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ABSTRACT
Objective  We aimed to determine the key predictors of 
perinatal deaths using machine learning models compared 
with the logistic regression model.
Design  A secondary data analysis using the Kilimanjaro 
Christian Medical Centre (KCMC) Medical Birth Registry 
cohort from 2000 to 2015. We assessed the discriminative 
ability of models using the area under the receiver 
operating characteristics curve (AUC) and the net benefit 
using decision curve analysis.
Setting  The KCMC is a zonal referral hospital located in 
Moshi Municipality, Kilimanjaro region, Northern Tanzania. 
The Medical Birth Registry is within the hospital grounds at 
the Reproductive and Child Health Centre.
Participants  Singleton deliveries (n=42 319) with 
complete records from 2000 to 2015.
Primary outcome measures  Perinatal death (composite 
of stillbirths and early neonatal deaths). These outcomes 
were only captured before mothers were discharged from 
the hospital.
Results  The proportion of perinatal deaths was 3.7%. 
There were no statistically significant differences in the 
predictive performance of four machine learning models 
except for bagging, which had a significantly lower 
performance (AUC 0.76, 95% CI 0.74 to 0.79, p=0.006) 
compared with the logistic regression model (AUC 0.78, 
95% CI 0.76 to 0.81). However, in the decision curve 
analysis, the machine learning models had a higher net 
benefit (ie, the correct classification of perinatal deaths 
considering a trade-off between false-negatives and false-
positives)—over the logistic regression model across a 
range of threshold probability values.
Conclusions  In this cohort, there was no significant 
difference in the prediction of perinatal deaths between 
machine learning and logistic regression models, except 
for bagging. The machine learning models had a higher 
net benefit, as its predictive ability of perinatal death was 
considerably superior over the logistic regression model. 
The machine learning models, as demonstrated by our 
study, can be used to improve the prediction of perinatal 
deaths and triage for women at risk.

INTRODUCTION
Neonatal survival is at the heart of Sustain-
able Development Goals agenda.1 2 The Every 

Newborn Action Plan to end Preventable 
Deaths set a goal for all countries to reach the 
target of ten or less newborn deaths per 1000 
live births and 10 or less stillbirths per 1000 
total births by the year 2035.3 Furthermore, 
the United Nations set the target of reducing 
neonatal mortality to 12 deaths per 1000 live 
births or fewer by 2030.1 Globally, neonatal 
deaths declined by 51% from 5 million in 1990 
to 2.5 million in 2017. But this decline has 
not been realised in low-income and middle-
income countries, which carries the highest 
burden of neonatal deaths, with south Asia 
and sub-Saharan Africa accounting for 79% of 
the total burden of neonatal deaths in 2017.4 
Furthermore, the under-5 mortality rate has 
decreased almost across the world, but the 
proportions of neonatal deaths remained 
high in this group.5 6 Neonatal deaths 
accounted for 47% of all under-5 deaths in 
2018, and it has increased from 40% in 1990, 
with sub-Saharan Africa bearing the highest 

Strengths and limitations of this study

►► The Kilimanjaro Christian Medical Centre (KCMC) 
Medical Birth Registry cohort data provide a rich 
source of information for monitoring trends, inform 
clinical and administrative decisions, and enables 
complex modelling of the key predictors of perinatal 
deaths, among other adverse pregnancy outcomes.

►► While standard regression models such as logistic 
regression are extensively applied in the literature to 
predict adverse pregnancy outcomes such as peri-
natal deaths, the application of machine learning 
models is limited.

►► Machine learning algorithms may improve the pre-
diction ability of perinatal deaths, and enable triage 
of women at high risk of experiencing adverse peri-
natal outcomes.

►► The birth registry only captured deaths occurring in 
the KCMC hospital hence might have underestimat-
ed the proportion of perinatal deaths.
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burden.6 Globally 2.5 million children died in the first 
month of life in 2018, with approximately 7000 newborn 
deaths every day.6 Nearly three-quarters of these deaths 
occur during the first week, with about one million dying 
on the first day and close to one million dying within the 
next 6 days.6

Globally, more than five million perinatal deaths occur 
each year.2 The majority (95%) of these deaths occur 
in sub-Saharan Africa and Southern Asia.7 According to 
the Tanzania Demographic and Health Survey, the peri-
natal mortality rate has slightly increased from 36 to 39 
deaths per 1000 live births between 2010–11 and 2015–16 
survey rounds, respectively, relative to under-5 mortality.8 
In addition, perinatal mortality rate in Tanzania is the 
highest in East Africa.7

