for a single point prediction contained 52 weekly data points (a full year),

and the maximal time-window contained over 300, when estimating some of the final points

in our range (in mid-2016). This growing window approach allowed the model to constantly

improve its predictive ability by taking into account an ever-larger sample of the relationship

between internet search behavior, weather, and dengue activity. An alternative approach,

using a moving window of a constant size, proved to perform less well in most cases in our pre-

liminary analyses. The initial target training data thus consisted of the 80 weekly case counts

between January 1 2011 (the first point at which we had a full year of historical data) and June

30 2012, and this gradually expanding window of training data was used for point predictions

1, 3, 6 and 8 weeks in the future. For completeness in our modeling approaches, we also incor-

porated information on dengue activity from one, two and three years before the time-to-pre-

diction, to test if long-term seasonal activity would improve performance as the literature has

suggested [15,29].

Model formulation and assessment

Our models were based on the assumption that when there are more dengue cases, more den-

gue-related searches will be observed. This is formalized mathematically via a hidden Markov

model, as explained in Yang et al, 2015 [35].

Assuming that epidemiological reports were available with different time delays ranging

from 1 to 8 weeks, we constructed models that would only have access to the most recent infor-

mation available at the time of prediction. Thus, our models incorporated historical informa-

tion in the form of autoregressive features from the prior 52 weeks, if available, or from a

reduced set depending on the assumed delay in the availability of epidemiological information.

In other words, taking J to be the number of weeks for which we incorporate incidence data as

autoregressive features, we defined four different set-ups: J8 = {8, 9,. . ., 52}, J6 = {6, 7,. . ., 52}, J3

= {3, 4,. . ., 52}, J1 = {1, 2,. . ., 52}. For J8 the assumed delay in the receipt of epidemiological

reports is 8 weeks, for J6 the assumed delay is 6 weeks, and so on. These choices of J capture

the influence of short-term fluctuations, which has been shown to be strongly predictive for

dengue case counts [26,28].
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The effect of long-term seasonality is also considered, implicitly and explicitly, by the inclu-

sion of our expanding training window strategy, which incorporates new training samples as

more data are collected every week, and by explicitly including as predictors weeks 78, 104,

and 156 whenever they were available (the case counts 1.5, 2 and 3 years before the point in

time being estimated). Finally, we define K as the set of non-autoregressive features being used

in a given model set-up, which includes Google Trends data and weather data.

Model parameter estimation

LASSO regression. The Least Absolute Shrinkage and Selection Operator (LASSO) is a

linear regression technique that minimizes the residual sum of squares subject to a L1 norm.

At a given time t, we estimate the log-transformed case counts yt, yt = log(ct + 1), to be

yt ¼ b0 þ
X

j 2J

ajyt� j þ
X

k 2K

gkxk;t þ �t; �t � N ð0; s2Þ

where αj and γk are the estimation coefficients for yt−j, the observed dengue counts j weeks

before the time t for which counts are being estimated, and xk,t, a given non-autoregressive fea-

ture xk (such as a weather measurement or google trends search term) being used at time t in a

given model set-up. μy is an intercept term and �t is the normally distributed error term. The

L1 norm is a regularization technique that imposes a constraint over αj and γk, making the

sum of the absolute value of the linear coefficients to not exceed a specific value (this value is a

hyper-parameter, and is found via 5-fold cross validation).

As LASSO is a linear model, the coefficients associated with each feature are highly inter-

pretable. L1 regularization also performs feature selection, zeroing out coefficients of features

that contribute little to the predictions for each time window.

