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Molecular characterization of two 
novel echovirus 18 recombinants 
associated with hand-foot-mouth 
disease
Haihao Zhang1,2, Yilin Zhao1,2, Hongbo Liu1,2, Hao Sun1,2, Xiaoqin Huang1,2, Zhaoqing Yang1,2 
& Shaohui Ma1,2

Human echovirus 18 (E-18) is a member of the enterovirus B species. To date, sixteen full-length 
genome sequences of E-18 are available in the GenBank database. In this study, we describe the 
complete genomic characterization of two E-18 strains isolated in Yunnan, China. Pairwise comparisons 
of the nucleotide sequences and the deduced amino acid sequences revealed that the two Yunnan E-18 
strains had 87.5% nucleotide identity and 96.3–96.5% amino acid identity with the Chinese strain. 
Phylogenetic and bootscanning analyses revealed the two E-18 strains had the highest identity with 
other several EV-B serotypes than the other E-18 strains in the P3 coding region, especially, 3B region of 
the Swine Vesicular disease virus (SVDV) strain HK70, indicated that frequent intertypic recombination 
might have occurred in the two Yunnan strains. This study contributes the complete genome sequences 
of E-18 to the GenBank database and provides valuable information on the molecular epidemiology of 
E-18 in China.

The genus Enterovirus, within family Picornaviridae, order Picornavirales, can be divided into 13 species: enter-
ovirus A–J, and rhinovirus A–C (www.picornaviridae.com), comprising more than 100 serotypes. Enterovirus 
B (EV-B) containing 63 serotypes consists coxsackieviruses B (CV-B1-6), CV-A9, echoviruses (E-1–7, 9, 11–21, 
24–27, 29–33) and enteroviruses named with digital serial numbers (EV-B69, 73-75, 77-88, 93, 97-101, 106-
107,110-113) and the simian enterovirus SA5 (www.picornaviridae.com/enterovirus/ev-b/ev-b.htm). EVs are 
small, single-stranded, non-enveloped and positive-sense RNA viruses. The EV genome consisting of approx-
imately 7,400 nucleotides (nt), contains a long open reading frame (ORF) flanked by a 5′-untranslated region 
(UTR) and a 3′-UTR1, 2. The 5′-UTR of EVs has an internal ribosomal entry site that drives translation initiation. 
The 3′-UTR, containing a long poly (A) stretch, is very important in RNA replication3, 4. The ORF encodes a 
polyprotein that can be processed into three polyprotein precursors: P1, P2, and P3. P1 encodes VP1–4 structural 
proteins. P2 and P3 encode 2A–C and 3A–D non-structural proteins, respectively5.

EVs infect about a billion people annually worldwide. Though the majority of clinical symptoms are 
asymptomatic or mild, such as fever, irritation, agitation, sore throat, headache, myalgia, vomiting, diarrhoea, 
hand-foot-and-mouth disease (HFMD) and others, a few patients may develop severe neurological syndromes as 
aseptic meningitis, acute flaccid paralysis (AFP), hypertensive heart failure (HHF), dilated cardiomyopathy and 
death5. Of these symptoms, the viruses of species EV-B are the most common viral cause of aseptic meningitis6–8.

Echovirus (E-18) belongs to species EV-B. The prototype strain (Metcalf) of E-18 was isolated in 1995 from 
a patient with diarrhoea9. Outbreaks of aseptic meningitis caused by E-18 have been frequently reported10–16. To 
date, except for the prototype strain, there are fifteen E-18 full-length genome sequences in the GenBank data-
base, isolated from the patients with meningitis or contact persons, respectively. In this study, we determined the 
full-length genome sequences of two E-18 strains (strain A83/YN/CHN/2016, and strain A86/YN/CHN/2016), 
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isolated in the Yunnan province of China in 2016 from two children with HFMD aged 5 and 4.2 years, respec-
tively. This is the first report of E-18 and its probable association with HFMD.

Results
Molecular serotyping and primary characterization. The isolates A83/YN/CHN/2016 and A86/YN/
CHN/2016 (abbreviated as A83 and A86) were recovered from human rhabdomyosarcoma (RD) cells. They can-
not produce a cytopathic effect in KMB17 human embryonic lung diploid fibroblasts (KMB17) and human lung 
cancer (A549) cell lines. Partial VP1 sequencing and molecular typing by the online genotyping tool17 showed 
that the serotype of the two isolates is E-18. In addition, complete VP1-coding region alignment revealed the two 
strains had 79.0–79.2% nt and 92.0–92.7% amino acid identities with E-18 prototype strain Metcalf (AF317694).