Early identification of pregnant women at risk for 
adverse maternal and perinatal outcomes during the 
prenatal period and timely provision of high-quality 
healthcare services have been reported to improve 
maternal and newborn survival.9 Machine learning (here-
after denoted as ‘ML’) models are methodologies for 
developing algorithms that learn from existing data to 
make predictions on new data.9 ML models have shown 
better predictive performance over the classical or conven-
tional regression models,10 and they can better handle 
a significant number of potential predictors. However, 
there is conflicting evidence of the performance of 
these models. Previous investigators have demonstrated 
that, compared with the classical regression models, ML 
models have superior performance for early differentia-
tion of sepsis and non-infectious systemic inflammatory 
response syndrome in critically ill children,11 in predicting 
neonatal and under-5 mortality,12–16 and critical care and 
hospitalisation outcomes.10 17 18 In contrast, other studies 
have shown no predictive performance benefit of the ML 
models in prediction of clinical outcomes.9 19

The first step in addressing high perinatal mortality is 
the accurate capture and classification of the causes of 
those deaths across all settings.20 WHO International 
Classification of Diseases (ICD-10) is a standardised tool 
used for the classification of deaths occurring during the 
perinatal period: ICD-PM.2 20 21 ML models may be an 
essential tool in the assessment of risk factors for deaths 
during the perinatal period and triage pregnant women 
at high risk of experiencing adverse perinatal outcomes, 
especially in low-resourced settings where the majority of 
perinatal deaths occur at home.22–25 Capturing the chain 
of events that led to the perinatal mortality, from both the 
maternal and the perinatal side, informs the design and 
development of preventative and therapeutic measures.2

Using data from the medical birth registry at Kiliman-
jaro Christian Medical Centre (KCMC) referral hospital 
in northern Tanzania, we aimed to determine the key 
predictors of perinatal death using ML models. Previous 
studies using the same data26–31 applied standard regres-
sion models to assess risk factors for adverse perinatal 
outcomes. A major weakness of conventional regression 
analysis, as opposed to ML models, is that many covariates 

are excluded based on specific model assumptions. 
In contrast, ML techniques which are non-parametric 
in nature find the most predictive groupings of factors 
based on their frequency and strength of association, 
with no particular model assumptions.32 In this study, we 
compared the predictive performance of the ML models 
with the conventional regression analysis, particularly 
logistic regression (Lreg).

METHODS
Study design, setting and population
We conducted a secondary analysis of birth cohort data 
from the KCMC referral hospital, situated in the Moshi 
Municipality of Kilimanjaro region, Northern Tanzania. 
The hospital receives deliveries from nearby commu-
nities and referral cases from other healthcare facilities 
inside the region and the neighbouring regions.33 The 
hospital has an average annual delivery rate of 4000 
births.31 33 34 The study population was women who deliv-
ered singleton babies. We included 42 319 deliveries with 
complete records between 2000 and 2015. We excluded 
records with missing values on the outcome (perinatal 
status) and the covariates as well as pregnancies with 
multiple gestations to avoid over-representation of high-
risk pregnancies.31

Data source
We used data from the KCMC referral hospital medical 
birth registry between the years 2000 and 2015, which 
were collected among mothers who delivered at the 
department of obstetrics and gynaecology. More descrip-
tion of the KCMC medical birth registry is also available 
elsewhere.26 28 31 35 36 Briefly, the KCMC medical birth 
registry is within hospital grounds at the Reproductive and 
Child Health Centre. The birth registry has been in oper-
ation since the year 2000, established to serve both clin-
ical, administrative and research purposes.35 36 Trained 
midwives collected data using a standardised question-
naire (within 24 hours after delivery or later in case a 
mother had recovered from complications), after which 
data are entered into a computerised database located at 
the birth registry. Also, additional data were abstracted 
from the antenatal care (ANC) cards and the hospital 
medical records of the mother.28

A unique hospital identification number was assigned 
to each woman at first admission and used to trace her 
medical records at later admissions, and further to link 
records of successive births of the same woman.36 Data 
captured information on the background characteristics 
of mother and father, mother’s health before and during 
present pregnancy, information about delivery including 
complications, and child characteristics including their 
status (ie, whether dead or alive).