Random forests. Random Forests are a classification and regression method based on

decision trees, models which can be used to approximate complex non-linear functions via

simple partitions of the feature space. However, large and complex decision trees are prone to

overfitting and high variance. This can be amended by using Random Forests, a form of bag-

ging (“bootstrap aggregating”) in which multiple trees are trained on random samples of the

training data—such that for a given input, the output is the averaged output of those trees

[37,38]. To ensure the ensemble of decision trees is independent, for each split of each tree a

random subset of predictors P’ is selected from the full set of predictors P. Finally, Random

Forests have the advantage of being relatively interpretable, as widely accepted methods exist

for calculating the relative importance of predictors in a “trained” forest (see for example

[39]). Still, they are not as intuitively interpretable as simple decision trees or linear models, in

which one can more explicitly infer how the response variable changes in response to specific

changes in features X.

All statistical analyses were performed with Python version 3.6.4 using Jupyter notebooks,

using the statistical and machine learning libraries NumPy, Pandas, and Scikit-Learn. For both

the LASSO regression and random forest-based models, the hypermeters (such as the alpha

constant for LASSO or the maximum depth of the random forest) were set to the default values

in the Scikit-Learn library, which were found to perform most consistently across our

experiments.

Benchmark models and feature sets

To our knowledge, few previous attempts were made to forecast or “nowcast” dengue inci-

dence at the city level in Brazil. One such effort, which harnessed data from Twitter to make

estimates at both the country and city levels, found that tweets were useful for both forecasting
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and nowcasting dengue cases at the city level, though the association between the two was not

as strong as at the country level [24]. Another such study focused on applying time-series anal-

ysis comparatively between two particular cities, Recife and Goiania, which have populations

of a similar size [40]. The Brazilian health authorities themselves typically release case counts

2–4 weeks after the fact, and frequently correct these figures substantially weeks after the initial

publication. Thus, there was no clear external baseline with which to compare our results.

To evaluate performance with different assumptions about the availability of data and the

relative contributions of various features, we constructed a number of internal benchmarks.

First, we compared four different feature sets from our data sources: one solely with Google

Trends data (which we label GT), a second solely with autoregressive data (AR), a third which

included both (AR + GT), and a fourth that also took into account the weather data of each

week and the week prior to it (AR + GT + W). In this way, we could assess the impact of each

of the data sources at predictions with different models from different time horizons.

Second, we compared our two statistical methodologies, regression-based (LASSO) and

non-parametric ensemble (Random Forest), and assessed how they performed relative to one

another across the different feature sets and from different time horizons. In particular, we

assessed the random forest model against the regression methodologies, which have been

much better studied in the context of disease incidence nowcasting applications. We evaluated

which models and which data sources perform best at each time point with each methodology,

while also summarizing performance across these set-ups in order to determine which meth-

odology and feature set were most robust, and which led to the strongest performance across

the board (see Table 1).

Model assessment

We generated model estimates over the period between January 2011 and July 2016 with all of

our models for each of the 20 cities, as selected following the previously described procedure.

We used the following metrics to assess the performance of our models: root mean square

error (RMSE), relative RMSE (R-RMSE), the R-squared coefficient of determination (R2) and

the Pearson correlation coefficient. These were computed for the entire prediction period,

over weekly intervals.

For each model, we also tested four variants based on simulating how recently the last offi-

cial dengue case count report was received (denoted as 1, 3, 6, and 8 weeks before the “cur-

rent,” predicted dengue report). Since the time delay between official case count reports is

variable, it is important to assess how robust the models are to varying availability of case

count data, which were input into the models as autoregressive features.

We compared the statistical methodologies and varying features sets we used to a “naïve”

approach, which served as a baseline. This approach took only the time series data into

account, and trained a linear regression model on the most recently available points in time,

for each of the four assumptions on the availability of real data. This was done across all 20 cit-

ies, averaged, and compared to the summary statistics for both the random forest and LASSO-

based models (see Table 2 for summary and comparison, and Table D in the S1 Text for city-

level performance of the baseline model).

