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Abstract
Outbreaks of infectious viruses resulting from spillover events from bats have 
brought much attention to bat- borne zoonoses, which has motivated increased 
ecological and epidemiological studies on bat populations. Field sampling methods 
often collect pooled samples of bat excreta from plastic sheets placed under- roosts. 
However, positive bias is introduced because multiple individuals may contribute to 
pooled samples, making studies of viral dynamics difficult. Here, we explore the gen-
eral issue of bias in spatial sample pooling using Hendra virus in Australian bats as 
a case study. We assessed the accuracy of different under- roost sampling designs 
using generalized additive models and field data from individually captured bats and 
pooled urine samples. We then used theoretical simulation models of bat density 
and under- roost sampling to understand the mechanistic drivers of bias. The most 
commonly used sampling design estimated viral prevalence 3.2 times higher than 
individual- level data, with positive bias 5– 7 times higher than other designs due 
to spatial autocorrelation among sampling sheets and clustering of bats in roosts. 
Simulation results indicate using a stratified random design to collect 30– 40 pooled 
urine samples from 80 to 100 sheets, each with an area of 0.75– 1 m2, and would 
allow estimation of true prevalence with minimum sampling bias and false negatives. 
These results show that widely used under- roost sampling techniques are highly sen-
sitive to viral presence, but lack specificity, providing limited information regarding 
viral dynamics. Improved estimation of true prevalence can be attained with minor 
changes to existing designs such as reducing sheet size, increasing sheet number, and 
spreading sheets out within the roost area. Our findings provide insight into how 
spatial sample pooling is vulnerable to bias for a wide range of systems in disease 
ecology, where optimal sampling design is influenced by pathogen prevalence, host 
population density, and patterns of aggregation.
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1  | INTRODUC TION

Recent emergence of bat- borne viruses has motivated an increase 
in ecological and epidemiological studies on bat populations at 
the global scale (Calisher et al., 2006; Halpin et al., 2007; Wang & 
Cowled, 2015). Initial efforts focused on discovering the reservoir 
host(s) of these emerging infections (Breman et al., 1999; Chua 
et al., 2002; Halpin et al., 2000; Jayme et al., 2015; Li et al., 2005; 
Towner et al., 2009) and identifying other potential viral zoonoses 
in bats (Anthony et al., 2013; Drexler et al., 2012; Quan et al., 2013; 
Smith & Wang, 2013). However, less work has been done to describe 
the dynamics of viruses in bat populations in time and space (Becker 
et al., 2019). Spatiotemporal sampling is therefore critical to provide 
insights into the broader ecological context surrounding spillover 
and to understand the factors that lead to the emergence of bat- 
borne viral diseases in humans (Plowright et al., 2019).

A common approach in bat- borne disease research involves the 
capture of many individual bats repeatedly over time, where bats are 
sampled (e.g., serum, urine, feces, saliva) and tested for viral presence 
using serology or PCR. In the best case scenario, repeated (longitu-
dinal) samples are obtained from individuals, enabling description of 
dynamics at the individual level. Individual- level longitudinal data 
are rare (Becker et al., 2019) and are most often available for high- 
fidelity cave- roosting bats which can be recaptured at the same 
roosting site (Streicker et al., 2012; Towner et al., 2009). Longitudinal 
data are very difficult to gather from tree- roosting megachiroptera, 
such as the highly mobile nomadic foragers Pteropus and Eidolon 
genera (Hayman et al., 2012); therefore, individual- level sampling in 
this context is typically done cross- sectionally over time. Moreover, 
catching individual canopy roosting bats is logistically challenging 
and expensive, and therefore, sample sizes are often too small to 
detect pathogens that circulate at low prevalence. Therefore, much 
research has supplemented the capture of individual bats with a 
noninvasive sampling technique that uses plastic sheets to collect 
pooled samples of bat excreta (e.g., urine and feces) under bat roosts 
referred to as “under- roost sampling” (Baker et al., 2012, 2013; 
Bourgarel et al., 2018; Chua, 2003; Chua et al., 2001, 2002; Edson, 
Field, McMichael, Jordan, et al., 2015; Field et al., 2011, 2015; Lim 
et al., 2019; Lima et al., 2013; Marsh et al., 2012; Memish et al., 2013; 
Mendenhall et al., 2019; Peel et al., 2019; Pritchard et al., 2006; Smith 
et al., 2011; Valitutto et al., 2020; Wacharapluesadee et al., 2010).

Under- roost sheet sampling was initially implemented in 1998 
to isolate Nipah and Tioman viruses from urine collected from 
Pteropus hypomelanus and P. vampyrus in Malaysia (Chua, 2003; 
Chua et al., 2001, 2002). It has subsequently been widely adopted 
to study coronaviruses (Bourgarel et al., 2018; Lim et al., 2019; Lima 
et al., 2013; Memish et al., 2013; Mendenhall et al., 2019; Valitutto 
et al., 2020) and henipaviruses (Baker et al., 2012, 2013; Edson, 
Field, McMichael, Jordan, et al., 2015; Field et al., 2011, 2015; Marsh 
et al., 2012; Peel et al., 2019; Pritchard et al., 2006; Smith et al., 2011; 
Wacharapluesadee et al., 2010) in bat populations. The most salient 
complication of under- roost sampling is that it only provides indi-
rect measures of viral prevalence; that is, viral presence– absence is 

recorded for a group of bats roosting above a sampling sheet during 
a certain time period. In this scenario, samples are comprised of 
urine droplets or fecal particles from an “area” that may be pooled 
to constitute sufficient volume for an array of molecular assays (i.e., 
PCR or viral isolation). Although this is a necessary compromise, the 
clustered nature and fluctuations of bat density within a roost may 
confound results because an unknown and variable number of indi-
viduals contribute to a sample. In lieu of these confounding effects, 
under- roost sampling as it is commonly implemented may therefore 
introduce systematic sampling bias in the form of increased sensitiv-
ity to detecting virus.