Complete genome analysis. The complete genomes of the two strains consisted of 7,404 and 7,399 
nt, respectively. They encoded a polypeptide of 2,192 amino acids. The coding sequences were flanked by a 
non-coding 5′-UTR of 745 nt and a non-coding 3′-UTR of 94 or 100 nt, respectively. The two Yunnan E-18 
strains shared 80.4% similarities in the complete genome and 95.4–95.7% similarities in the deduced amino acid 
sequence with the prototype strain Metcalf, there were 11-nt and 16-nt deletions at the 3′-end of their genomes, 
and 5 nt insertions and one nt deletion at the 5′-UTR, respectively. The overall base compositions of the strains 
A83 and A86 genomes were 28.3% A, 22.8% G, 24.9% C and 23.9% U, and 28.2% A, 22.9% G, 24.9% C and 24.0% 
U, respectively. Compared with other E18 strains, the nt sequences of non-structural regions were more variable 
(74.2–91.5%), while, the sequences of structural regions were highly conserved (91.3–98.3%). Strain A83 shared 
99.7% nt and 99.5% amino acid identities with A86 strain. A comprehensive comparison of different genomic 
regions of the nt sequences and deduced amino acid sequences of strains A83 and A86 with the E-18 prototype 
strain and other E-18 strains are shown in Table 1.

Phylogenetic analysis. The phylogenetic tree was conducted with 80 strains available in GenBank based 
on the complete VP1 sequences (Fig. 1). The 82 strains (including the two Yunnan strains) could be divided into 
five different genogroups (E-18:1-5). Except for 05430/SD/CHN/2005 (GQ329813), the other Chinese strains 
clustered together and belonged to genogroup E-18:5, which was also prominent epidemic strains worldwide.

Phylogenetic analysis of strains A83 and A86 with 377 EV-B strains available in GenBank database were per-
formed based on the other genomic regions respectively (Figs 2–5). In P1 capsid coding region, the Yunnan E-18 
strains only clustered together with other E-18 strains, consistent with the preliminary molecular typing results. 
However, in the P3 (or 3A, 3B, 3C  and 3D) regions (Figs 3 and 5), the two Yunnan strains did not form a lineage 
with E-18 strains, and grouped together with other EV-B serotypes such as Swine Vesicular disease virus (SVDV) 
strain HK70. For 3′UTR and P2 (or 2A , 2B and 2C ) regions (Figs 2, 3 and 4), the two isolates clustered together 
with one E-18 strain and other EV-B serotypes. Among these, the nt sequence of the 3B genomic region was the 
most homologous (93.5%) to the corresponding sequence of SVDV strain HK70. Thus, these results suggest the 
occurrence of one or more putative recombination events between the two E-18 Yunnan strains and other EV-B 
serotypes.

In addition, the VP1 nt and amino acid sequences were compared between the E-18 genogroups (Table 2). 
The average VP1 nt sequence divergence between the E-18 genogroups E-18-1, 2, 3, 4, and 5 was 18.6% (range: 
15.2–22.1%). However, the divergence was higher than the 14.95% divergence value assigned for EV-A71 subge-
notyping18. This further confirmed that the E-18 sequences segregated into five distinct genogroups.

Nucleotide identity (%) [Amino acid identity (%)]

Region

A83/YN/CHN/2016 A86/YN/CHN/2016

Metcalf Other E-18 Metcalf Other E-18

5′UTR 81.7 85.1–97.7 81.7 84.8–97.0

VP4 80.7(92.8) 85.0–96.6 (95.7–98.6) 78.7(89.9) 83.6–94.7(95.7–100)

VP2 80.5(96.5) 86.0–98.3 (98.5–100) 80.5(96.5) 86.0–98.3(98.5–100)

VP3 79.6(96.2) 87.2–97.6 (96.7–97.9) 79.9(97.1) 87.4–97.8(97.5–98.7)

VP1 79.0(92.0) 86.9–97.2 (94.8–97.9) 79.2(92.7) 87.5–97.7(95.8–99.3)

2A 77.8(93.3) 78.4–90.7 (90.7–96.0) 77.8(93.3) 78.7–90.7(90.7–96.0)

2B 79.1(97.0) 75.1–90.9 (90.9–100) 79.1(97.0) 75.1–90.9(90.9–100)

2C 82.4(97.0) 79.4–91.5 (94.8–97.3) 82.3(96.7) 79.3–91.4(94.5–97.0)

3A 77.2(92.1) 75.7–81.3 (93.3–100) 77.2(92.1) 75.7–81.3(93.3–95.5)