Finally, to analyze more fully the long-term influence that historical dengue activity has on

the future dynamics of outbreaks, we compared our selected AR model with an enhanced AR

model, which included additional seasonal autoregressive features characterizing historical

dengue activity (occurring up to 3 years in the past). Our results, which can be seen in Fig A

and Table C in the S1 Text, were effective in some cities but not in others, and so were not

incorporated into the final model.
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Utilizing dengue activity point estimates to predict an incoming epidemic

in Brazil

Building on the primary model for nowcasting real-time dengue incidence, we also tested our

ability to predict, as a binary task, whether or not an epidemic would occur as a dengue season

unfolds. More specifically, for each of the 20 cities, we assessed whether the cumulative num-

ber of dengue cases (that is, both the available reported epidemic observations and the disease

estimates produced by our models) crossed a specified threshold value, referred to as the epi-

demic threshold, on a weekly basis. As the assumed delay in the availability of observed epide-

miological information is up to 8 weeks, we substituted the 8 most recent missing weekly time

points using our dengue point-estimates, and aggregated them along with the observed,

Table 1. Performance of dengue incidence prediction models from different time horizons, for the time period between January 2011 and July 2016, in the city of

Barra Mansa, State of Rio de Janeiro, Brazil. Each time horizon is examined across all four possible features sets: autoregressive terms alone (AR), autoregressive terms

together with Google Trends data (AR+GT) and with weather data (AR+GT+W), as well as google trends data alone (GT). Numbers in bold represent the best perfor-

mance for a given model and autoregressive lag across each of the metrics. This corresponds to the lowest value for the RMSE and relative RMSE metrics, and the highest

value for the R^2 and Pearson correlation metrics.

Model Reporting Delay Features RMSE Relative RMSE R^2 Pearson Correlation

Lasso Regression 8 weeks AR 28.425 0.897 0.009 0.188

GT 23.606 0.745 0.317 0.563

AR+GT 23.828 0.752 0.304 0.555

AR+GT+W 24.67 0.778 0.254 0.505

6 weeks AR 26.65 0.845 0.122 0.355

GT 23.546 0.746 0.315 0.562

AR+GT 22.615 0.717 0.368 0.608

AR+GT+W 23.039 0.73 0.344 0.587

3 weeks AR 19.264 0.615 0.536 0.733

GT 21.581 0.689 0.418 0.649

AR+GT 18.859 0.602 0.556 0.752

AR+GT+W 18.789 0.6 0.559 0.753

1 week AR 12.485 0.4 0.804 0.897

GT 20.229 0.649 0.485 0.703

AR+GT 12.259 0.393 0.811 0.901

AR+GT+W 12.222 0.392 0.812 0.901

Random Forest 8 weeks AR 26.382 0.832 0.146 0.508

GT 21.061 0.664 0.456 0.68

AR+GT 23.355 0.737 0.331 0.596

AR+GT+W 22.514 0.71 0.378 0.631

6 weeks AR 24.625 0.781 0.251 0.591

GT 22.203 0.704 0.391 0.642

AR+GT 22.055 0.699 0.399 0.664

AR+GT+W 21.154 0.671 0.447 0.678

3 weeks AR 18.332 0.585 0.58 0.776

GT 21.07 0.673 0.445 0.676

AR+GT 17.613 0.562 0.612 0.793

AR+GT+W 19.354 0.618 0.532 0.749

1 week AR 11.047 0.354 0.846 0.92

GT 19.408 0.622 0.526 0.729

AR+GT 11.027 0.354 0.847 0.924

AR+GT+W 11.844 0.38 0.823 0.91

https://doi.org/10.1371/journal.pntd.0010071.t001
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available data points so as to increase our ability to predict a potential epidemic breakout every

week. Specifically, if the cumulative number of cases for a given time interval te exceeded the

epidemic threshold value, we labelled the interval as epidemic. If it did not, we labelled it as

non-epidemic. If the model, using our substituted point estimates, successfully predicted an

epidemic within a dengue season as defined by the cumulative official case counts, we consid-

ered that season as a true positive. If the model did not predict an epidemic during all its

weekly assessments and this remained consistent with the official epidemiological data, we

considered that case a true negative. We generated the binary classification dataset by dividing

the historical dengue activity time-series of each city into 52-week time intervals. These time

intervals empirically center the high dengue activity periods, and keep the inter-outbreak

activity (seasons with low dengue activity) at the start and the end of each interval. For each

time interval, the cumulative dengue activity was calculated: from 0 in the first week, t0, to the

total number of cases at week 52, or t52.

