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ACE2 at the centre of COVID-19 from paucisymptomatic infections to severe pneumonia

Dear Editor,

We have read with extreme interest the recent article by Favalli
et al. [1] published in Autoimmunity Reviews and the following cor-
respondence by Caso et al. [2].

We agree with both groups that the current knowledge on the pa-
thogenesis of COVID-19-induced pneumonia resembles very closely
autoimmune/autoinflammatory syndromes, thus supporting the at-
tempts to use conventional and biological Disease Modifying Anti-
Rheumatic Drugs.

However, as correctly highlighted by both groups, there are a
number of open questions. For example, as stated by Caso et al. [2], it
remains to be established whether genetic predisposition can contribute
to the variability of clinical phenotypes, again pointing towards a si-
milarity between COVID-19 and autoimmune/autoinflammatory syn-
dromes.

Another important question is the identification of the triggers re-
sponsible for the development of lung damage and hyperinflammation
in the late phases of COVID-19.

A large amount of evidence points towards ACE2, the receptor used
by SARS-CoV-2, indicating that ACE2 could be the direct link between
SARS-CoV-2 infection and the development of lung injury and hyper-
inflammation.

1. SARS-CoV-2 and lung injury

One of the most peculiar features of COVID-19 is the development of
lung injury, potentially leading to Acute Respiratory Distress Syndrome
(ARDS) in a proportion of patients [3]. Pneumonia and ARDS typically
develop late in the course of infection, between 5 and 10 days from the
onset of symptoms [4]. This is similar to the triphasic pattern observed
during the SARS epidemic in 2003, caused by a virus of the same family
(SARS-CoV-1)[5]. Following an initial phase of viral replication and
cytolysis, characterized by fever and flu-like symptoms, there was a
second phase with worsening respiratory symptoms. Interestingly, this
corresponded to the onset of seroconversion and was found to be as-
sociated with reduced viral load [6,7]. Therefore, clinical worsening in
this phase cannot be explained by viral replication, but rather by the
exuberant host immune response [8]. Finally, up to 1/3 of the patients
progressed to a third phase, characterized by ARDS [9].

The new COVID-19 follows a similar triphasic clinical pattern, al-
though with a higher percentage of asymptomatic and pauci-sympto-
matic individuals [10].

Similarly to SARS, lung inflammation in COVID-19 has been com-
pared to the uncontrolled immune activation seen in haemophagocytic
lymphohistiocytosis (HLH) [11] or to the cytokine release syndrome

observed in cell-mediated cancer treatment [12] and sepsis [13].
In fact, the clinical picture in severe cases of COVID-19 includes

signs of immune system activation, such as high levels of CRP, ferritin
and IL-6 [14].

However, it has not been confirmed whether this is part of the host
response to ongoing viral replication. Importantly, continuous viral
shedding has been detected in COVID-19 patients with a negative
outcome (non-survivors) [14]. Nonetheless, we do not know whether
progression to ARDS is actually accompanied by active viral replication,
since there has been no quantitative assessment of SARS-CoV-2 viral
load. In SARS, for example, it was shown that progression to ARDS was
uncoupled from viral load [7].

Therefore, the link between viral replication and lung damage in
COVID19 remains elusive and the exact mechanisms responsible for the
development of lung damage have not been clarified.

Here, we will look into the evidence suggesting that ACE2, in ad-
dition to acting as receptor for the virus, could be directly involved in
the development of lung damage and hyperinflammation.

2. ACE2: more than a backdoor for viral entry?

SARS-CoV-2 binds to the Angiotensin Converting Enzyme 2 (ACE2)
via its spike protein [15,16]. Interestingly, SARS-CoV-2 was shown to
have a higher affinity for ACE2 than SARS-CoV-1, the virus responsible
for SARS [17]. Binding to ACE2 allows the virus to invade cells in the
oropharyngeal epithelia [18]. In addition to providing an entry door for
SARS-CoV-2, ACE2 could be also involved in the pathogenesis of
COVID-19, as it has been clearly implicated in the development of acute
respiratory distress syndrome [19].

As shown in Fig. 1a, ACE2 acts as a counterregulatory mechanism of
angiotensin II production by ACE. The latter is the target of ACE in-
hibitors, widely used anti-hypertensive medications [20]. Angiotensin
II, upon binding angiotensin receptor 1 (AT2R1), is responsible, among
other functions, for vasoconstriction. Accordingly, angiotensin receptor
blockers (ARB) are another well-known category of anti-hypertensive
medications.

In recent days, because of the possibility that treatment with ACE
inhibitors and ARB can increase ACE2 levels, concern has been raised
on the safety of these medications in patients with COVID-19. However,
such concerns have been disputed by scientific societies [21] and are
not corroborated by the current scientific evidence [22,23].