3B 78.7(95.5) 74.2–81.8 (95.5–100) 78.8(95.5) 77.3–81.8(95.5–100)

3C 82.3(97.3) 76.3–81.1 (95.6–97.3) 82.3(97.3) 76.3–81.1(95.6–97.3)

3D 80.2(96.6) 77.5–80.9 (94.3–95.7) 80.2(96.1) 77.5–80.9(94.3–95.7)

3′UTR 85.9 81.0–84.2 85.1 80.0–85.1

Genome 80.4(95.4) 81.8–88.5 (95.8–97.2) 80.4(95.5) 81.8–88.5(95.9–97.3)

Table 1. Nucleotide and amino acid identities between the two Yunnan E-18 strains, Metcalf and other E-18 in 
all sequenced genomic regions.
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Recombination analysis. To confirm the recombination events between the Yunnan E-18 strains and other 
EV-B serotypes, bootscanning analyses were performed (Fig. 6). The results also revealed multiple recombination 

Figure 1. Phylogenetic relationships based on the complete VP1 sequences of 82 E-18 strains. Two Yunnan 
E-18 strains and the other 80 E-18 strains available in GenBank database were analysed by nucleotide sequence 
alignment using the neighbor joining algorithms implemented in the MEGA 6.06 program. Numbers at 
the nodes indicate bootstrap support for that node (percentage of 1000 bootstrap replicates). The scale bars 
represent the genetic distance. Only high bootstrap values (>75%) are shown. • Strains isolated in this 
investigation. ▲ Strains isolated from other provinces of China.
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events between the genomic sequence of strains A83 and A86 with other EV-B serotypes, especially, the 3B region 
of SVDV strain HK70.

Discussion
Since 2008, millions of children have developed HFMD each year in mainland China and HFMD has become a 
serious public health issue. EVs are the causative agents of HFMD. Of these, CV-A16 and EV-A71 are the pre-
dominant etiologic agents. Other EV serotypes including CV-A2–6, CV-A8–10, CV-A12, CV-A14, CV-B1–6 and 
E-4–7, E-9, E-11, E-18, E-25, and E-30 were occasionally detected in sporadic cases or outbreaks of HFMD19, 20. 

Figure 2. Phylogenetic relationships based on the 5′UTR and 3′UTR sequences of EV-B strains. Two E-18 
strains and 343 EV-B strains for 5′UTR, and 349 EV-B strains for 3′UTR available in GenBank database were 
analysed by nucleotide sequence alignment using the neighbor joining algorithms implemented in the MEGA 
6.06 program, respectively. Numbers at the nodes indicate bootstrap support for that node (percentage of 1000 
bootstrap replicates). The scale bars represent the genetic distance. Only high bootstrap values (>75%) are 
shown. Only high bootstrap values (>75%) are shown. ▲ Strains isolated in this investigation. Red denote the 
other E-18 strains.
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Thus, persistent surveillance of HFMD pathogens might help to predict potential predominant serotypes and 
related disease outbreaks. Recently CV-A6 and CV-A10 have been the prevalent etiologic agents in some prov-
inces of China and in a few countries19. Although a vaccine for EV-A71 has been developed, it is important to 
develop multivalent vaccines against other main serotypes to protect children.

E-18 infection is associated with a variety of clinical presentations from asymptomatic to aseptic meningitis 
and death21. Outbreaks of aseptic meningitis caused by E-18 have been reported in China and worldwide10–15. 
Currently, the E-18 strains available in GenBank were all isolated from aseptic meningitis patients and contact 
persons. The serotypes of causative agents for aseptic meningitis may overlap with that of HFMD22. Thus, the two 
Yunnan E-18 strains were isolated from HFMD patients, indicating possible connections between E-18 infections 
and HFMD.

There are currently 80 E-18 complete VP1 sequences available in the GenBank database, and among these, fif-
teen strains are full-length genome sequences. The 80 E-18 strains were isolated from different countries, China, 
India, South Korea, Australia, Netherlands, Germany, Sweden, Russia and France, indicating that E-18 infection 
is a global distribution. The large divergences between the complete VP1 coding sequences result in the formation 