Given that the distribution of epidemic and non-epidemic intervals depends on the selec-

tion of the epidemic threshold, we tested and repeated this task using a range of values consis-

tent with the standard thresholds reported in the literature, from 100/100,000 to 300/100,000.

Results

When assuming short delays in the receipt of real dengue case count reports, we found that

our models accurately estimate dengue incidence in 19 out of the 20 cities, across varying pop-

ulation sizes and local conditions. In the models in which the autoregressive case counts were

included as features, a delay of one week in the receipt of real data resulted in an average error

rate of under 0.5 relative RMSE. In this scenario, the model based only on Google Trends (GT)

features underperforms relative to the ones in which autoregressive data were included, with

performance around 0.85 in relative RMSE (see Figs 1 and 2).

When longer delays in the availability of epidemiological data are assumed, the LASSO-

based model slightly outperforms the Random Forest-based models, as accounted for by the

median performing of the 20 cities, and the best-performing feature set is GT. This advantage

narrows in scenarios which assume shorter delays, of 1–3 weeks in advance, in which cases the

Table 2. Mean performance of the baseline dengue incidence prediction model across all cities, for the time period between January 2011 and July 2016. The

approach, a linear regression applied to the most recently available data points, is assessed across all four assumed delays in the reporting of epidemiological information,

and compared with the random forest and LASSO-based approaches (with the AR+GT feature set). Numbers in bold represent the best performance for a given model

and autoregressive lag across each of the metrics. This corresponds to the lowest value for the RMSE and relative RMSE metrics, and the highest value for the R^2 and

Pearson correlation metrics.

Reporting Delay Model and Feature Set RMSE Relative RMSE R^2 Pearson Correlation

8 weeks Baseline -3.201 1.333 153.500 0.175

Lasso, AR+GT 23.828 0.752 0.304 0.555

Random Forest, AR+GT 23.355 0.737 0.331 0.596

6 weeks Baseline -1.054 1.135 127.146 0.372

Lasso, AR+GT 22.615 0.717 0.368 0.608

Random Forest, AR+GT 22.055 0.699 0.399 0.664

3 weeks Baseline -0.406 0.916 85.878 0.677

Lasso, AR+GT 18.859 0.602 0.556 0.752

Random Forest, AR+GT 17.613 0.562 0.612 0.793

1 week Baseline 0.649 0.483 39.984 0.870

Lasso, AR+GT 12.259 0.393 0.811 0.901

Random Forest, AR+GT 11.027 0.354 0.847 0.924

https://doi.org/10.1371/journal.pntd.0010071.t002
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two underlying methodologies tend to perform comparably. The Random Forest-Based

model, however, is more robust to changes in features and assumptions about the availability

of real-time epidemiological data. It also tends to produce fewer outlying, extreme values,

resulting in better mean performance, even when longer delays are assumed (see Figs 1 and 2

and Table 1). Both approaches outperform the baseline method we used, which applies a linear

regression model to the most recently available real case counts, across all time horizons—but

the difference is particularly pronounced in scenarios which assume longer delays (8 and 6

weeks, and see Table 2).

As assumed delays in the availability of epidemiological data grow smaller, performance

improves across the board, with lower RMSE and higher Pearson correlation observed in all

models. For predictions that assume very short delays in the availability of epidemiological

data, short-term and seasonal autocorrelation were key to improving estimates and captured a

substantial amount of dengue variability. For predictions that assume longer delays, the real-

time Google Search Trends data captured the most substantial amount of dengue variability.

