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The formation of hypoxic microenvironments within solid tumors is known to contribute

to radiation resistance, chemotherapy resistance, immune suppression, increased

metastasis, and an overall poor prognosis. It is therefore crucial to understand

the spatial and molecular mechanisms that contribute to tumor hypoxia formation

to improve the efficacy of radiation treatment, develop hypoxia-directed therapies,

and increase patient survival. The objective of this study is to present a number

of complementary novel methods for quantifying tumor hypoxia and proliferation in

multiplexed immunofluorescence images, especially in relation to the location of perfused

blood vessels. A standard marker analysis strategy is to take a positive pixel count

approach, in which a threshold for positive stain is used to compute a positive area

fraction for hypoxia. This work is a reassessment of that approach, utilizing not only cell

segmentation but also distance to nearest blood vessel in order to incorporate spatial

information into the analysis. We describe a reproducible pipeline for the visualization

and quantitative analysis of hypoxia using a vessel distance analysis approach. This

methodological pipeline can serve to further elucidate the relationship between vessel

distance and microenvironment-linked markers such as hypoxia and proliferation, can

help to quantify parameters relating to oxygen consumption and hypoxic tolerance in

tissues, as well as potentially serve as a hypothesis generating tool for future studies

testing hypoxia-linked markers.

Keywords: hypoxia, tumor microenvironment, digital pathology, immunofluorescence, image analysis, distance

mapping, biological gradient, tissue cytometry

INTRODUCTION

Solid tumors are often characterized by heterogeneity in key microenvironmental features,
including variations in cell type (tumor, stromal, or immune cell content), availability of nutrients,
and oxygenation. Micro-regional changes in oxygenation are due to mismatches in metabolic
consumption relative to oxygen supply to tumor cells. Typically, areas of hypoxia are defined as
those below a threshold of oxygen required to confer a specific biological or therapeutic impact.
The presence of regions with low oxygen partial pressure (pO2) of ≤ 20 mmHg confers a greater
resistance to radiation therapy (Alper and Bryant, 1974) and conventional chemotherapeutics
(Gomez, 2016), and are correlated with lower patient survival (Rudat et al., 2001). The vasculature
of solid tumors is often abnormal due to either tortuous vasculature formation or vascular
collapse (Milosevic et al., 1999). Regions near blood vessel capillaries can be normoxic, with
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cells experiencing hypoxia as pO2 decreases due to oxygen
metabolism away from vessels. This eventually leads to necrosis
when pO2 becomes insufficient to support tumor cell viability.

The physiological relationship between blood vessel distance,
presence of viable tumor tissue, and metabolic activity was
first described in Thomlinson and Gray (1955) which showed
that the shape of the oxygen gradient is determined by the
metabolic oxygen demand within tissue. Although rates of
oxygen consumption can vary substantially depending on tissue
type, oxygen gradients on the order of 150µm from supply
to anoxia are typically reported (Haugland et al., 2002). This
phenomenon is commonly referred to as chronic hypoxia
because the match between oxygen diffusion and consumption
is relatively stable and thus the exposure of cells to hypoxia
is long lived (Bayer and Vaupel, 2012). Tumor cells can also
become acutely hypoxic due to transient changes or occlusion
of blood vessels. It is important to distinguish chronic and
acute hypoxia because the length and severity of hypoxia (and
reoxygenation) can have different implications for treatment
efficacy and hence the impact of hypoxia on patient prognosis
(Vaupel and Mayer, 2007).