The increased sensitivity of pooled samples in disease surveil-
lance is well- known. Sample pooling was first used during World 
War II to avoid the “expensive and tedious” process of monitoring 
syphilis in US soldiers (Dorfman, 1943). It has since been used as 
a cost- effective method to screen for HIV infection in developing 
countries (Behets et al., 1990; Litvak et al., 1994), and more re-
cently, it has been employed to increase the efficiency of detecting 
cases of SARS- CoV- 2 infection in the ongoing COVID- 19 pandemic 
(Aragón- Caqueo et al., 2020; Griesemer et al., 2020; Narayanan 
et al., 2020). Pooled sample testing is also common in surveillance of 
agricultural diseases of livestock (Arnold et al., 2005; Christensen & 
Gardner, 2000), poultry (Arnold et al., 2009; Fereidouni et al., 2012), 
and aquaculture (Laurin et al., 2019), where a pooled sample is used 
to determine the presence or absence of a disease within a closed 
population. The resource efficiency of such pooled sampling tech-
niques stems from heightened sensitivity of quantitative PCR tests 
within each sample (Muniesa et al., 2014; Muñoz- Zanzi et al., 2006). 
In this regard, pooled sampling is well- suited for disease surveil-
lance because the higher sensitivity is advantageous when pathogen 
prevalence is very low and access to individuals in the population 
is hindered. The high sensitivity of pooled samples, however, be-
comes problematic when used to estimate prevalence (Cowling 
et al., 1999)— a classic statistical problem resulting from data aggre-
gation, often referred to as the “ecological fallacy” (Robinson, 2009). 
In the context of under- roost sampling to estimate prevalence of a 
bat virus, this sampling conundrum is inherited from the initial appli-
cation of the under- roost sampling technique which was to detect 
and isolate viral agents, not necessarily to study viral dynamics. Still, 
a few recent studies have employed the technique to describe tem-
poral patterns in viral prevalence (Field et al., 2015; Páez et al., 2017; 
Peel et al., 2019; Wacharapluesadee et al., 2010); however, the ex-
tent to which the data are vulnerable to sampling bias has not been 
explored.

Here, we contribute the first modeling study to theoretically 
explore the application of under- roost sheet sampling to estimating 
viral prevalence in tree- roosting bat populations and quantify the 
potential sampling bias introduced by different sampling regimes. 
We focus on tree- roosting pteropodid bats because they are res-
ervoir hosts of henipaviruses which constitute public health risks 
across Africa, Asia, and Australia; based on their highly mobile pop-
ulation structure, under- roost sampling techniques are especially 
useful but also prone to bias due to sample pooling. To show the 
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extent of estimation bias resulting from sample pooling on pathogen 
prevalence, we fit generalized additive models (GAM) to previously 
published data of Hendra virus prevalence variation over time in 
Australian fruit bats at the individual level and two levels of sample 
pooling. We then developed spatial simulation models of bat den-
sity within a tree roost and under- roost sampling designs and then 
performed a global sensitivity analysis to assess which aspects of 
under- roost sampling impact sampling bias most strongly. Our GAM 
results show that pooling of urine samples collected with the under- 
roost sampling method leads to overestimation of the prevalence 
of virus. Further, we show that our simulation model elucidates the 
mechanistic drivers of estimation bias and provides recommenda-
tions on how to optimize under- roost sampling for the surveillance 
of infectious bat viruses by minimizing bias and maintaining suffi-
cient detection rates.

2  | METHODS

2.1 | Estimating viral prevalence from individual and 
pooled samples

To assess potential sampling bias in estimates of the temporal 
fluctuations in viral prevalence resulting from pooled samples, we 
fitted generalized additive models (GAMs; Wood, 2006) to exist-
ing “presence– absence” field data of virus detections. From these 
data, we modelled the probability of viral presence as the response 
variable and sampling date as predictor variable for different lev-
els of sample aggregation: (a) a broad spectrum of samples from 
individual bats (i.e., no sample aggregation) and (b) urine samples 
from multiple roosting bats collected by under- roost sampling 
techniques. Due to the intermittent sampling of these data, there 
are many dates for which data are not available. Fitting GAMs here 

allows estimation of viral prevalence as smoothed functions and 
nonlinear response curves over time, enabling comparisons of 
whether different levels of data pooling would result in different 
conclusions about the temporal fluctuation in viral prevalence. The 
field data were collected as part of a Hendra virus study in Australia 
that collected almost 15,000 urine samples across a 2,300 km lati-
tudinal gradient (Field et al., 2015), methods for data collection 
have been described in detail elsewhere (Edson, Field, McMichael, 
Vidgen, et al., 2015; Edson et al., 2019; Field et al., 2011, 2015). 
The data are comprised of two field survey efforts conducted 
between June 2013 and June 2014 in Boonah, Queensland, at an 
urban roost of pteropodid bats (i.e., Pteropus alecto, P. poliocepha-
lus, and P. scapulatus). The first data set measures viral infection 
and routes of excretion for 1,012 individual black flying foxes 
(P. alecto) captured at the study roost (see Figure 1a). Viral infec-
tion was recorded as present if RT- PCR analyses returned a cycle 
threshold (Ct) value of <40 for samples taken from any route of 
excretion (e.g., urine, urogenital, serum, nasal, oral, and rectal; see 
Edson, Field, McMichael, Vidgen, et al., 2015; Edson et al., 2019). 
The second data set measured viral prevalence at the roost scale 
using the under- roost sheet sampling method where large plastic 
sheets are divided into quadrants and urine samples are pooled 
within each sheet quadrant for RT- PCR testing with the same 
threshold of Ct <40 for positive samples (see Field et al., 2011, 
2015). We used these roost- scale data to calculate viral prevalence 
at two levels of sample aggregation: (a) “pooled quadrant” samples 
which are comprised of pooled urine samples within each sheet 
quadrant (Figure 1b) and (b) “pooled sheet” samples which are 
comprised of a combined result for all pooled samples collected 
from a sheet, that is, across all four quadrants (Figure 1c). Note 
that the individual bats sampled are not necessarily the same bats 
that contributed to urine collected via the under- roost method, 
though sampling was temporally aligned within 7 days (0– 19 95% 