To highlight these effects, we examine a number of cities in the Figs below, and focus on the

model that tended to be most robust across different feature sets: the underlying RF methodol-

ogy, with AR + GT feature set. In Fig 3, we show nowcasts in four cities using this model: Sao

Luis, Belo Horizonte, Barra Mansa and Maranguape. These cities were chosen based on their

Fig 1. Performance across cities, as measured by Pearson Correlation and Relative RMSE. The colour of each box indicates the feature set used, and the x-axis

notes the assumed delays in the receipt of epidemiological information. Each box shows the interquartile range of the metric for a given set-up (of feature set, assumed

delay, and underlying model), while the whiskers show the rest of the distribution. Points beyond the whiskers in either direction are determined to be outliers.

https://doi.org/10.1371/journal.pntd.0010071.g001
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different population sizes, peak epidemic rates, and weather patterns, and so demonstrate the

comparative behaviour of the model across this range of demographic and geographic charac-

teristics, as well as their epidemic histories (see Table B in S1 Text for specific demographic

and geographic statistics in each of the 20 cities).

To highlight performance at a more granular level and to allow comparisons between the

different metrics, feature sets and the availability of epidemiological data, we focus on one of

these, the city of Barra Mansa in the State of Rio de Janeiro. Barra Mansa was chosen because

its density, area and population size are all close to the median of the 20 cities, and because its

performance metrics and changes in the relative importance across model set-ups demonstrate

some of the trends observed elsewhere (see Table 1). Data from all 20 cities are available at this

resolution in the S2 Text.

We also use the example of Barra Mansa to show the changes in the relative importance of

different predictors over time (see Fig 4). We observe that with an assumed delay of 8 weeks in

the receipt of epidemiological data, Google search trends data tended to capture the greatest

amount of variability, with some small amount also captured by some of the weather and auto-

regressive terms (Fig 4, left). With an assumed delay of 1 week in the availability of

Fig 2. A comparison of Random Forest- and Lasso-based model performance. The mean is taken across the

different cities, with the fill range of delays in availability of epidemiological information (from eight weeks, AR8, to

one week, AR1) and the different feature sets (AR, GT AR+GT, AR+GT+W) shown.

https://doi.org/10.1371/journal.pntd.0010071.g002

PLOS NEGLECTED TROPICAL DISEASES Predicting dengue incidence at the city level using internet-based data sources

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010071 January 24, 2022 12 / 21

https://doi.org/10.1371/journal.pntd.0010071.g002
https://doi.org/10.1371/journal.pntd.0010071


Fig 3. Dengue case estimates for 4 cities with different characteristics, as the delay in receipt of epidemiological data grows

shorter.

https://doi.org/10.1371/journal.pntd.0010071.g003
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epidemiological data, however, most of the variability is captured by the first few autoregres-

sive terms (Fig 4, right).

In our analysis of the determinants of success of nowcasting at the city level, we find that

long-term estimates tend to be more accurate when a city’s population is larger and when past

dengue incidence has been relatively regular (see Fig 5, top right). We also plot success against

the size and location of the city in Brazil (Fig 5, top left), and show that the decrease in predic-

tion error, as the assumed delay in real-time information grows smaller, is consistent across

the 20 cities (Fig 5, bottom).

Finally, in the binary prediction task, in which we tried to predict in advance whether or

not an epidemic would occur as a dengue season unfolds, we generated retrospective out-of-

sample predictions using both the LASSO and the Random Forest methodologies, between

October 5 of 2012 and July 31 of 2017, for the 20 cities in Brazil. The total number of time

intervals generated were 60 (3 per city). To measure our model’s ability to predict an epidemic

year, we utilized the standard definition of accuracy. We also measured the time difference Δt

(in number of weeks) between tp, the week when our models nowcasted a dengue epidemic,

and te, the week in which the cumulative cases cross the epidemic threshold value. Δt is only

measured for true positives (that is, in cases where tp occurred earlier than te). These metrics

are summarized in Fig B in the S1 Text. Fig C in the S1 Text shows the distribution of epi-

demic and non-epidemic time intervals as a function of the epidemic threshold value. As the

value of the epidemic threshold rises, the number of intervals classified as epidemic reduces,

given the number of cumulative cases does not cross the threshold anymore.