Coupled with contrast agents and tracers, hypoxia can
be imaged in a variety of imaging modalities such as PET,
MRS, MRI, NIRS, and EPR. While all share the advantage
of being non-invasive, they lack sufficient spatial resolution
to accurately detect patterns of hypoxia within the tumor
microenvironment (Jensen, 2009; Carreau et al., 2011). In a
clinical setting, microelectrodes such as the Eppendorf oxygen
probe can measure extracellular pO2 and pH (Rudat et al., 2001;
Milosevic et al., 2012). While providing a quantitative readout
of oxygen concentrations, they are technically demanding to use
and also impart poor spatial resolution. Histological staining
against exogenously administered markers of hypoxia provide
much higher spatial resolution necessary to image hypoxia
micro-regional distribution (Mirabello et al., 2018). A common
method to quantify hypoxia in stained histological sections
is to apply binary thresholding. The fraction of pixels above
a predefined threshold measures hypoxia-positive area as a
percentage of tumor area (Loukas and Linney, 2004). While
other cellular markers can be quantified this way, hypoxia should
not be because it is a gradient rather than a binary metric
(Russell et al., 2009). Since hypoxia is a continuous gradient
within tissues, there is no universally accepted threshold for
discriminating hypoxia from normoxia. It is not uncommon
for studies to use arbitrarily determined threshold values
(Urtasun et al., 1986).

Several studies have employed different methods for
measuring hypoxia gradients relative to blood vessels. One
popular method is vessel distance analysis (VDA), particularly
given development of image analysis platforms capable of this
type of analysis. VDA computes mean marker intensity in an
image object [pixel, segmented cell, or some other region of
interest (ROI)], as a function of distance to a vessel. In Rijken
et al. (2000), VDA was performed in a human glioma xenograft
using two different hypoxia markers (NITP and pimonidazole).
Concentric rings were generated around perfused blood vessels to
calculate mean intensity of the two hypoxia markers in each ring.

This study used 50 µm-wide concentric rings as the distance bin,
reporting broad ranges of maximal hypoxia; the use of smaller
(∼10µm) distance bins would have more accurately pinpointed
the distance at which maximal hypoxia staining would occur.
A similar analysis was performed on human HNSCC (Wijffels
et al., 2000) using PAL-E vimentin as a vasculature marker and
pimonidazole as the hypoxia marker, with a serial hematoxylin
and eosin (H&E) stained section used to delineate tumor area
and exclude necrotic regions. Although one of the goals of this
study was to measure proliferation, they did so indirectly by
measuring hypoxia and inferring the normoxic regions to be
proliferative. A more accurate measure of proliferation would
be to quantify staining for either an exogenous (EdU or BrdU)
or endogenous (Ki67) marker. Swinson et al. stained for CA9,
an endogenous marker for hypoxia, and manually measured
distribution of CA9-positive cells relative to CD34-defined
vessels (Swinson et al., 2003). In this study, the authors excluded
any vessel that had been cut on its longitudinal axes, as it was
easier to measure oxygen gradients from perpendicular vessels.
However, removing potential sources of oxygenation from
analysis could lead to a misinterpretation of the tumor being
less oxygen dependent. Primeau et al. used VDA to measure
the chemotherapeutic doxorubicin relative to all CD31-positive
vessels, however perfusion was not assessed (Primeau et al.,
2005). In addition to hypoxia, cellular proliferation has also
been shown to be oxygen dependent (Tannock, 1968). Russell
et al. co-injected two hypoxia markers with perfusion marker
and measured hypoxia using cumulative histograms of marker
area at different positive staining thresholds (Russell et al.,
2009). However, analysis was performed using positive pixel
fractions and spatial localization was not studied (Russell et al.,
2009). By using a perfusion marker to identify functional
vessels, a better understanding of diffusion-limited hypoxia can
be achieved.

Here we compare a number of data visualization and analysis
methodologies for approaching the quantitative analysis of tissue
hypoxia at a cellular level. We describe image ROI and cell
segmentation, generation of distance maps to intra-tumor spatial
features, scatterplots to interpret marker intensity correlations,
and distance bin histograms to interrogate hypoxia distance
relationships to tissue features like perfused vessels and necrosis.
We find that the extent of hypoxia can be affected by the
diffusion and consumption of oxygen within tissues, as well as
the tolerance of cells toward surviving in low oxygen conditions.
A combination of measurement of the gradient of hypoxia vs.
distance to vessel, or distance to necrosis, as well as per-cell
scatterplots that relate markers of interest (e.g., proliferation and
hypoxia), can provide a more robust quantification of hypoxia
within tissue sections.