Figure 3. Phylogenetic relationships based on the P1, P2, and P3 coding sequences of 379 EV-B strains. 
Two E-18 strains and 377 EV-B strains available in GenBank database were analysed by nucleotide sequence 
alignment using the neighbor joining algorithms implemented in the MEGA 6.06 program. Numbers at 
the nodes indicate bootstrap support for that node (percentage of 1000 bootstrap replicates). The scale bars 
represent the genetic distance. Only high bootstrap values (>75%) are shown. Only high bootstrap values 
(>75%) are shown. ▲ Strains isolated in this investigation. Red denote the other E-18 strains.
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of five clusters in phylogenetic analysis, which indicates that the circulation of distinct E-18 lineages exist in the 
same and different countries. And the large divergences between Yunnan isolates (A83 and A86) and Hebei 
strain E18-314/HB/CHN/2015 in non-capsid sequences showed the existence of Chinese E-18 strain apparently 
evolved along two lineages independently of the other E-18 strains. Additionally, the complete genome sequences 
of the two strains were highly homologous, indicating that E-18 had been circulating in the environment for an 
extended period of time.

Recombination is a universal phenomenon for EVs23, 24. According to the phylogenetic analyses in different 
genomic regions, proposed recombination events were observed between the two Yunnan strains and E-30 strain 
2012EM161, SVDV strain HK70, E-6 strain D’Amori, and CV-B3 strain GA in corresponding regions, respec-
tively. And bootscanning analyses for the two strains also showed intertypic recombination between E-18, E-30, 
CV-B3, SVDV and E-6 with the P3 non-capsid region. Interestingly, the nt sequences of the 3B genomic region 
of the two Yunnan strains were the most homologous (93.5%) to the corresponding sequence of the SVDV strain 
HK70. Whereas, other E-18 strains were no more closely related to HK70 than it was to other CV-B serotypes.

Figure 4. Phylogenetic relationships based on the 2A, 2B, and 2C coding sequences of 379 EV-B strains. 
Two E-18 strains and 377 EV-B strains available in GenBank database were analysed by nucleotide sequence 
alignment using the neighbor joining algorithms implemented in the MEGA 6.06 program. Numbers at 
the nodes indicate bootstrap support for that node (percentage of 1000 bootstrap replicates). The scale bars 
represent the genetic distance. Only high bootstrap values (>75%) are shown. Only high bootstrap values 
(>75%) are shown. ▲ Strains isolated in this investigation. Red denote the other E-18 strains.
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SVD is a highly contagious disease of pigs and is classified as a list A disease by the International Office of 
Epizootics25, 26. Clinically, SVD cannot be distinguished from foot-and-mouth disease (FMD), vesicular stomatitis 
(VS) and vesicular exanthema of swine (VES), and, therefore, diagnosis depends on laboratory tests. Due to the 
persistence of the virus in the environment, once the disease spreads, it is very difficult to control. Thus, SVD is 
notifiable in the world and is strictly controlled by livestock movement. SVDV is the causative agent of SVD25, 

26. SVDV share a high degree of sequence similarity with CV-B5 in P1 region and the cross-neutralization was 
observed between the two viruses27. But other genetic regions of SVDV are less homologous to CV-B5. The P1 
protein contains neutralization sites and the (partial) P1 region-based molecular typing result corresponds well 
to enterovirus serotypes28. At present, the enterovirus typing is generally defined by analysis of the P1 region. So 
SVDV is currently classified as a porcine variant of CV-B526. However, it is unclear whether the recombination 

genotype A B C D E

A 79.4 79.6–80.6 78.7 77.9–78.7

B 95.5 82.0–83.0 81.4 79.1–79.8

C 92.3–94.4 94.8–97.2 83.9–84.8 82.7–83.0

D 94.1 96.9 95.6–98.6 83.3–83.6

E 91.3–93.0 92.0–95.5 90.9–96.5 94.1–95.8

Table 2. The complete VP1 nucleotide and amino acid sequences comparisons between the E-18 gene clusters. 
Note: the data in the upper right corner was for nucleotide homology analysis and the data in the lower left 
corner was for amino acid homology analysis.

Figure 5. Phylogenetic relationships based on the 3A, 3B, 3C, and 3D coding sequences of 379 EV-B strains. 
Two E-18 strains and 377 EV-B strains available in GenBank database were analysed by nucleotide sequence 
alignment using the neighbor joining algorithms implemented in the MEGA 6.06 program. Numbers at 
the nodes indicate bootstrap support for that node (percentage of 1000 bootstrap replicates). The scale bars 
represent the genetic distance. Only high bootstrap values (>75%) are shown. Only high bootstrap values 
(>75%) are shown. ▲ Strains isolated in this investigation. Red denote the other E-18 strains.
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of SVDV occurred in humans or pigs29. In addition, the non-structural protein and un-translated regions, which 
have diverse functions in the viral replication are characterized by species-specific11. Recombination events usu-
ally occur in non-structural regions of EV-B23, 30–32, which is consistent with our report. E-18 prototype Metcalf 
strain also is a recombinant with E-9 Hill, which share highly homologous in the P3 region33, 34, and SVDV also is 
a recombinant with CV-A9 Net/1/63 in the 3D region. Thus, recombination plays a key role on the evolution and 
adaptation of the members of EV-B species.