Study variables
The main outcome variable in this study was perinatal 
death which was defined as the number of stillbirths 
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(pregnancy loss that occurs after 7 months of gestation) 
and early neonatal deaths (deaths of live births within 
the first 7 days of life).8 37 The perinatal death was coded 
as binary, that is, ‘yes’ if death occurred during the peri-
natal period and ‘no’ if otherwise. This outcome only 
captured deaths that occurred within the hospital before 
the discharge of mothers. There are no follow-up mech-
anisms for deaths that occur outside the health facility 
(KCMC hospital).

We included a total of 32 predictor variables for the 
ML models. Previous literature informed the selection 
of these variables,4 27 38–45 most of which are available in 
the birth registry. These included maternal and paternal 
background characteristics; age in years, area of residence 
(rural vs urban), highest education level (none, primary, 
secondary and higher), marital status (single, married 
and widow/divorced) and occupation (unemployed, 
employed and others). Further, specific characteristics of 
the mother included referral status (whether referred for 
delivery or not), and the number of ANC visits (<4 and 
≥4 visits).

We excluded maternal body mass index (BMI) and 
HIV status because they contributed to nearly 47% of all 
missing values in the dataset. Maternal health during preg-
nancy included; alcohol consumption, smoking, gesta-
tional diabetes, diabetes, hypertension, pre-eclampsia/
eclampsia, bleeding (ie, the woman observed blood from 
the vagina at any time during the pregnancy), anaemia, 
malaria and systemic infections/sepsis. Variables with 
information concerning delivery included; induction of 
labour (yes or no), mode of delivery (vaginal vs caesarean 
section), presentation (breech vs cephalic), complica-
tions during birth, particularly premature rupture of the 
membranes, postpartum haemorrhage, placenta previa 
and placenta abruption, all categorised as yes and no. 
Gestational age at birth was estimated based on the date 
of the last menstrual period and recorded in full weeks. 
Preterm birth was defined as babies born alive before 37 
weeks of pregnancy are completed.46 Child characteristics 
included sex (male or female), low birthweight defined 
as an infant birth weight of less than 2500 g27 47 and year 
of birth.

Statistical and computational analysis
Data were cleaned and then analysed using Stata V.15.1.48 
Categorical variables were summarised using frequencies 
and proportions. The χ2 test statistic was used to test the 
relationships between a set of independent variables and 
perinatal death. For the ML models (ie, from feature 
selection, training, testing and comparison of the predic-
tive performance of the machines), we used R V.3.6.3.49 
The training dataset contained 70% of randomly selected 
samples used to develop six different ML models to 
predict perinatal death. These are artificial neural 
networks (ANN), random forests (RF), Naïve Bayes (NB), 
bagged trees, boosting and the Lreg model. We used the 
caret package to implement these models in R.

Briefly, ANN is a method constructed from three layers 
of connected nodes: input, hidden and output.50 The 
input where each input variable appears as a node; the 
hidden layer contains several nodes determined during 
the model tuning phase. In contrast, the output layer 
contains several nodes equal to the number of classes to 
be predicted.51 Between these layers, there are weighted 
links,9 50 51 the hidden layer receives a sum of the multi-
plication of the input variables with associated weights 
values plus the bias.50 51 This value is entered into an acti-
vation function, such as a logistic or sigmoid function, to 
decide the class prediction. Outputs of the network are 
interpreted as class probabilities and sum to one.51 We 
used nnet package to construct the ANN model.

RF is an extension of classification and regression 
trees.9 10 51 52 RF performance is better compared with 
bagged trees because it decorrelates the trees,53 hence 
improves accuracy.52 Several forests of decision trees are 
grown using a random bootstrapped training sample. 
Also, instead of using all the variables/features in each 
tree, a random sample of variables are selected and 
tested at each split in each tree.10 51 52 The prediction is 
made for unobserved data by taking a majority vote of 
the individual trees.51 52 We used randomForest package 
to construct the RF model. NB is an effective classifier50 
due to its simplicity, exhibiting a surprisingly competitive 
predictive accuracy.54 NB uses probability theory to find 
the most possible sample class in a classification problem. 
NB has two assumptions: (1) each attribute is condition-
ally independent of the other attributes given the class 
and (2) all the attributes have an impact on the class.51 54 
We used naivebayes package to construct the NB model.