METHODS

Immunofluorescence Histology
NOD scid gamma mice bearing a KP4 pancreatic cancer cell
line xenograft were administered intraperitoneal injection of
400 µl of 2.5 mg/ml EdU (proliferation marker) and 250
µl of 10 mg/ml EF5 (hypoxia marker), 30min and 3 h,
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respectively, prior to tumor excision. In addition to KP4
cell line, we have found that other pancreatic (PANC1 and
BxPC3) and colorectal (HCT116 and UM-SCC-74B) cell lines
are suitable for vessel distance analysis (Cojocari, 2017), as are
colorectal patient derived xenografts (Haynes et al., 2018). To
determine which blood vessels were actively perfused at the
time of tumor excision, 100 µl of 10 mg/ml Hoechst 33342
was injected into the tail vein of the mouse 1min prior to
tumor excision. Tumors were embedded in optimal cutting
temperature compound (OCT), snap frozen, and sectioned
using a cryomicrotome at 5µm thickness. Unstained sections
were scanned for Hoechst using a TissueScope 4000 (Huron
Technologies) at 10x magnification with a DAPI filter. Cy3-
conjugated anti-EF5 (1/120 dilution of 1 µg/1ml stock)
and Cy3-conjugated Click-IT EdU reagents (Invitrogen, cat.
C10634) were utilized to label hypoxia and proliferation,
respectively. Platelet endothelial cell adhesion molecule (CD31),
expressed on the surface of blood vessels, was stained for
using a rat anti-mouse CD31 antibody (1/200 dilution, BD
PharMigen PECAM-13.3 cat. 553370 lot 86580). Secondary
AF488-conjugated goat anti-rat (Invitrogen, cat. A11006) was
used against the rat anti-mouse CD31 antibody. DAPI nuclear
counterstain was applied at 1µg/ml concentration. Slides
were scanned for EdU, EF5, and DAPI using Cy5, Cy3, and
DAPI filters, and then rescanned for EF5, CD31, and DAPI
using Cy3, FITC, and DAPI filters, respectively. Slides were
subsequently stained with hematoxylin and eosin (H&E) to
differentiate different tissue regions based on morphology.
Brightfield scans were taken with an Aperio AT2 whole
slide scanner at 20x magnification. In the end, four separate
images were obtained: a single-channel Hoechst image, a
EdU-EF5-DAPI immunofluorescence image, a EF5-CD31-DAPI
immunofluorescence image, and a brightfield H&E image. The
entire process of staining and image acquisition is shown in
Supplementary Figure 1.

Image Analysis Methodology
The EF5-CD31-DAPI and EdU-CD31-DAPI RGB images were
converted into single-channel grayscale TIFF images. The
H&E image was separated into red, green, and blue grayscale
TIFF images, and intensity was inverted to produce dark
backgrounds, for intensity-based alignment. Semi-automated
intensity-based image registration was performed using a
similarity transform, which allowed for translation, rotation, and
scaling, but not shearing of the images. The intensity-inverted
H&E image was used as the target static image for registration.
Alignment was manually inspected, and manual control-point
alignment was performed if intensity-based alignment was poor.
Aligned images were exported as a series of uncompressed
8-bit single-channel TIFF images which were subsequently
imported into Definiens Tissue Studio (Definiens Inc,
Munich Germany) for image segmentation and classification.
Similar workflows could be achieved in several other digital
pathology platforms.