Fig 4. Change in the relative importance of different predictors over time. Barra Mansa, Random Forest model

with full feature set (autoregressive epidemiological data, google trends data, and weather data). Left: An assumed

delay of 8 weeks in the availability of epidemiological data. Right: An assumed delay of 1 week in the availability of

epidemiological data.

https://doi.org/10.1371/journal.pntd.0010071.g004
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Our results for the binary task show that our models are capable of successfully predicting

epidemics, reaching accuracy values between .75 and .90, depending on the methodology and

the type of information incorporated in the model. Lasso models achieve this with assumed

delays in availability of “observed” epidemiological information of 5 to 7 weeks, whereas Ran-

dom Forest-based models perform well with an assumed delay of up to 9 weeks. The choice of

epidemic threshold does not affect these results.

Discussion

Despite the difficulties inherent to predictions at finer spatial resolutions, our results show that

our models and methodological framework for nowcasting dengue succeed at the city level

and achieve accurate estimates. The conditions in which a given model set-up and chosen set

of data sources perform best varies. While the LASSO-based model has a slight edge at predic-

tions that assume a longer delay in the availability of epidemiological information, the random

forest-based model produces fewer estimates with extremely high or low values, and can thus

be considered more consistent and robust than the LASSO-based model (see and compare

Fig 5. The determinants of success of nowcasting at the city level (random forest model, AR+GT feature set). Top

left. City success, plotted on spatial map. The diameter of the circles reflects the size of the population, and a darker

shade of blue indicates greater accuracy. Top Right. The effect of population size and dengue signal consistency on

accuracy of predictions (averaged across the 20 cities). Bottom. Change in prediction accuracy (relative RMSE) as the

delay in the receipt of epidemiological data grows shorter. The top-left figure was produced using Flourish, an online

data visualization service, and the base map sourced from the Brazilian Institute of Geography and Statistics (https://

www.ibge.gov.br/).

https://doi.org/10.1371/journal.pntd.0010071.g005
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relative RMSE scores in Fig 1 and in Fig 2). One possible reason for this is that tree-based mod-

els like random forests can capture non-linear relationships, which likely exist between at least

a few of our features and dengue incidence, the outcome variable. In the binary task, our out-

break detection addresses the concern that a simple majority-class predictor could achieve

very high accuracy, by strongly outperforming the baseline, and see Fig B in the S1 Text (in

which the baseline is plotted as the grey line).

The predictive power of the different sources of information (epidemiological data, Google

search data, and weather) used in this study varied depending on the expected delays of epide-

miological data reports. For predictions that assume very short delays in the availability of epi-

demiological data, short-term and seasonal autocorrelation were key to improving estimates

and captured a substantial amount of dengue variability while reducing the error rates, as mea-

sured by the R2 and relative RMSE metrics, respectively. For predictions that assume longer

delays, the real-time Google Search Trends data captured the most substantial amount of den-

gue variability (see Fig 4). This is intuitively to be expected: the longer the span of time that has

elapsed since observed data was available, the more useful the real-time proxy of Google Search

Trends data becomes. Google Search Trends data also proved to be extremely effective in cases

of sudden outbreaks, particularly when the scale was large enough. Such was the case with Bar-

ueri, a city in the state of São Paulo, in which there was a sharp spike in the number of dengue

cases in 2015, well above peak incidence in previous years. In this instance, the feature set con-

taining Google Search Trends data alone (GT) led to the most accurate performance at all time

horizons, even when the assumed delay of epidemiological data was just a single week (see S1

Text, appendix).