Lreg is a standard multivariate classification method. It 
arises from the desire to model the posterior probabil-
ities via linear functions in covariates, such that besides 
predicting class labels, it provides a probabilistic inter-
pretation of this labeling.53 55 56 Lreg uses a sigmoid func-
tion instead of a linear function to map predictions to 
probabilities between 0 and 1.53 We used glm method to 
construct the Lreg model. Bagging, or bootstrap aggrega-
tion and boosting are general techniques for improving 
prediction rules and accuracy of the resulting predic-
tions, by reducing the associated variance of predic-
tion.53 57 Bagging divides the available data into many 
bootstrap samples and then train a separate model for 
each bootstrap, and then make a final prediction by aver-
aging and voting for regression and classification, respec-
tively.57 Boosting, on the other hand, is a committee-based 
approach that uses a weighted average of prediction from 
various samples. The incorrectly predicted cases from a 
given step are given a higher weight during the next step. 
Thus, it is an iterative procedure, incorporating weights, 
as opposed to simple averaging of predictions.57 We used 
treebag method and gbm package to construct the bagging 
and boosting models, respectively.

In the training set, parameter tuning and cross-validation 
aim to find a balance between building a model that can 
classify the training data effectively without overfitting to 
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the random fluctuations.51 For each ML model, we used 
10-fold cross-validation as a resampling method, where the 
training set is divided equally into 10 parts (folds). There-
fore, every nine folds are used together for training the 
model and the remaining onefold for testing. This training-
testing process is repeated ten times. We performed feature 
selection using the RF algorithm. After selecting the most 
important features, we retained in the dataset and used 
them for analysis in both the training and testing data for 
all models. We used the Synthetic Minority Over-sampling 
Technique (SMOTE) method58 59 to address the class 
imbalance in the outcome (ie, the low proportion of peri-
natal deaths), by specifying the additional sampling to be 
‘smote’ on train control parameter specifications. SMOTE 
is a method that produces artificial minority samples by 
interpolating between existing minority samples and their 
nearest minority neighbors.58 59

Using the testing set (30% of the remaining randomly 
selected sample), we computed the predictive perfor-
mance of the six models (including Lreg model) from 
the training set using the area under the receiver-
operating-characteristics curve (AUC ROC). We used 
the ROCR package for plotting ROC curves, obtaining 
the AUC values and comparison of models using AUC 
values. We also used measures from the confusion matrix 
results (ie, accuracy, sensitivity, specificity, positive and 
negative predictive values (NPV)), and the net benefit 
through decision curve analysis60 61—which quantifies 
whether a machine provides a relevant improvement in 
the prediction. We used epiR package to obtain confi-
dence intervals for the performance measures and DCA 
package (http://www.​deci​sion​curv​eana​lysis.​org) for deci-
sion curve analysis. We further used ggplot2 package to 
plot the decision curves. A good model will have a higher 
net benefit.60 We used Delong’s test to compare the ROC 
between models, where, a p<0.05 was considered statis-
tically significant. The variable importance is a scaled 
measure with a maximum value of 100.17 The R code used 
for this analysis is shown in online supplemental material 
1.

Patient and public involvement
There was no patient and public involvement.

RESULTS
Characteristics of study participants
The characteristics of the participants are shown in 
table 1. A total of 55 003 total deliveries were recorded 
at the KCMC medical birth registry from 2000 to 2015. 
Of these, we excluded 3316 (6%) multiple gestations (to 
avoid over-representation of high-risk pregnancies),31 49 
(0.1%) records missing maternal identification numbers 
(hence could not be linked to child records), 791 (1.4%) 
records with a mismatch between the date of birth and 
unknown sequence (ie, singleton vs multiple births). 
We further excluded a total of 8528 (15.5%) observa-
tions with missing values in both the outcome (perinatal 

status) and covariates. We, therefore, analysed data for a 
total of 42 319 singleton deliveries with complete records 
(figure 1).

The overall proportion of perinatal death among 
42 319 singleton deliveries in this study was 3.7%. The 
proportion of perinatal deaths among mothers aged 
20–34, 35–39 and 40+ years was 3.5%, 4.7% and 5.8%, 
respectively. Mothers with no education (5.6%) and those 
with primary education level (4.4%), who resided in rural 
areas (4.8%), had less than four ANC visits (5.9%), and 
those referred for delivery (7.8%) had a higher propor-
tion of perinatal death. Among fathers, a higher propor-
tion of perinatal death is among those aged 35+years 
(4.1%), with no (9.6%) or with primary education level 
(4.6%) as well as those who were unemployed (5.7%), 
table 1.