Tissue was separated from background using the H&E
image as reference. Image subsets were used to train the
machine learning classifier to identify regions of interest

(ROIs) for hypoxia, necrosis, viable tumor, empty space, and
perfusion. This was done using EF5, DAPI, and Hoechst
image layers as input. Within 200 × 200µm sample subsets,
we manually annotated samples of each ROI to train the
proprietary Definiens classifier. Hypoxia, perfusion and
necrosis were annotated based on high EF5 intensity, high
Hoechst intensity, and regions of increased eosin staining
and condensed nuclei in the H&E image, respectively;
and all remaining non-artifactual (i.e., excluding stroma,
musculature, and folds) tissue regions were defined as
viable tumor. After a reasonable classification was achieved
on the training data set, the trained classifier was applied
across all images. Manual correction was used to correct
misclassified regions and remove artifacts such as folded tissue
present on the slide. ROI annotations were reviewed by a
trained histopathologist.

To perform vessel distance analysis, cells were first segmented
by detecting nuclei on the DAPI channel, which was performed
in the hypoxia, perfusion, and viable tumor ROIs. A watershed
algorithm disconnected closely-packed nuclei and a size
threshold was applied to exclude nuclei <23 µm2 in area.
Vessel detection was performed on CD31 channel, identifying
vessels>5 µm2 in area. Following batch processing, the resulting
cell and vessel image objects were imported into Definiens
Developer XD. A distance map calculating distance to the
center of each vessel produced a grayscale image layer with
intensity increasing proportionally away from CD31 positive
vessels. Distance maps to Hoechst and necrosis ROIs were
also generated. For each image, a table of image objects
(cells) was exported, along with per-cell features including
centroid coordinates; nucleus and cell area; mean marker
intensity for CD31, DAPI, EF5, EdU, and Hoechst; and
distances to all vessels, perfused (Hoechst) regions, and necrosis.
Data visualization and distance bin generation was performed
in MATLAB.

ROI-based distance analysis was achieved by defining
concentric rings with a width of 10µm around the Hoechst
ROI extending outward. The relative fraction of hypoxia, viable
tumor, and necrotic ROIs were calculated in each ring up
to a distance of 700µm. Marker Area Detection (MAD) and
Cellular Classification (CC) were employed to detect positive
staining. In MAD, individual pixels were grouped into negative,
low, medium, and high categories based on EF5 intensity
using user-defined thresholds. Thresholds were selected by
the operator such that the negative-low threshold would be
a first-pass threshold to mark any cells with no observable
EF5 staining as negative. The threshold separating low from
medium was set higher to identify cells of intermediate EF5
staining, with that separating medium from high used to identify
cells with the most intense EF5 staining. Connected regions
<10 µm2 were excluded from analysis. CC was performed
by dilating previously detected nuclei by 5µm to simulate
the area of a cell in the absence of a membrane marker,
with user-defined thresholds applied to mean EF5 intensity
inside the cell. Please refer to the data availability statement
of this paper for the code used and further details on
the methodology.
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RESULTS

Comparison of Image Segmentation
Methods for Thresholding Hypoxia
Our first approach to assess the amount of hypoxia present was
to apply a series of three intensity thresholds to the viable tissue
area using both theMAD andCCmethods. In CC, by segmenting
cells using nuclear stain and morphology, extracellular staining
can be filtered out. Cell simulation around each nucleus captures
cytoplasmic staining.

Figure 1 shows a comparison between MAD (Figure 1B)
and CC (Figure 1C). While MAD regions seem to be relatively
homogeneously distributed in hypoxic regions, CC regions
appear to emerge as a concentric gradient of low to high EF5
staining from perfused regions stained with Hoechst. Necrotic
regions were excluded from analysis. We utilized the same
thresholds in MAD and CC analysis, Figure 1 shows roughly a
3-fold increase in percent positivity using CC compared toMAD.