In fact, if anything, ACE2 has been shown to be protective in several
models of lung injury, including SARS-CoV-1-mediated lung injury
[19,24]. Indeed, angiotensin II, in addition to its pro-hypertensive
features, is able to activate various cells of the immune system [25],
including for example macrophages, inducing the production of
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proinflammatory cytokines such as IL-6 [26], TNFα and other pro-in-
flammatory cytokines [27]. Accordingly, angiotensin II has been linked
to the development of inflammatory lung injury [28]. Therefore, the
inactivation of angiotensin II by ACE2 can explain its protective effects
[24].

On the other hand, the binding of SARS-CoV-2 to ACE2 can explain
many aspects of COVID-19 pathogenesis [29].

As shown in Fig. 1b, when the virus interacts with ACE2 to gain
entry into the cells, the downregulation of ACE2 – either direct because
of viral binding or indirect because of cell lysis - removes the brakes
from angiotensin II, which in turn can induce the local activation of
immune cells. In the lungs, the targeting and destruction of ACE2+
cells per se could explain most of the catastrophic consequences of
COVID-19. In fact, when investigating ACE2 expression at single-cell
level, it was found that ACE2 is expressed by alveolar type II (AT2) cells
[30]. AT2 cells comprise only 5% of the alveoli but produce the sur-
factant, a factor essential to maintain lung elasticity, and, most im-
portantly, act as progenitors for AT1 cells, the latter covering 95% of
the alveoli and responsible for gas exchange. In other words, AT2 cells
can be considered as alveolar stem cells [31]. Thus, COVID-19 targets
and kills the lung regenerative pool. Depletion of AT2 cells and corre-
spondent surfactant deficit have been previously shown to be associated
with incomplete repair of injured alveolar epithelium and fibrotic ob-
literation [32], thus could also explain the development of lung injury
in COVID-19.

Interestingly, a further connection between ACE2 and pollution can
be proposed. In fact, an association with quality of air and SARS case
fatality has been reported in China [33]. In support of an additional link
with ACE2, Lin et al. have shown that ACE2 deficiency attenuates tissue
remodeling and injury repair in response to particulate [34]. Indeed,
most of the COVID-19 heavily affected areas at the moment (Wuhan,
North of Italy, New York) are known to have high levels of particulate
or other forms of pollution [35–38]. Taken together, these data would
suggest that quality of air in these areas could exacerbate an already
compromised clinical picture.

Overall, taking into account the above evidence, it is possible to

hypothesize the scenario depicted in Fig. 2. SARS-CoV-2 infects ACE2-
positive cells in the oral mucosa and lungs, including ACE2+ AT2 cells
in the alveoli. In young individuals, higher levels of ACE2 [39] and
ACE2+ cells, higher regenerative capacity and a strong immune re-
sponse lead to an effective viral clearance with little or no symptoms. In
older subjects, possibly with lower ACE2 levels, or in the presence of
comorbidities that can affect the angiotensin system, such as hy-
pertension [40], or impair the immune response, such as diabetes, the
slower viral clearance and sustained damage to ACE2+ AT2 cells goes
beyond the reparative capacity [41], causing lung inflammation, with a
high risk of precipitating into ARDS because of an uncontrolled in-
flammatory response. This is particularly true during seroconversion, at
around 7 to 14 days from the start of viral replication. At this time,
when macrophages and immune cells will be already primed by ele-
vated angiotensin II [25], high affinity IgG can cause additional Fc-
mediated activation of macrophages, as previously demonstrated for
SARS [42].

Although further investigations are needed to confirm this working
hypothesis and additional studies should dive into the mechanisms of
immune cell activation in the course of COVID-19, the current evidence
would suggest reviewing the approach to the management of COVID-
19, particularly in terms of applying the right therapeutics at the right
time. Accordingly, the presence of a “window of opportunity” for the
use of different classes of drugs in COVID-19 has been recently pro-
posed [43]. For example, the use of antivirals or neutralizing antibodies
is probably wrongly timed in the late pneumonia/ARDS phase, when
most of the damage could be independent from viral replication. Si-
milarly, therapies aiming at targeting ACE2 with blocking agents may
be equally detrimental, with the risk of worsening an already precarious
situation. Finally, the use of immunomodulatory drugs, albeit poten-
tially effective when targeting key mediators involved in ARDS, will act
on the final links in a much more complex chain of events, with a high
risk of being ineffective unless applied at the right time. On the other
hand, therapies to boost ACE2 activity or the lung regenerative capacity
could be particularly promising for the treatment of COVID-19 [44], as
previously described for SARS [45].

Fig. 1.. Angiotensin system and the development of lung injury in COVID-19. A) steady state in physiological condition; B) excess of angiotensin II signaling via
AT2R1 following downregulation of ACE2 because of SARS-CoV-2 infection results in immune cell activation and lung injury.
Abbreviations: ACE: Angiotensin convertin enzyme; ACE2: Angiotensin convertin enzyme 2; AT2R1: Angiotensin 2 receptor 1; AT2R2: Antiogensin 2 receptor 2
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