F I G U R E  1   Conceptual drawing of sampling techniques commonly used to estimate viral prevalence at the roost level. Individual- level 
sampling is shown in (a) where individual bats are captured and each provides a sample that is used to calculate prevalence. Both (b) and (c) 
show under- roost sampling techniques that collect urine droplets from plastic sheets laid beneath roosts. The pooled quadrant technique 
(b) pools urine droplets that fall within each of the four quadrants of a plastic sheet. The pooled sheet technique (c) pools urine droplets 
within each plastic sheet. The examples of prevalence calculation show how overestimation of prevalence at the roost level can occur due 
to multiple bats contributing to a sample. Note that this toy example assumes all bats are captured and the assay used to test samples has 
perfect sensitivity and specificity
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CI). We fit a GAM with quasi- binomial error structure and a thin- 
plate spline based on date of sampling to the viral presence data 
collected at the individual, pooled quadrant, and pooled sheet lev-
els (Wood, 2006). We then assessed the smoothed models by cal-
culating the bias in mean estimated viral prevalence of the pooled 
quadrant and pooled sheet models in comparison with individual- 
level model.

2.2 | Modeling bat population density in a roost

Day roosts of pteropodid bats encompass many trees, with in-
dividuals often moving within the roost throughout the day due 
to mating behaviors or in response to roost disturbance (Kunz & 
Fenton, 2006), so we modeled bat density within a generic bat 
roost with a Poisson cluster process of roosting positions and 
a spatial Gompertz probability density function that reflects 
movement within a roosting site. Specifically, bat density within 
roost area A (a disk with radius r) is constructed in four stages 
that include the following: (1) placement of roosting trees within 
the roost area, (2) clustering of individual bats around them, (3) 
individual- level movement within a tree, and (4) a separate model 
of roost- wide movement. We used a Thomas cluster process to 
simulate the spatial clustering of bat positions around trees, using 
the rThomas function from the spatstat package in the R pro-
gramming language (Baddeley et al., 2015; R Core Team, 2016). 
Tree locations (parent points) were randomly distributed within A 

subject to a homogeneous intensity �, given by nt/A, where nt is 
the number of occupied trees in the roost. The mean number of 
bats in each roost tree µ is simulated by the cluster point process 
so that µ is stochastic with Poisson distributed error. Individual 
bat positions are determined according to an isotropic Gaussian 
kernel centered on each tree with radius rt. Note that even when 
parameters �, rt, and µ are fixed, the number of bats in the roost 
Nb will still vary upon each simulation because the Poisson point 
process is stochastic. In simulation scenarios, we chose ranges for 
parameters of roost structure and bat density based upon unpub-
lished field data and expert observations (see Table 1 for a list of 
variables used to define each scenario).

Bat movement was modeled at the individual level and roost 
level (see Figure 2). To model individual- level movement, we cal-
culated a kernel density estimate for the simulated point process 
that sums Gaussian kernels with a radius of 0.5 m centered on 
each bat position. We modeled roost- wide movement with a spa-
tial Gompertz probability density using the dgompertz function 
from the flexsurv package (Jackson, 2014). The distribution of 
the Gompertz is controlled by shape and rate parameters that de-
termine the function's curvature and rate of decay, respectively. 
We chose ranges for these parameters that make the least assump-
tions about movement, where values are high for a large area at the 
roost's center, but decay quickly toward the edges. To make the 
final kernel density estimate for bat density, we combined models 
of individual-  and roost- level movement and ensured that the func-
tion integrated to 1 (Figure 2).

TA B L E  1   Fixed and varied parameter values used in each of the four scenarios

Parameter Description Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

nsim Number of simulations 1,000 1,000 10,000 10,000 1,000

Type Type of sheet- based design QUSR QUSR QS S Q

r Radius of roost (m) 30 30 Unif(25, 50) Unif(25, 50) Unif(25, 50)

p True prevalence 0.1 Unif(0, 1) Unif(0, 1) Unif(0, 1) Beta(0.38, 7.43)a

pu Probability of urine contribution 0.5 0.5 Unif(0.2, 0.8) Unif(0.2, 0.8) Unif(0.2, 0.8)

S Area of sheetb (m2) 0.25 0.25 0.25 Unif(0.25, 2) 2.34

h Number sheets placed under- roostc 100 100 100 Unif(25, 150) 10

ds Distance between sheetsd (m) 2 2 2 Unif(0, 5) 2

ns Number of sheetsc 100 100 100 25– 150 – 

nt Number of occupied roost trees 50 50 Unif(25, 75) Unif(25, 75) Unif(25, 75)

rt Mean radius occupied roost trees 3 3 Unif(2, 6) Unif(2, 6) Unif(2, 6)

µ Mean number individuals per tree 100 100 Unif(25, 150) Unif(20, 150) Unif(20, 150)

Shape Curvature of movement kernel 0.8 0.8 Unif(0.5, 2) Unif(0.5, 2) Unif(0.5, 2)

Rate Movement decay rate at roost edge 1 1 Unif(1, 2) Unif(1, 2) Unif(1, 2)

Note: For scenarios 2– 5, min and max set the minimum and maximum values of a uniform probability distribution within a random Latin hypercube 
sampling approach.
Abbreviations: Q, quadrant; R, random; S, stratified; U, uniform.
aParameters fitted to observe individual- level Hendra virus prevalence data.
bSmall- sheet designs only. Quadrant- design fixed at 2.34 m2 per sheet quadrant.
cSmall- sheet designs only. Quadrant- design fixed at 10 sheets with 4 quadrants each.
dStratified design only.
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2.3 | Modeling under- roost sheet sampling designs

Under- roost sampling designs typically use large sheets placed 
under- roost trees, and urine droplets or fecal particles are pooled 
into an aggregate sample from the area (or subarea) of each sheet. 
Most studies provide minimal description of the sheet sampling de-
sign; however, Wacharapluesadee et al. (2010), Field et al. (2015), 
and Edson, Field, McMichael, Jordan, et al. (2015) describe their 
quadrant- based sheet design in greater detail (i.e., sheet dimensions, 
number of sheets, pooling of urine samples). We therefore explored 
the effect of four different under- roost sheet sampling designs: 
quadrant, uniform, stratified, and random (Thompson, 2012) [see 
Figure 3]. An efficient way to simulate each sampling design within 
two- dimensional circular space uses hexagonal tiles, where the size 
and combination of tiles selected can replicate different sheet- based 
sampling designs. We calculated the number of bats roosting and 
moving above a sampling sheet by using the area of each hexagonal 
polygon to define the space of integration S.