Furthermore, the most common obstetric care and 
complications in this birth cohort included induction 
of labour (22.7%), malaria (13.2%), preterm birth 
(10.8%) and LBW (10.2%). About 4% of mothers in this 
cohort experienced pre-eclampsia/eclampsia during 
pregnancy. Less than half of all children were females. 
The proportion of perinatal death among women who 
experienced induction of labour, with malaria, deliv-
ered preterm, delivered LBW baby and experienced pre-
eclampsia/eclampsia during pregnancy was 4.8%, 3.8%, 
14.2%, 17.6% and 12.5%, respectively. The proportion 
of perinatal death is almost similar among males (3.8%) 
compared with females (3.6%) children in this cohort 
(table 1).

The trends in the proportion of perinatal deaths that 
occurred at KCMC between the years 2000–2015 are 
shown in figure  2. Overall, the proportion of perinatal 
deaths has slightly declined over the years by 6% (95% CI, 
0.3% to 12.3%), though this decline was not statistically 
significant (p=0.06).

Variable importance
We used the RF algorithm for feature/variable selection. 
This model selected a total of 20 important predictors 
(figure 3) based on its threshold measure of importance 
out of the 32 variables. We used these 20 variables in all 
the subsequent analysis for all models in both training 
and testing sets.

Predicting perinatal deaths
The discriminatory abilities of all models for the predic-
tion of perinatal death are in figure 4A and table 2. There 
were no significant differences (p>0.05) in the AUC the 
ROC curve between Lreg with RF, ANN, boosting and 
NB. However, bagging had significantly lower predictive 
performance (AUC 0.76, 95% CI 0.74 to 0.79, p=0.006) 
compared with the Lreg model (AUC 0.78, 95% CI 0.76 
to 0.81). Furthermore, the ANN model (sensitivity 0.60, 
95% CI 0.55 to 0.64) and NB model (Sensitivity 0.57, 95% 
CI 0.52 to 0.62) had slightly higher sensitivity compared 
with Lreg (sensitivity 0.56, 95% CI 0.51 to 0.60) while 
boosting (Specificity 0.89 95% CI 0.88 to 0.89) and RF 
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Table 1  Characteristics of study participants (n=42 319)

Characteristics Total
Perinatal 
death P value* Characteristics Total

Perinatal 
death P value*

Maternal n (%) n (%) Obstetrics n (%) n (%)

Age (years) <0.001 Gestational 
diabetes

0.89

15–19 3470 (8.2) 99 (2.9) No 42 288 (99.9) 1560 (3.7)

20–34 32 675 (77.2) 1158 (3.5) Yes 31 (0.1) 1 (3.2)

35–39 4984 (11.8) 235 (4.7) Diabetes 0.002

40+ 1190 (2.8) 69 (5.8) No 42 240 (99.8) 1553 (3.7)

Education level <0.001 Yes 79 (0.2) 8 (10.1)

None 567 (1.3) 32 (5.6) Hypertension <0.001

Primary 23 010 (54.4) 1019 (4.4) No 42 241 (99.8) 1550 (3.7)

Secondary 5275 (12.5) 159 (3.0) Yes 78 (0.2) 11 (14.1)

Higher 13 467 (31.8) 351 (2.6) Bleeding <0.001

Occupation 0.37 No 41 897 (99.0) 1528 (3.6)

Unemployed 9316 (22.0) 365 (3.9) Yes 422 (1.0) 33 (7.8)

Employed 30 061 (71.0) 1085 (3.6) Anaemia 0.004

Others 2942 (7.0) 111 (3.8) No 41 661 (98.4) 1523 (3.7)

Marital status 0.89 Yes 658 (1.6) 38 (5.8)

Single 4954 (11.7) 186 (3.8) Malaria 0.79

Married 37 300 (88.1) 1372 (3.7) No 36 746 (86.8) 1352 (3.7)

Widowed/divorced 65 (0.2) 3 (4.6) Yes 5573 (13.2) 209 (3.8)

Area of residence <0.001 Sepsis/infections 0.43

Urban 25 056 (59.2) 725 (2.9) No 41 588 (98.3) 1538 (3.7)