Region of Interest-Based Distance Analysis
Another strategy is to define ROIs that comprise the tissue area
and measure distances between distinct regions. We incorporate
ROIs into our analysis methodology by excluding regions of
necrosis from viable tumor during the preparation of our images
for processing. In Figure 2B, Hoechst perfusion was utilized to
identify regions of perfusion surrounding blood vessels and a
hypoxia ROI was identified by the presence of EF5 staining. The
distance to the nearest Hoechst positive region was calculated as
a separate image layer (Figure 2C). Figure 2D reports the tissue

composition for viable tumor, hypoxia and necrosis ROIs as a
function of distance from Hoechst perfusion.

Marker Intensity Histograms and Density
Scatter Plot Visualization
To visualize co-localization between multiple markers, dual-
marker density scatterplots (similar to those commonly used
in flow cytometry analysis) were produced with each axis
corresponding to an individual cell’s EF5 and EdU intensity.
Figure 3A shows a typical flow cytometry-like density scatterplot
of per-cell EF5 and EdU intensities, with colors indicating cell
density and gates drawn at mean plus one standard deviation
for each marker. In Figure 3B, transparency of each point is set
proportional to the total number of cells. Regions with higher
density will appear more opaque than lower density regions. We
then incorporate spatial information into this visualization by
coloring points according to their distance to the nearest perfused
vessel. It can be seen that the subpopulation of EF5-positive cells
have a greater average distance. However, it is difficult to observe
a distance relationship in the EdU-positive subpopulation.

Hypoxia and Proliferation Gradients
Relative to Vessels and Necrosis
Distance maps were generated from perfusion (Hoechst) ROI
to identify per-cell distances to the nearest perfused vessel.
Distance to all CD31-positive vessels, and distance to necrotic
ROIs, were also generated on a per-cell basis. To validate the
accuracy of cell and vessel segmentation, manual counts were
performed in random 350 × 350µm tiles and compared to

FIGURE 1 | Comparison of Cellular Classification and Marker Area Detection. (A) Immunofluorescent staining with DAPI in blue, Hoechst in red, and EF5 in green.

(B) MAD with low (yellow), medium (orange), and high (red) hypoxic areas. (C) CC with the same overlay classification as previously used for MAD. (D) Comparison of

percent positive scores for each EF5 intensity grouping in CC compared to MAD.
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FIGURE 2 | (A) Immunofluorescence image of KP4 xenograft. Stains include DAPI (blue), Hoechst (red), and EF5 (green). (B) ROI overlay of necrosis (blue), hypoxia

(red), viable tumor (orange), and perfusion (gray). (C) Distance map to Hoechst perfusion area is shown in blue, with intensity decreasing in proportion to the distance

away from the Hoechst positive region. (D) Viable tumor area decreasing and necrotic area increasing as a function of distance from perfused vessels, with hypoxic

area peaking near 180µm.

FIGURE 3 | Per-cell scatterplot of hypoxia marker (EF5, vertical axis) vs. proliferation marker (EdU, horizontal axis). Regions of increasing density are shown with

contour lines in both images. (A) density is also represented in color, while in (B) individual cells are colored by their individual distances to the blood vessel regions

(distances, in microns, shown on colorbar).

Definiens algorithm-generated counts. The percent errors for cell
and vessel detection were found to be 4.7 and 5.3%, respectively,
indicating that reliable segmentation was achieved. From this
data, cells were binned into uniform concentric distance regions.
Figure 4 presents cell count histograms per bin, which aid
in interpretation of the distribution of mean intensity and
the percent positive cell intensity for the EdU proliferation
marker, and the mean intensity of the EF5 hypoxia marker,
vs. distance.