Duo to the number of complete sequences of circulating strains is rather limited, this could result a bias of 
intra-and inter-typic recombination. In addition, silent transmissions could be the reason of underestimation of 
recombination events35. Thus, although our isolates A83 and A86 share high degree of sequence similarity with 
SVDV in 3B region, it is difficult to determine whether the SVDV strain was the donor of Yunnan E-18 strains 
and more complete genome sequences are required for analysis. In addition, the two Yunnan strains in this study 
were isolated from patients with HFMD, but we could also not conclude that E-18 was the causative agent of 
HFMD, for samples not taken from the throat swab, serum and other sites of lesions in the two patients. But after 
all the two strains were isolated from feces of patients with HFMD. So, further research is needed to elucidate the 
correlation.

In conclusion, we have reported the full-length genome sequences of two E-18 strains during HFMD surveil-
lance in Yunnan, China. Sequence analysis suggested that the two strains have high genetic diversity compared 
with the other E-18 strains, intertypic recombination in the non-structural protein region. The high divergence 
among the E-18 strains reflects that this virus has circulated in the environment for many years and recombina-
tion drives the evolution of E-18. This study expands the number of complete genome sequences of E-18 in the 
GenBank database and provides the molecular epidemiology of E-18 in China, which can help to evaluate the 
association between E-18 and E-18-related diseases.

Material and Methods
Ethics statement. All participants gave written informed consent. The protocol was in accordance with the 
Helsinki Declaration, and was approved by the Institutional Ethics Boards of the Institute of Medical Biology, 
Chinese Academy of Medical Sciences & Peking Union Medical College. The human material used were stool 
samples collected from two patients aged 5 and 4.2 years with HFMD. Stool samples were collected and processed 
according to standard procedures. Three cell lines, RD, KMB17, and A549 were used to isolate viruses from the 
stool specimens according to standard procedures36. All positive isolates were stored at −80 °C.

Molecular typing. For molecular serotyping, the viral RNAs were extracted from cell culture supernatants 
with a QIAamp Viral RNA Mini Kit (QIAGEN, Valencia, CA, USA). Reverse transcription-polymerase chain 
reaction (RT-PCR) was carried out using a PrimeScriptTM One Step RT-PCR Kit Ver.2 (TaKaRa, Dalian, China) 
with primer pairs 222 and 22437. The PCR-positive products were sequenced using an ABI 3730XL automatic 
sequencer (Applied Biosystems, Foster City, CA, USA) at BGI Sequencing Company (Beijing, China). The par-
tial VP1 sequences were compared with sequences from GenBank using BLAST (http://www.ncbi.nlm.nih.gov/
BLAST/).

Full-length genome amplification. Two long-distance PCR amplifications were performed using a 
PrimeScriptTM One Step RT-PCR Kit Ver.2 (TaKaRa, Dalian, China). The primers used for RT-PCR and sequenc-
ing of the full-length genome were designed by a “primer-walking” strategy38 and are listed in Table 3. The PCR 
products were purified using the QIAquick PCR purification kit (Qiagen, Germany), and sequenced in both 
directions at least two from each strand using ABI 3130 Genetic Analyser (Applied Biosystems, USA).

Sequence analysis and recombination analysis. Nucleotide and amino acid sequence alignment were 
performed by using Geneious (5.6.5)16. Phylogenetic analysis was conducted via MEGA version 6.06 using the 

Figure 6. Bootscanning analyses of the complete genome of the two Yunnan E-18 strains. Bootscanning 
analysis of complete EV-B genomes using a sliding window of 200 nt moving in 20-nt steps. The two Yunnan 
strains were used as query sequences independently.

http://www.ncbi.nlm.nih.gov/BLAST/
http://www.ncbi.nlm.nih.gov/BLAST/
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neighbour-joining method with 1000 duplicates and bootstrap values greater than 75% were considered statisti-
cally significant. Bootscanning analysis were performed using the Simplot 3.5.1 program with a 200-nt window 
moving in 20 nt steps38.

Nucleotide sequence accession number. The complete genome sequences of the E-18 strains A83/YN/
CHN/2016 and A86/YN/CHN/2016 described in this study were deposited in the GenBank database under the 
accession number: KY828851-KY828852.
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