Weather data did not appear to have contributed significantly to the performance of the

models (in the AR+GT+W set-up). This accords with previous work conducted on dengue

case estimation, at the state level in Mexico, in which there was no significant uplift when tem-

perature, relative humidity and precipitation were included in addition to the autoregressive

terms [17]. It seems, then, that for productionized autoregressive models deployed in real-

time, the inclusion of weather data in addition to the case data and Google Trends data might

not warrant the additional investment, if obtaining that data is in some circumstances is com-

plex or expensive (this does not hold, of course, for models that are primarily dependent on cli-

matic variables).

As noted above, we found that long-term estimates tend to be more accurate when a city’s

population is larger and when past dengue incidence has been relatively regular (See Fig 5, top

right). As Google Search Trends data can only be collected at the state level in Brazil, it is rea-

sonable that its relevance to nowcasts made at the city level is higher in cases where the exam-

ined city’s population makes up a significant proportion of the state’s population, as in Rio de

Janeiro—or else in cases where different cities in the state exhibit similar dengue incidence pat-

terns. We also note that within a given city and model set-up, performance varies as the train-

ing window grows larger. Generally speaking, a longer training window is associated with an

improvement in performance accuracy. But if outbreaks later in a city’s epidemic history are

significantly weaker than those which occurred before, the estimates sometimes overshoot,

appearing to have “overlearned” the association between features and target from the previous

outbreaks. Additionally, as we can observe in Fig 2, the estimates sometimes appear to lag the

real counts, especially when predicting the first outbreak in a city’s examined epidemic history.

As we might expect, this effect is more pronounced when the assumed delay in the receipt of

real data is longer, since the beginning of an outbreak would only be detected belatedly—and

only partially compensated for by the Google Search Trends data. Finally, though in some cit-

ies with certain characteristics the models perform better than in others, they tend to adapt
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quite well to the specific patterns of each city (lags, the size of outbreak peaks, etc.) after a

period of training on a city’s past incidence data.

Our framework contributes to the growing literature on infectious disease prediction mod-

els. Our results indicate that the lessons learned from dengue nowcasting in data-rich environ-

ments and at the country level can be generalized and tailored to track dengue in

environments with significantly smaller populations, poorer data and weaker disease signals.

These insights can be leveraged towards future improvements in city-level nowcasting of infec-

tious disease incidence.

On the whole, then, by accurately assessing suspected disease trends ahead of traditional

disease surveillance systems—both in estimating case counts and in the binary task, in which

performance significantly outstripped the baseline—this work can enable decision-makers to

better plan for and implement dengue mitigation policies. These include scheduling education

and mosquito control programs, informing the optimization of medical supply chains, and

warning of outbreaks that are expected to be particularly severe. In particular, we hope the

insights into the varying importance of features and the relative performance of model classes

will be useful, as these vary in different circumstances—from the temporal offset at which real

data is received by health professionals, to the variance in the geographic and demographic

characteristics of the location at which incidence is being estimated.

Further work

One epidemiological feature to be included as input in future models is dengue incidence in

proximate cities. Recent work has shown that certain geographical regions of Brazil have

become increasingly vulnerable to dengue following improvements in their transportation

infrastructure [4]. Modelling this effect—for example, with cellular data, estimated volume of

transportation, or simply with distance metrics—could improve estimates further, particularly

for regions in which past observed case counts are less accurate or entirely unavailable. With

the regression-based LASSO approach, one naïve assumption implicitly to the model was that

the relationship between the features and outcome variable is linear. This assumption is

unlikely to be accurate (certainly across all features), thus hampering model performance. But

it could be that adding interaction and polynomial terms (which could then be narrowed

down with a method like PCA) would improve LASSO performance, making it as robust as

the Random Forest-based model, which does not assume linearity.