We determined the dimensions for the quadrant- based design 
using descriptions of under- roost sheet sampling of Australian fruit 
bats found in Field et al. (2015) and Edson, Field, McMichael, Jordan, 
et al. (2015). Here, 10 large 3.6 × 2.6 m sheets were placed under 
the roost and divided into 1.8 × 1.3 m quadrants, where urine sam-
ples were pooled within each quadrant (allowing up to 4 samples per 
large sheet). Considering each quadrant to be its own “sheet,” we 
replicated this sampling design by making a hexagonal grid with each 
tile area equivalent to a 1.8 × 1.3 m rectangular sheet. Groupings 
of 4 hexagonal tiles then suffice as a large sheet with 4 quadrants. 

In each simulation, we generated 10 sheet positions within A using 
a simple sequential inhibition point process with the rSSI function 
of the spatstat package (Baddeley et al., 2015). To ensure that 
all sheets retained the same quadrant orientation and that no two 
sheets were directly adjacent, we generated sheet positions within 
a disk of A − 3m and set the inhibitory radius to 3s, where s is the 
hexagonal cell size. The four cell centers nearest each of the 10 simu-
lated point locations comprised the 40 (10 × 4 quadrants) hexagonal 
tiles for the quadrant- based design (Figure S2).

To test our hypothesis that a larger number of smaller sheets will 
estimate roost- level prevalence more accurately, we generated hex-
agonal grids with cell size s that select h number of tiles in a uniform, 
stratified, or random pattern. Both uniform and random designs are 
straightforward, but the stratified sampling design was generated 
using a sequential inhibition point process, where random points are 
laid down sequentially, retaining only those that are placed further 
than a specified inhibitory radius rs. This is similar to a person at-
tempting to lay down sheets randomly with one rule in mind— “Do 
not place sheets within rs distance of each other.” We simulated 
sheet sampling designs with the sheetsamp function in the R code 
provided in Supporting Information. Figure 3 displays an example of 
a simulation which has generated the previously implemented large- 
sheet quadrant design and three additional “small- sheet” designs 
that use a larger number of smaller (1 × 1 m) more dispersed sheets.

2.4 | Calculating estimated prevalence

Given a roost area A, the polygons produced by the sheetsamp 
function (described above) generate the sheet sampling area S, so 
that S ⊂ A, and Sh = {S1, S2,…, SH}, where H is the total number of 
sampling sheets. We derived bat density from a simulated Poisson 
cluster point process and then estimated its intensity function λ(x) 
for area A. This method uses kernel density as an unbiased estima-
tor of λ(x), which includes clustering of bats around trees, individual- 
level movement within the tree canopy, and roost- level movement 
to render �̃(x). The expected number of bats roosting and moving 
above a specific sheet Sh placed at position (xh, yh) is the integral of 
the estimated intensity function �̃(x) over the sheet area multiplied 
by the number of bats Nb generated by the stochastic point process.

Bats in the upper strata of the canopy are less likely to contribute 
urine to the sheet below because of obstruction by individuals below 
or factors in the environment (e.g., wind, tree branches). Therefore, 
a urine sample is collected from each of the sheets S according to 
a probability of urine contribution and collection pu, with variation 
given by N(pu, σ2). The number of individuals contributing to each 
pooled sample Cb is calculated as

(1)E[N(Sh)] = ∫ShNb �̃(x)dx

(2)
Cb = ∫Sh puNb �̃(x)dx,

F I G U R E  2   Changes in Hendra virus prevalence over time at 
a roost in Boonah, Queensland, from May 2013 to June 2014. 
Solid lines show viral prevalence estimated by generalized 
additive models (GAMs) fitted to observe field data collected 
from individually captured bats (red), and under- roost sampling 
techniques that aggregate urine samples at the pooled quadrant 
level (blue) and at the pooled sheet level (green). Note that the 
GAM for individually captured bats begins in later because the 
study period for this level of sampling begins in June 2013. See 
Figure 1 for conceptual drawing of sampling types. Shaded regions 
indicate the standard error of fitted GAMs. [Correction added on 
17 September 2021, after first online publication: Figure 2 caption 
has been updated in this version.]
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where Cb is a vector of length H, containing the number of contrib-
uting bats per sheet.

Assuming heterogeneous prevalence within the roost, the 
number of infected bats Db in the sample is the sum of Cb inde-
pendent Bernoulli trials with success probability equal to the true 
prevalence p.

Given the number of infected bats Db and the probability of urine 
collection pu, we can calculate the probability of obtaining a nega-
tive sheet as (1−pu)

Db. Assuming that urine contribution from one 
infected bat is sufficient to make a sheet sample positive, the infec-
tion status of all sheets is a binary vector Ih indicating the positivity 
for the H sheets of S.

To calculate estimated sheet- level prevalence p̂, the number of 
positive sheets 

∑H

h=1
Ih is divided by the number of urine samples col-

lected at the roost ns, which is the sum of a binary vector indicating 

that the urine of one or more individuals was contributed and col-
lected for all of the H sheets of S.

where

2.5 | Simulation scenarios of bat population 
density and under- roost sampling

Each simulated iteration generates an estimated intensity function 
for bat density and then performs under- roost sampling using each 
of the four sampling designs. Therefore, each sampling design is 
tested using the same set of bat density functions, facilitating com-
parison. Parameters for sheet size s and number of sheets H were 
fixed for the quadrant- based design to replicate the previously im-
plemented field methods described above. Parameters controlling 
sampling dimensions for the three small- sheet designs were either 
fixed or varied over a range of plausible values depending on the 
question the simulations were meant to address— see Table 1 for a 
list of parameter values used in each scenario. For each iteration, we 

(3)Db =

Cb∑
i=1

[Bin(1, p)]i

(4)Ih =

⎧
⎪⎨⎪⎩

0, if Db=0

1, if Db≥1

(5)p̂ =

∑H

h=1
Ih

ns
,

(6)ns =

H∑
h=1

[Cb≥1]h.