DISCUSSION

The simplest quantification method for immunostained markers
on tissue sections is to apply a pixel-level threshold on the
stain of interest. While less algorithmically complex than cell
segmentation, MAD does not take into account biological
localization, presenting simply a fraction of area stained,
irrespective of nuclear or cytoplasmic specificity of that particular
stain. Cellular segmentation provides a more accurate means
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FIGURE 4 | Histograms showing the total number of cells (top) present within uniform distance bins measured from the region of interest [(A) distance from the

nearest perfused blood vessel, (B) distance from all blood vessels, and (C) distance from necrosis] in the image. The mean EdU intensity within all of the cells

identified in these regions is shown (second from top, measured in arbitrary fluorescence staining units), as well as the mean EF5 staining intensity (bottom). Error bars

correspond to the standard error of the mean of the marker intensity in each distance bin. We also utilize a threshold for positivity for EdU signal to identify EdU

positive cells, and display the percent of cells in each distance bin that is positive for the EdU marker (second from bottom).

of gauging the positivity of cell-associated immunostained
biomarkers, as it uses biologically relevant “cell” objects rather
than pixels, and intensity-based thresholding on segmented
cell objects is a common practice. We tested the ability of
MAD and CC, with thresholds to determine low/medium/high
intensity staining, for differentiating hypoxic regions within
tissue (Figure 1). Setting thresholds is justifiable when themarker
in question exhibits a binary staining pattern, such as EdU
staining in the nucleus, where the presence of any amount of
staining would indicate that cell is undergoing DNA synthesis
during proliferation. For hypoxia however, the positive hypoxic
percentage is greatly influenced by the choice of threshold.
The number of cells detected as positive varies from 20% to
40% of the total cells detected in the viable tissue (Figure 1D),
creating a challenge in choosing an appropriate threshold for
robust analysis. Calculation of the cumulative histogram of
cellular intensity within the image (similar to picking a large
range of intensity bins/thresholds) could theoretically be used
to model the relationship between a change in intensity and
resulting change in area of cells/tissue observed at that intensity.
Cumulative histograms for these images are highly non-linear
[also observed in (Russell et al., 2009)], leading to difficulty in
accurately modeling this relationship (data not shown). Should
one wish to perform intensity-based thresholding for markers
that exist as gradients within tissue, a judicious choice of
thresholding method, or the use of multiple thresholds, along

with justification for the particular choice, is warranted, to avoid
bias. Vessel distance analysis measures hypoxic marker intensity
relative to a known biologically important entity in the tissue,
perfused vessel distance, capturing changes in intensity rather
than percentage of cells positive at a particular threshold.

While the EF5 positive area may contain regions of both low
and high hypoxia, and as such is not the best representation of
a spatial- and intensity-varying signal, a ROI-based approach
containing a “hypoxic area” can help to define distance
relationships between these regions on the slide. Evaluating the
area fraction occupied by each ROI (viable tumor, hypoxia and
necrosis) vs. vessel distance (Figure 2), we obtain an estimate of
the width of the hypoxic region, useful either to compare between
different treatment strategies, or to evaluate the intrinsic hypoxia
tolerance/sensitivity of tumor models. However, a segmentation
strategy that looks at individual EF5 cell intensity vs. distance
would be more accurate than EF5 “region of interest,” due to the
intrinsic challenge in either thresholding or training a classifier to
detect EF5 “positive” areas.

A common alternative to binary thresholding is using
histograms or scatterplots to display the intensity distribution
of image pixels. Histograms show distributions of intensities
for a marker, grouped either on a per-pixel or per-cell basis.
Scatterplot visualization is often used in flow cytometry, where
dissociated fluorescently-labeled cells are analyzed for stained
intensities of markers of interest. Since this method does not rely

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 6 December 2019 | Volume 7 | Article 397