An additional promising direction is to design a composite model. This would take into

account the finding that different feature sets, as well as the different underlying methodolo-

gies (LASSO and RF), led to the best performances in different cities and from different time

lags. A composite model would incorporate these different sub-models and feature sets, and

make use of them at the most fitting instances based on findings from the training data (for

example, Google Search Trends data could be used as the feature set when making estimates

that assume longer delays in the availability of observed case data). This could be constructed

either explicitly based on rules or implicitly, and see the previously cited work on “superen-

sembles”. To our knowledge, while “superensembles” have been used to estimate dengue inci-

dence at the province level (in Vietnam), they have yet to be applied at the city level [29,30].

Finally, more refined hyperparameter tuning can lead to significant increases in perfor-

mance for any one of the models and features sets set out above. There is a growing literature

on efficient hyperparameter tuning techniques with ever-lower runtimes, and code libraries in

which they are implemented could be easily deployed to increase the above models’ accuracy

and reduce their error rates (including on custom metrics).
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Limitations

The weather data were produced at a naive resolution of 0.5 x 0.625 degrees, which works

approximately to a ~50 square km grid cell. Attributing these data to a specific city, as

described above, involved overlaying the rectangular grid of weather data onto a spatial file

outlining city boundaries, and taking the weighted average of grid cells covering the city

boundary. Thus, there are some data fluctuations that come from grid cells that partially cover

the ocean, or different altitudes/mountains. More generally, the approximations in data mod-

elled and assimilated from MERRA tend to lead to less noise than weather station data (pre-

cisely because it is modelled)–so there are tighter but potentially less accurate oscillations in

the time series.

Google Search Trends data are currently only available at the state level in Brazil. Were they

to be made available at finer spatial resolutions, such as the city level (as they currently are in

the United States) it is expected that performance would improve. This effect is likely to be par-

ticularly significant when making predictions that assume greater delays in the availability of

epidemiological data, in which the Google Search Trends data were the most important fea-

tures driving the forecast. Additionally, the process of selecting the Google search terms being

tracked can be fine-tuned in the future, resulting in features that account for more of the vari-

ability in dengue incidence.

It is likely that across the different cities we examined, different data collection methods are

practiced, and that local public health officials have also introduced various health policy inter-

ventions. Both of these will have affected the consistency of the data across the 20 cities we

examined, and will have introduced a degree of uncertainty. More generally, given that many

cases are asymptomatic and that many symptomatic cases never get officially reported means

that the “true” data are limited in scope to begin with. Thus, a central assumption of nowcast-

ing studies such as this is that the reported, official dengue case counts (whether at the city

level or at other resolutions) are at least a useful approximation of the underlying “true” inci-

dence—and thus that estimating these reported counts is worthwhile.

Finally, it should be noted that the data we use have been subjected to “backfill.” That is, the

dengue counts for a given week on which we trained our models are likely to have been sub-

jected to post-hoc adjustments after they were initially reported in real-time. As such, this is a

retrospective analysis, in which we use the finalized data, due to lack of availability of the origi-

nal data. In our experience, though, machine learning methods tend to learn patterns of miss-

ingness (as shown, for example, in flu forecasts), and so we expect it is likely that our models

will be able to adapt to making real-time predictions based on non-final data which has not

been back-filled [35].

Supporting information

S1 Text. Supporting information text. This file includes: (1) Query terms used for Google

Trends in Table A; (2) Characteristics for each of the 20 chosen cities in Table B; (3) Addi-

tional information and illustrations of the binary prediction task and improvements using his-

torical seasonality, in Table C and Figs A, B and C; (4) Performance of the baseline approach,

a linear regression which uses only the most recently available data points as features, in

Table D; (5) Violin plots of performance across all cities, broken down by base model (LASSO

or Random Forest), feature set (AR, GT, AR+GT, AR+GT+W), and delay in the receipts of

epidemiological information, in Figs D1 and D2; (6) Appendix: Plots of comparative Lasso

and Random Forest performance for all 20 cities, across all feature sets and AR lags.

(ZIP)
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S2 Text. Measures of nowcasting performance across all models, features sets, and cities.
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