F I G U R E  3   Illustration of one simulation of a kernel density estimation of bat density within a roost. The top row shows pixel images, and 
the bottom row shows perspective plots of: the density of roosting positions and individual- level movement around them (left), an isometric 
Gompertz probability density function centered on the roost to model roost- level movement (middle), and the final estimated intensity 
function used to model bat density (right). [Correction added on 17 September 2021, after first online publication: Figure 3 caption has been 
updated in this version.]
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calculated estimated prevalence p̂ of each under- roost sheet sam-
pling technique and its bias as an estimator of true prevalence (p̂ − p) . 
We also calculated additional metrics such as the probability of ob-
taining a negative sheet (1−pu)

Db, the occurrence of a false negative 
(�pi = 0 |pi > 0), Moran's I among sheets (Getis, 1973), and the Clark- 
Evans R clustering coefficient for individual bat roosting positions 
(Clark & Evans, 1954).

In the scenarios 1 and 2, we explored local sensitivity between 
estimated prevalence and some possible confounders and sources 
of bias, with values of other parameters fixed. To perform a simple 
comparison between the four under- roost sheet sampling methods, 
we fixed all values of bat density and movement to simulate a roost 
with a 30 m radius and a mean number of 5,000 individuals (see sce-
nario 1 in Table 1). We performed 1,000 simulations with true prev-
alence p set at a plausible value of 0.1 according to mean prevalence 
estimated for roosts near the QLD- NSW border in Field et al. (2015). 
Estimated prevalence values were plotted, along with the probabil-
ity of obtaining a negative sheet for each sampling design. To explore 
estimation bias over all values of true prevalence, we kept parameter 
values the same as scenario 1, but we allowed true prevalence to 
vary from 0 to 1, and then plotted true versus estimated prevalence 
along with mean estimation bias (scenario 2 in Table 1).

In scenarios 3 and 4, we performed a large number of simulations 
(nsims = 10,000) and allowed parameter values for each simulation to 
vary using Latin hypercube sampling. We then analyzed the output 
using boosted regression trees (BRTs; De’ath, 2007; Elith et al., 2008) 
as a global sensitivity analysis (described in Prowse et al. (2016)) to 
identify the main sources of estimation bias and determine the opti-
mal application of under- roost sheet sampling. Here, to link simulation 
inputs (varied parameters) with simulation outputs (we used estima-
tion bias and false- negative rate as responses). Parameter values 
were randomly sampled using the randomLHS function in the lhs 
package (Carnell, 2016), and BRTs were fitted using the gbm.step 
function and the gbm and dismo packages (Hijmans et al., 2016; 
Ridgeway, 2016). BRTs were fitted with appropriate error structure 
(Gaussian or Binomial) and meta- parameters set to ensure that the 
number of fitted trees exceeded 1,000, following Elith et al. (2008), 
with tree complexity, learning rate, bagging fraction, and number of 
cross- validation folds set to: 4, 0.005, 0.7, and 10, respectively. BRTs 
act as an effective emulator here because they fit complex nonlinear 
relationships with up to third- order interactions (tree complexity = 4) 
among model parameters. Relative variable influence and individual 
response curves for each variable further allow general description of 
how sensitive estimation bias is to each parameter.

In scenario 3, we compare the quadrant- based design with the 
stratified design while accounting for the variability in all other pa-
rameters to determine the main drivers causing differences in esti-
mation bias. We chose to use only the stratified design as a candidate 
small- sheet design because the first two simulations suggested 
that the three small- sheet designs produce similar results, and the 
stratified design is most plausibly replicated in the field. Based on 
preliminary models, it appeared that a small- sheet sampling design 

which used ~100 sheets with an area of ≤1 × 1m2 could attain low 
estimation bias. So, we fixed the parameters controlling sheet di-
mensions accordingly to facilitate comparison between the quadrant 
and stratified methods (see simulation 3 in Table 1).

To explore the optimal application of the stratified sampling de-
sign, we performed a global sensitivity analysis using only the strat-
ified sampling design in scenario 4. All parameters were varied as in 
scenario 3; however, sheet area s, number of sheets H, and distance 
between sheets (ds; previously fixed at 2 m) were also varied over 
intervals of interest (scenario 4 in Table 1). We used a Latin hyper-
cube to sample the parameter space and then fitted two BRT models 
using the variables that control the sheet sampling design as predic-
tors (i.e., sheet area, number of sheets, distance between sheets, and 
number of samples): the first model we fitted with Gaussian error 
and estimation bias as the response and the second with Binomial 
error and a binary response indicating occurrence of a false- negative 
prediction for viral presence.

We validated the theoretical model of bat density and under- 
roost sheet sampling in scenario 5, where we simulated values of 
true prevalence that were based on the distribution of observed 
values of Hendra virus prevalence in the individual- level field data. 
We simulated the individual- level data by fitting a Beta distribution 
to observed values of prevalence using maximum- likelihood estima-
tion and then used this distribution in the Latin hypercube sample 
of the parameter space (see scenario 5 in Table 1). We then used 
the quadrant- based sheet sampling design to match the under- roost 
sampling techniques that produced the pooled quadrant level and 
pooled sheet- level data (see Field et al., 2011, 2015). To assess 
how well this scenario simulates the observed field data, we then 
calculated the mean bias of the pooled quadrant and pooled sheet 
sampling methods for all simulations and compared them with the 
observed bias in the field data.