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Zaidi et al. Quantitative Visualization of Hypoxia Gradients

on binary thresholds, it provides a useful tool to assess hypoxic
gradients. Previous work has shown a strong negative correlation
between hypoxia and proliferation using flow cytometry (Durand
and Raleigh, 1998). However, flow cytometry lacks the ability
to take into account spatial relationships, which are lost upon
dissociation of the tissue to single cells. “Tissue cytometry”
involves the segmentation and visualization of both intensity
and spatial relationships in the cells within an image. Figure 3
displays two examples of density scatterplot visualizations
for EdU and EF5 proliferation and hypoxia, on a per-cell
basis. Graphing on a logarithmic scale allows intensities close
to the axis to be observed better, and density plots allow
for identification of populations of interest. Here, the flow
cytometry-like scatterplot of EF5 and EdU marker intensity
shows distinct populations of cells that are either hypoxic or
proliferating, but not both. As many cyclooxygenases such as
COX2 play a role in cellular proliferation (Sobolewski et al.,
2010), the hypoxic cells observed were not proliferating. A clear
“viable tumor” population exists that is clearly negative for
both hypoxia and proliferative markers in the density plot; this
could be utilized for objective discrimination between “negative”
and “positive” markers. One potential method to quantitatively
compare changes in hypoxia and proliferation across different
experimental samples would be to gate the population of cells
above statistically-determined thresholds (shown as red lines
in Figure 3) and test if the mean distance of the EF5 or EdU
positive cells is significantly different from control groups. If
EF5 positive cells display average shorter distances to blood
vessels, this could indicate that cells more proximal to perfused
vessels may have greater oxygen consumption rates (Zannella
et al., 2013). If EdU positive cells have shorter distances to blood
vessels, this could indicate that higher oxygen concentrations are
needed to allow cells to divide and replicate, since proliferating
cells use aerobic glycolysis not only for energy but to synthesize
intermediates for biosynthetic pathways (DeBerardinis et al.,
2008). Additionally, coloring each cell by its measured vessel
distance (Figure 3B) can help to visualize the relationship
between distance and hypoxia, at least at a global level. This
method, while perhaps difficult to quantify, provides a useful
method to interrogate per-cell marker relationships, and may
help identify whether markers are correlated or anti-correlated
with hypoxia.

To better account for the presence of hypoxic gradients
within tissue, we combine the use of distance bins with a
cell segmentation methodology for clearer identification of
distance relationships. Vessel distance analysis of a KP4 xenograft
exemplifies how such data can be presented (Figure 4). We
present multiple analyses involving distance to both perfused
and all blood vessels, and distance from necrosis, which displays
an inverse relationship to the blood vessel distance as expected.
While distance to perfused vessel regions is useful to assess from
a physiological standpoint, providing a more accurate assessment
of chronically hypoxic tumor regions; the use of perfusion dyes
is generally only possible in a preclinical setting. However,
detection of either total vessel density with CD31 staining, or
detection of necrosis, morphologically from H&E tissues, are
both possible in clinical specimens. The trends observed in

Figure 4, of low EF5 and high EdU staining closer to vessels, and
the inverse (high EF5 and low EdU staining closer to necrosis),
still hold, indicating that these are viable alternative strategies for
hypoxia assessment.

One purpose of distinguishing a perfused vessel
subpopulation from all vessels would be to differentiate between
chronic and acute hypoxia. Both chronic and acute hypoxia are
present in over 50% of solid tumors, but have different clinical
implications. For example, acute hypoxia is a greater contributor
to genomic instability as opposed to chronic hypoxia. This may
be attributed to the generation of reactive oxygen species during
periods of reoxygenation of acutely hypoxic regions. In-vivo
observations have shown that cells incubated under chronic
hypoxia conditions are more invasive than those incubated under
acute hypoxia (Bayer and Vaupel, 2012). CD31-positive vessels
within the Hoechst ROI (i.e., also positive for Hoechst staining)
are considered perfused. Hypoxic gradients relative to perfused
vessels would primarily be indicative of chronic hypoxia, due to
the balance between diffusion and consumption of oxygen as it
exits perfused vessels into surrounding tissue. Hypoxia gradients
from perfused vessels measure chronic hypoxia, whereas distance
to all vessels measures both chronic and acute hypoxia. Non-
perfused vessels occur due to transient vessel occlusion within
tumors, leading to the presence of acute hypoxia around these
vessels. Each distance analysis provide unique insights about
the tumor microenvironment. By combining these analyses, it
may even be possible to measure changes in acute hypoxia (i.e.,
distance to non-perfused/collapsed vessels). However, if there is
no need to differentiate the type of hypoxia, distance to all blood
vessels is sufficient to capture the hypoxic heterogeneity within
the tumor.