Rural 17 263 (40.8) 836 (4.8) Yes 731 (1.7) 23 (3.1)

Alcohol 
consumption 
during pregnancy

0.001 Complications

No 30 759 (72.7) 1191 (3.9) Pre-eclampsia/ 
eclampsia

<0.001

Yes 11 560 (27.3) 370 (3.2) No 40 668 (96.1) 1355 (3.3)

Smoking during 
pregnancy

0.97 Yes 1651 (3.9) 206 (12.5)

Yes 53 (0.1) 2 (3.8) Induction of 
labour

<0.001

No 42 266 (99.9) 1559 (3.7) No 32 732 (77.3) 1105 (3.4)

No of ANC visits <0.001 Yes 9587 (22.7) 456 (4.8)

≥4 28 742 (67.9) 760 (2.6) PROM 0.006

<4 13 577 (32.1) 801 (5.9) No 41 416 (97.9) 1543 (3.7)

Referred for 
delivery

<0.001 Yes 903 (2.1) 18 (2.0)

No 32 762 (77.4) 819 (2.5) PPH <0.001

Yes 9557 (22.6) 742 (7.8) No 42 091 (99.5) 1516 (3.6)

Paternal 
characteristics

Yes 228 (0.5) 45 (19.7)

Age (years) 0.001 3–4 degree tear 0.49

<25 3938 (9.3) 122 (3.1) No 42 305 (99.9) 1560 (3.7)

25–29 10 593 (25.0) 346 (3.3) Yes 14 (0.1) 1 (7.1)

Continued
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(Specificity 0.88, 95% CI 0.88 to 0.89) had slightly higher 
specificity compared with Lreg (specificity 0.87, 95% 
CI 0.86 to 0.88). Due to the low prevalence of perinatal 

Characteristics Total
Perinatal 
death P value* Characteristics Total

Perinatal 
death P value*

Maternal n (%) n (%) Obstetrics n (%) n (%)

30–34 12 303 (29.1) 457 (3.7) Abruption 
placenta

<0.001

35+ 15 485 (36.6) 636 (4.1) No 42 193 (99.7) 1490 (3.5)

Education level <0.001 Yes 126 (0.3) 71 (56.3)

None 281 (0.7) 27 (9.6) Placenta previa 0.04

Primary 18 987 (44.9) 868 (4.6) No 42 245 (99.8) 1555 (3.7)

Secondary 4565 (10.8) 154 (3.4) Yes 74 (0.2) 6 (8.1)

Higher 18 486 (43.7) 512 (2.8) Presentation <0.001

Occupation <0.001 Cephalic 41 833 (98.9) 1459 (3.5)

Unemployed 5710 (13.5) 323 (5.7) Breach/ Transverse 486 (1.1) 102 (21.0)

Employed 36 102 (85.3) 1218 (3.4) Gestational age 
at birth

<0.001

Others 507 (1.2) 20 (3.9) Term birth (≥37 
weeks)

37 764 (89.2) 914 (2.4)

 �  Preterm birth (<37 
weeks)

4555 (10.8) 647 (14.2)

 �  Birth weight <0.001

 �  Normal birth 
weight

37 991 (89.8) 801 (2.1)

 �  Low birth weight 4328 (10.2) 760 (17.6)

 �  Child’s sex 0.42

 �  Female 20 430 (48.3) 738 (3.6)

Total 42 319 1561 (3.7%) Male 21 889 (51.7) 823 (3.8)

*P value based on the χ2 test.
ANC, antenatal care; PPH, postpartum haemorrhage; PROM, premature rupture of the membranes.

Table 1  Continued

Figure 1  Schematic diagram showing the number of 
singleton deliveries analysed, KCMC medical birth registry 
data, 2000–2015. KCMC, Kilimanjaro Christian Medical 
Centre.

Figure 2  Trends of perinatal death, KCMC medical birth 
registry data, 2000–2015. KCMC, Kilimanjaro Christian 
Medical Centre.
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deaths (3.7%), all models had high (NPV 0.98, 95% CI 
0.98 to 0.98).