3  | RESULTS

Fitting of GAMs to field data provided smoothed estimates of 
Hendra virus prevalence in individual bats and in pooled urine sam-
ples collected using under- roost sampling methods at the Boonah, 
Queensland, study roost from May 2013 to June 2014 (Figure 4 and 
Figure S1). The data capture cycle dynamics at this roost with a clear 
peak in prevalence from June to August 2013 in which the GAM 
using data from individually captured bats (P. alecto) estimated to be 
≈ 0.1, where GAMs fitted to data collected using under- roost sam-
pling methods fitted values of prevalence that were considerably 
higher (pooled quadrant level ≈ 0.4 and pooled sheet level ≈ 0.75; 
see Figure 4). Over the time span of field sampling, we found the 
mean bias of the under- roost method (measured as the difference in 
the mean estimated viral prevalence of the GAM fitted to individual- 
level data compared with the models fitted to under- roost data) to 
be 0.07 (−0.04 to 0.35 95% CI) for the pooled quadrant level and 
0.21 (−0.02 to 0.71 95% CI) for the pooled sheet level. The resulting 
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magnitude of the bias in prevalence estimates was on average 3.2 
times higher (0.31– 6.5 95% CI) when using the pooled quadrant- 
level data and 8.5 times higher (0.47– 23.2 95% CI) for the pooled 
sheet- level data (see Figure 1 for sampling techniques and Figure 4 
for fitted models). Unsurprisingly, these models indicate that under- 
roost sampling methods that use the quadrant- based design to sam-
ple tree- roosting fruit bats are indeed prone to overestimation of 
viral prevalence. Further, when we used the Beta distribution— fitted 
to observed values of viral prevalence from the individual- level 
data— as values of true prevalence in under- roost sampling simula-
tions (see scenario 5 in Table 1), we obtained similar estimates of 
sampling bias for the quadrant- based sheet design (Table S1). This 
simulation scenario estimated the mean bias in prevalence to be 0.06 
(−0.06 to 0.38 95% CI) at the pooled quadrant level and 0.21 (−0.06 
to 0.73 95% CI) at the pooled sheet level. This amount of estimation 
bias produced estimates of viral prevalence that were on average 2.5 
times higher (0– 12.1 95% CI) for the pooled quadrant level and 6.9 
times higher (0– 39.4 95% CI) for the pooled sheet level compared 
with simulated values of true prevalence. While the confidence in-
tervals in the simulated data are larger than those observed in the 
field data, the values of mean bias are closely comparable which pro-
vides validation for using the theoretical models to assess optimal 
under- roost sampling designs.

When we compared the quadrant- based sheet design to the small- 
sheet designs with fixed model parameters (scenario 1 in Table 1), we 
found that at a low value of true prevalence (0.1), the quadrant design 
exhibited strong positive bias and all three small- sheet designs pro-
duced similar estimates close to the fixed value of true prevalence (see 
top row of Figure S3). The differences in estimated values can be par-
tially attributed to the increased number of bats that roost and move 
above the larger sheets, which decrease the probability of obtaining a 
negative sheet (see bottom row of Figure S3). Local sensitivity analysis 
revealed that, at a low value of true prevalence, prevalence estima-
tion for the quadrant- based design is sensitive to spatial autocorrela-
tion among sheets (Moran's I) and clustering of bat roosting positions 
(Clark- Evans R; Figures S4 and S5). However, the small- sheet designs 
are sensitive to the number of bats in the roost (Nb; Figure S6). This 
indicates that, at low values of true prevalence, the quadrant- based 
method remains sensitive to viral presence regardless of the roost 
population size, but will tend to overestimate viral prevalence due 
to the spatial clustering of individuals common to most tree- roosting 
bats. Conversely, small- sheet methods appear less affected by cluster-
ing and spatial autocorrelation among sheets, but they are likely to be 
less sensitive to viral presence at low population sizes.

In scenario 2, where we allowed true prevalence to vary between 
0 and 1 (Table 1), we found that the quadrant design had 5– 7 times 

F I G U R E  4   Examples of one 
simulation of each of the four under- 
roost sheet sampling designs explored 
in this study generated for a roost with 
a 30 m radius. The quadrant design (top 
left), which follows methods found in 
previously published studies (Edson, 
Field, McMichael, Jordan, et al., 2015; 
Field et al., 2011, 2015), is comprised 
of 10 3.6 × 2.6 m sheets, each divided 
into 1.8 × 1.6 m quadrants for pooling 
urine samples. The other three designs 
(uniform, stratified, and random) are all 
“small- sheet” designs that reduce sheet 
area, increase sheet number, and disperse 
sheets about the roost area. The small- 
sheet designs plotted above each contain 
100 one- m2 sheets. The stratified design 
is generated using a sequential inhibition 
process with and inhibitory radius of 2 m. 
[Correction added on 17 September 2021, 
after first online publication: Figure 4 
caption has been updated in this version.]
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the positive bias as the small- sheet designs. The mean estimation 
bias was 0.21 for the quadrant design, and 0.04, 0.03, and 0.04 for 
the uniform, stratified, and random designs, respectively (Figure 5). 
This suggests that, for a roost size of 3,000– 8,000 bats, the esti-
mation bias will consistently be greater for the quadrant design, 
especially for intermediate values of prevalence. Additionally, the 
similarity among the uniform, stratified, and random designs indi-
cates that the exact spatial pattern of the small- sheet method is not 
important— estimation bias is improved by reducing sheet size, in-
creasing the number of sheets, and spreading sheets out within the 
roost area. Using these sampling strategies to reduce estimation bias 
allows under- roost sampling techniques to more effectively emulate 
individual- level sampling.