To compare distance gradients across multiple samples, one
way would be to measure the change in marker intensity across
the observed distance of the gradient. In a study, this distance
should be constant across both control and experimental (i.e.,
200µm). Calculating the difference in intensity would also
correct for background signal, such as EF5 intensity at 10µm
or EdU intensity at 200µm from a blood vessel. Furthermore,
the slopes of the distance gradient in either of the graphs
provide different insights. Metabolic oxygen consumption rates
could be measured by calculating the slope (calculated as the
difference in EF5 intensity divided by distance from perfused
or all vessels) in vessel distance analysis; while the cell-intrinsic
hypoxia tolerance/sensitivity could be measured by calculating
the slope (difference in EF5 intensity divided by distance from
necrosis) in necrosis distance analysis. Statistically significant
differences in either slope would be indicative of meaningful
biological changes, such as a change in oxygen consumption
rate or oxygen concentrations needed for cellular division
(DeBerardinis et al., 2008; Zannella et al., 2013). An alternate
method of comparing distance gradients would be to fit the
observed curve using a predictive mathematical model, and
compare the curve fit parameters across control and experimental
groups. Regardless of choice of model used, the change in marker
intensity serves biologically meaningful conclusions, providing
valuable insight into both oxygen consumption rate, and
hypoxia tolerance.
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Another consideration for clinical immunostaining is the
challenge withmultiplexingmarkers on the same tissue slide. The
use of serial section immunostaining and alignment/registration
of these sections can help compare multiple markers in this
setting, though care should be taken with interpretation, due to
the presence of different cells in subsequent tissue sections. We
simulated this by aligning serial immunofluorescence sections
(data not shown). Since hypoxia is present more in regions of low
oxygen within the tissue than in particular cells, the proportion
of hypoxic staining observed when aligning the DAPI signal
from a serial section was similar. However, the number of EdU
positive cells observed was greatly reduced, as expected due to the
precise intranuclear localization of that marker in proliferating
cells. Thus, comparing specific co-localization of cell-specific
markers would not be recommended, but comparing micro-
regional differences in hypoxia, or the proportion of particular
cell types on a regional basis, may be possible.

CONCLUSION

We have presented several distinct but overlapping
methods for analyzing hypoxia and proliferation in solid
tumor microenvironments. Each methodology can provide
complementary information on the nature of hypoxia within
tumors, with different approaches potentially necessary based
on the accessibility of markers, and the nature of the scientific
question posed. Classification strategies, identifying thresholds
for positivity of either pixels or cells, are useful for obtaining an
estimate of the percentage of hypoxia within tissues, but suffer
from the need to set a specific threshold, which is challenging in
the case of a spatially varying signal such as hypoxic gradients.
ROI-based distance analyses can be performed on histological
images with limited markers, but relies on differences in
either tissue morphology or marker intensity to segment these
regions. This results in, for example, hypoxic regions of interest
containing a range of intensities of the hypoxia marker. Flow
cytometry-like scatter plots are useful for visualization and
gating of single- and double-negative or positive cell populations,
and can be colored by distance to vessel. By segmenting the
tissue regions to identify perfused vessels, viable tissue, and
necrosis, and calculating per-cell distances to these regions, a
distance vs. intensity plot can be used to observe changes in
cellular phenotypes as a result of decreasing oxygen supply,
in order to quantify hypoxia gradients. These methods can be
useful to analyze changes in the tumor microenvironment as a

result of therapy and as a tool to assess patient hypoxic status in
tissue biopsies.
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