With regard to the number of actual and predicted 
outcomes (table 3), all models correctly predicted peri-
natal deaths by more than half of 468 deaths in the testing 
set. The numbers of correct classification were higher in 
the ANN 280 (59.8%) and NB 267 (57.1%), followed by 
the Lreg model 261 (55.8%) and bagging 260 (55.6%). 
The decision curve analysis (figure 4B) demonstrated that 
the net benefit of the RF model surpassed that of other 
ML models, including Lreg for all threshold values, indi-
cating that the RF model is more superior in predicting 
the risk of perinatal deaths in this cohort. The accuracy of 
the RF model was 0.87, 95% CI (0.86 to 0.87), compared 
with 0.87, 95% CI (0.87 to 0.88) for boosting and 0.86, 
95% CI (0.85 to 0.86) for the Lreg model (table  2). 
Furthermore, other ML models (except for boosting) 
demonstrated high net benefit over a range of threshold 
probability values relative to that of the Lreg model. Also, 
the RF model had a superior net benefit over all models 
(figure 4B).

DISCUSSION
In this study, the perinatal death was predicted using 
five ML models (ANN, RFs, NB, bagging and boosting). 
There were no differences in the predictive performance 
between ML models except for bagging, which had a 
lower predictive performance. The ANN and NB had 
higher sensitivity compared with the Lreg, and other ML 
models. Specificity for all models was high, mainly due 
to the low prevalence of perinatal deaths in this cohort. 
Additionally, results from the decision curve analysis 
revealed that the ML models (except for boosting) had a 
higher net benefit over a range of threshold probability 
values compared with the Lreg model, indicating high 

accuracy. The RF model demonstrated a superior net 
benefit over other models.

In the present study, maternal characteristics before 
and during pregnancy, pregnancy history, and paternal 
characteristics identified pregnancies at high risk of 
experiencing adverse perinatal outcomes that might 
need close clinical follow-ups. It is worth noting here that 
paternal age and education level were highly predictive of 
perinatal death more than the known pregnancy-related 
conditions or complications such as prematurity. Previous 
literature shows that paternal characteristics, particu-
larly advanced paternal age, increase the risk of adverse 
perinatal outcomes, such as low birth weight, prematu-
rity, small for gestational age and low Apgar scores,62–64 
despite conflicting evidence from other studies.65 
Furthermore, studies using data from the KCMC Medical 
Birth Registry (same data source to the current study) 
focused on modelling the association between maternal 

Figure 3  Variable importance of predictors for perinatal 
death in the random forest model scaled to have a maximum 
value of 100. ANC, antenatal care.

Figure 4  Prediction ability of perinatal deaths comparing 
different machine learning models in the test set: (A) Receiver 
operating characteristics curves. The corresponding values 
of the area under the receiver operating characteristics curve 
for each model are in table 2. (B) Decision curve analysis. 
The net benefit of the machine learning models (except for 
boosting) is larger over a range of threshold probability values 
compared with that of the logistic regression model.
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and pregnancy-related characteristics and complications 
during pregnancy and childbirth with the risk of adverse 
perinatal outcomes26–31 but ignored paternal characteris-
tics. Despite challenges in male involvement in pregnancy 
and childbirth in Tanzania,66 67 their participation is crit-
ical to improving maternal and child health outcomes.

On top of clinicians’ judgement, previous investigators 
applied standard regression models in prediction of risk 
for adverse perinatal outcomes, particularly perinatal 
death.29 39–45 68–73 We found no differences in the predic-
tive performance of the ML models, except for bagging, 
which had lower predictive capacity. The sensitivity of the 
ML models was also almost comparable to that of Lreg, 
which indicates that both models correctly classified 
perinatal deaths. Our finding is consistent with a recent 
systematic review that showed no performance benefit 
of ML models over Lreg for the prediction of clinical 
outcomes.19 The possible explanation for lack of differ-
ences in the performance between the compared models 
could be attributed to the low proportion of outcome 
and exposures in this study, as well as data quality and 
recording challenges inherent in registry-based studies.