Scenario 3 showed significant differences in estimation bias 
between quadrant and stratified designs, even when we allowed 
all parameters to vary (Figure 6e). Summary of simulation output 
with the BRT emulator showed higher bias for the quadrant design, 
which is most strongly influenced by the total number of individ-
ual bats sampled across all sheets (

∑
Cb; Figure 6a,b). This suggests 

that the larger sheet area in the quadrant design allows pooling 
of urine samples from more individuals, making the prevalence 
estimates more sensitive to increases in population size. Further, 
a quadrant- based design allows up to four “independent” pooled 
samples to be adjacent each other, effectively inflating the number 

of positive sheets, illustrated by higher estimated prevalence asso-
ciated with high values of Moran's I in Figure 6d. In general, both 
sampling designs are positively influenced by intermediate values 
of true prevalence, number of bats in the roost (leading to a greater 
number of total bats contributing to each sample), and spatial auto-
correlation among sheets. However, the influence of these factors 
is diminished in the stratified design, as shown by the orange points 
in Figure 6b– f.

When we further explored the influence of sheet dimensions 
for the stratified design (scenario 4 in Table 1), we found that 
sheet area s and number of samples collected ns influenced es-
timation bias and probability of false negatives the most, and the 
number of sheets H and distance between sheets ds had less in-
fluence (Figure 7). Specifically, estimation bias increases for sheet 
area >0.5 m2, but the probability of false negatives increases for 
sheet area <0.75 m2. Suggesting that sheet areas in the range of 
0.5– 1 m2 would provide a balance of the two sources of sampling 
bias (Figure 7a,e). The number of sheets had no influence on es-
timation bias; however, sampling designs with less than 80 sheets 
had higher probability of false negatives (i.e., probability of not de-
tecting the virus when it is in fact present; Figure 7b,f). Minimum 
distance between sheets did not have a significant effect on ei-
ther source of sampling bias; however, distances between 2 and 
3 m fitted the lowest maximum probability of false negatives 

F I G U R E  5   Results of 1,000 simulations 
performed over all possible values of true 
prevalence for four different under- roost 
sheet sampling designs (see scenario 2 
in Table 1). The dashed red line indicates 
p̂ = p, and mean estimation bias for all 
simulations is printed in the lower right 
corner of each plot
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(Figure 7b,f). The number of samples collected ns exhibited the 
largest influence among sheet dimension parameters. Estimation 
bias increased with a larger number of collected samples, with the 
possibility for underestimation when under ≈30 samples were ob-
tained (Figure 7d), and the probability of false negatives increased 
below 30– 40 samples (Figure 7h). In general, these results indi-
cate that collecting 30– 40 pooled urine samples with a stratified 
sheet sampling design that uses 80– 100 sheets, each with an area 
of 0.5– 1 m2, that are separated by a minimum distance of 2– 3 m, 
would provide optimal application of the under- roost sampling 
technique that minimizes error introduced by estimation bias and 
false negatives. Further, we calculated the proportion of simula-
tions matching the parameters stated above and found that, given 
a roost population size >5,000, 89% of simulations had at least 30 
sheets that collected a urine sample, and 64% collected at least 40 
samples (Figure S7).

4  | DISCUSSION

Under- roost sampling of bat viruses has been employed previously 
in Africa, Asia, and Australia; however, little attention has been given 
to the effects of sampling bias or optimization of sampling designs. 
We used data from field studies of Hendra virus in Australia, which 
have been extensively studied at both the individual and roost scales 
to describe temporal and spatial dynamics of viral transmission in 
bat populations (Edson, Field, McMichael, Vidgen, et al., 2015; Edson 
et al., 2019; Field et al., 2011, 2015; Smith et al., 2011) and eco-
logical drivers of excretion into the environment (Giles et al., 2018; 
Páez et al., 2017). We combined these data to compare viral preva-
lence estimated using individual- level data to that estimated at two 
levels of sample pooling and found that systematic pooling of urine 
samples can lead to overestimation of viral prevalence (Figure 4 
and Figure S1). We also show that theoretical models of bat density 

F I G U R E  6   Results of the global sensitivity analysis performed in scenario 3, where the quadrant (blue points) and stratified (orange 
points) designs are compared to determine what drives differences in estimation bias between the two designs. Table 1 shows the 
parameters used in the simulation. The barplot (a) shows the relative influence of each parameter determined by a boosted regression tree 
emulator. Plots e and f show the value of estimation bias fitted by the emulator as a function of five influential parameters (blue: quadrant, 
orange: stratified sampling design)
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and under- roost sampling can replicate patterns of estimation bias 
observed in field data, allowing us to use simulations to optimize 
under- roost sampling designs. Previous work has elucidated factors 
contributing to sampling bias of zoonotic diseases on larger temporal 
and spatial scales and noted the importance of targeted sampling 
designs (Plowright et al., 2019), but to our knowledge, this is the first 
study to use data and models to investigate the impact of sampling 
bias on the estimation of viral prevalence in bat populations at the 
roost scale.

The simulation scenarios we developed provide insight into the 
mechanistic drivers of estimation bias associated with under- roost 
sampling in a theoretical population of tree- roosting bats. First, 
sampling designs which use large sheets (larger than ~1 m2) and/or 
sheet quadrants to pool urine samples are sensitive to viral pres-
ence, but they potentially overestimate viral prevalence with a bias 
up to 7 times greater than a design with a greater number of smaller 
sampling sheets (Figure 5). Second, estimation bias is affected by 
the number of individuals allowed to contribute to a pooled sample 
and spatial autocorrelation among sampling sheets; however, these 
sources of bias can be reduced by adjusting the sheet sampling de-
sign (Figure 6). And third, assuming a roost population size of over 
5,000 bats, estimation bias can be sufficiently reduced by collecting 

30– 40 pooled urine samples using a stratified sheet sampling design 
that uses 80– 100 sheets, each with an area of 0.75– 1 m2, that are 
separated by 1– 3 m (Figure 7 and Figure S7). While field conditions 
may impact the total number of sheets that can be placed under a 
roost, our results indicate that the large number of sheets increases 
the likelihood that a urine sample is contributed to a sheet despite 
the smaller per sheet area. These insights from simulation models 
enable well- informed hypotheses about the optimal sheet design 
for under- roost sampling, which can help to refine the application of 
under- roost sampling in the surveillance of infectious viruses in wild 
bat populations.

Our recommendations to optimize under- roost sampling differ 
from those previously implemented in the field in that they reduce 
the size of sheet area, increase the number of sheets, and disperse 
them about the roost area. In relation to the best- described methods 
in the literature, this is roughly equivalent to halving the size of sheet 
quadrants in Field et al. (2015) and Edson, Field, McMichael, Jordan, 
et al. (2015) to make 80 0.9 × 0.8 m sheets, and then separating each 
of them by 1– 3 m. Or relative to Wacharapluesadee et al. (2010), the 
sheets could remain 1.5 × 1.5 m (or be reduced to 1 × 1 m), but the 
total number of sheets could be increased by 3– 4 times. McMichael 
et al. (2017) explored a modified under- roost sampling technique 

F I G U R E  7   Global sensitivity analysis of scenario 4, where the influence of sheet dimension parameters is explored to determine optimal 
application of the stratified sheet sampling design. The plots display results from two boosted regression tree emulators: one for estimation 
bias (top row) and the other for the probability of false negatives (bottom row). Each response is plotted against sheet dimension parameters 
(from left to right): sheet area s, number of sheets h, minimum distance between sheets ds, and number of samples collected ns. The red lines 
indicate the trend of the points given by smooth spline regression (sreg function in the fields R package; Nychka et al. (2015))



12318  |     GILES Et aL.

where they tested individual droplets to minimize the risk of mul-
tiple individuals contributing to a sample, but this requires low bat 
density and returns small sample volumes, which limits larger- scale 
application. Therefore, “optimal” application of an under- roost sam-
pling design is still inherently limited to pooled sheet- level estimates 
of prevalence. We also acknowledge that local topography around 
a roost can make implementation challenging. Local factors at the 
roosting site (e.g., physical obstructions, understory vegetation, 
slope) must be considered when applying sampling designs in the 
field. This highlights the difficulty in entirely removing positive bias 
associated with under- roost sampling of bat viruses; however, it can 
be mitigated with a sampling strategy that reduces the area of urine 
pooling and limits spatial autocorrelation among sheets.

Overall, our results indicate that under- roost sampling designs 
as they have been applied in the past are poorly suited to studying 
viral dynamics because of positive sampling bias. For example, Páez 
et al. (2017) analyzed data from an under- roost sampling study (Field 
et al., 2015) and noted that a large amount of variation in viral prev-
alence was explained by differences in sampling sheets, indicating 
that population structure within roosts or sampling bias may have 
introduced additional variation in estimated prevalence. In light of 
the results from our simulation models, pooling urine samples drawn 
from large- sheet areas effectively inflates the number of Bernoulli 
trials in each Binomial sample, which then increases the sensitivity of 
detection at the roost level. This may be observed as overestimation 
when the pooled samples are subsequently used to calculate roost- 
level prevalence in field studies. Although we focus on roost- level 
sensitivity here, we note that sample pooling could also impact assay 
sensitivity within a sample through the dilution (i.e., multiple species 
contributing to a sample) or concentration (i.e., through partial evap-
oration) of urine or fecal matter on plastic sheets. Collecting pooled 
samples from a smaller sheet area may therefore reduce the number 
of bats contributing to a sample, which may require practical con-
sideration of sample volume for required assays. Therefore, these 
small- sheet sampling designs have the potential to reduce overesti-
mation, with the caveat that smaller sheets are less likely to collect 
adequate sample volumes, necessitating a larger number of sheets 
placed under the roost.

While the data and models presented here focus on testing 
pooled urine samples, positive bias associated with under- roost 
sampling designs also applies to viral pathogens found in bat fecal 
samples (Ge et al., 2012). Given that bats have been implicated as 
the probable natural hosts of coronaviruses from which SARS- CoV- 2 
emerged to cause the global COVID- 19 pandemic (Zhou et al., 2020), 
there has been a call for increased surveillance of novel coronavi-
ruses in wild bat populations (Wacharapluesadee et al., 2021). In sce-
narios where surveillance of coronaviruses (or other viral pathogens) 
aims to estimate viral prevalence using excreta collected with under- 
roost sampling designs, the modeling techniques we have employed 
here can be applied to optimize the sampling strategy. Optimization 
of noninvasive sampling in this context will be an important tool to 
balance surveillance efforts required for public health with conser-
vation of wild bat populations.

We have shown that sheet design in under- roost sampling can 
have a significant impact on both the estimation of viral prevalence 
and the false- negative rate when determining viral presence. The 
sampling design employed, therefore, depends on the aim of the 
study, because viral discovery and studies on dynamics require dif-
ferent approaches. Research focusing on viral discovery requires field 
methods that reduce the probability of a false negative regarding viral 
presence (sensitivity). Studies on dynamics must estimate prevalence 
with low bias, requiring samples that are accurately classified as pres-
ent and absent (specificity). Therefore, if a study includes multiple 
aims, an efficient adaptation of a small- sheet design includes pooling 
urine over multiple spatial scales, with samples pooled over a large 
area to test for viral presence with high sensitivity and samples pooled 
over a small area for estimating prevalence with high specificity. This 
type of multistage approach is analogous to “herd- level” testing 
where a pooled sample is used to determine the presence or absence 
of a disease, if a pooled sample is found positive, individual- level sam-
ples are then used to identify infected individuals or calculate preva-
lence more accurately (Martin et al., 1992). Multistage sample pooling 
may be especially useful for other disease systems where individual 
capture of free- ranging host species is not practical, such as aquatic 
animals (Laurin et al., 2019; Sabino- Pinto et al., 2019), poultry (Arnold 
et al., 2009; Fereidouni et al., 2012), livestock (Arnold et al., 2005; 
Christensen & Gardner, 2000), and wildlife (Walton et al., 2016). 
Given the challenges associated with under- roost sampling, our simu-
lation models and recommendations for a small- sheet sampling design 
provide specific changes to existing methods that facilitate further 
adaptation of sampling designs in a model- guided fieldwork approach 
(Restif et al., 2012). If applied in a manner suited for study aims, it can 
achieve longitudinal sampling of a bat population at the roost scale 
that is both cost effective and reduces exposure to infectious viruses.
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