In contrast, some previous investigators have demon-
strated that ML models offer better predictions of clinical Ta
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Table 3  The number of actual and predicted outcomes of 
prediction models in the test set

Prediction 
model Classification

Perinatal status

Alive Died

Actual number of 
events

12 227 468

Logistic 
regression

Correctly predicted 
outcome

10 627 261

Incorrectly 
predicted outcome

1600 207

Artificial neural 
network

Correctly predicted 
outcome

10 225 280

Incorrectly 
predicted outcome

2002 188

Random 
Fforests

Correctly predicted 
outcome

10 774 251

Incorrectly 
predicted outcome

1453 217

Naïve bayes Correctly predicted 
outcome

10 386 267

Incorrectly 
predicted outcome

1841 201

Bagging Correctly predicted 
outcome

10 175 260

Incorrectly 
predicted outcome

2052 208

Boosting Correctly predicted 
outcome

10 852 252

Incorrectly 
predicted outcome

1375 216
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or adverse pregnancy outcomes compared with classical 
regression models.13–16 The application of ML models 
may improve the classification of adverse events occur-
ring during the perinatal period and, therefore, assist 
in triaging and provision of close clinical follow-up for 
women at high risk. Other studies also provide evidence 
of improved prediction of under-5 and neonatal 
mortality12–15 using ML models. The utility of these 
models may, therefore, improve the prediction of adverse 
pregnancy outcomes as opposed to standard regression 
models.

In this study, the decision curve analysis that accounts 
for the impact of false-negative and false-positive misclas-
sification errors showed superior predictive perfor-
mance of the ML approaches over the Lreg model. This 
demonstrates a higher net benefit for the prediction of 
perinatal deaths. The higher net benefit in the predic-
tion ability of the ML approaches has also been docu-
mented elsewhere.10 17 This is because ML approaches 
can incorporate the high order nonlinear interactions 
between predictors, which cannot be addressed by tradi-
tional modelling approaches, including the Lreg model. 
Furthermore, the use of cross-validation is also known to 
reduce potential overfitting in ML models. It is important 
to note that ML approaches are, to a large extent, non-
parametric as opposed to the Lreg model that relies on 
strong distributional assumptions.

The strength of this study is that it is the first to apply 
modern ML approaches to predict perinatal deaths, 
particularly in Tanzania and to a large extent sub-Saharan 
Africa, compared with the classical Lreg model. Our study 
demonstrated that ML models might be used to improve 
the prediction of perinatal deaths and triage of women 
at risk. We also used the SMOTE balancing technique to 
avoid the bias of the model toward skewed data (reduce 
overfitting), hence improving the prediction accuracy 
of the ML algorithm.14 58 59 However, SMOTE is not very 
effective for high dimensional data.74 75 Our study also 
had some limitations that are worth considering when 
interpreting the results. First, we excluded observations 
with missing values in both the outcome and exposures 
from the analysis, a problem inherent in cohort studies, 
including birth registries, which may lead to under-
estimation of the proportion of perinatal death. Two 
excluded variables (maternal BMI and HIV status) have 
been associated with perinatal and under-5 deaths4 6 38; 
hence their exclusion might increase the risk of residual 
confounding bias. The effect of exclusion of these two 
variables and missing values to predict perinatal deaths 
remains unquantified.

Second, selection bias/or referral bias is a common 
problem in hospital-based studies, which affects the 
generalisation of findings to the general population. This 
might also be the case in the present study. However, 
our findings might reflect a similar setting in Tanzania 
and probably in other sub-Saharan African countries. 
Third, the KCMC Medical Birth Registry cohort only 
captures perinatal deaths occurring in the health facility 

(KCMC hospital), which may underestimate the observed 
perinatal deaths in the wider population. Currently, 
the hospital has no mechanisms to follow-up the birth 
outcomes from deliveries that occur at home and post-
discharge outcomes of the babies after mothers are 
discharged from the hospital within the first week, espe-
cially within the KCMC hospital catchment area. Future 
extensions include ways of handling missing values before 
applying the ML algorithms to predict perinatal death 
and other adverse pregnancy outcomes.

CONCLUSION
The ML models (except for bagging) performed equally 
with the Lreg model to predict perinatal deaths using 
maternal, paternal and obstetric factors in this cohort. 
The ML models, however, have a higher net benefit, 
demonstrating superiority in the prediction of perinatal 
death. Furthermore, the RF model also demonstrated 
superior performance over other ML models. These 
models are a useful and alternative strategy over the stan-
dard Lreg model to predict perinatal deaths, considering 
the richness of the medical birth registries. Moreover, 
the ML models are capable of handling many predictors 
at the same time, which is crucial in capturing multiple 
risk factors for adverse perinatal outcomes such as peri-
natal deaths. The application of ML models may, there-
fore, increase the prediction ability of adverse perinatal 
outcomes and thereby helping in triage women most at 
risk.
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