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Background: Recent studies in adult non-elderly and elderly individuals have reported

a link between nonalcoholic fatty liver disease (NAFLD) and sarcopenia. Nonetheless,

whether this relationship would be found outside these populations it is still unknown.

Hence, we evaluated the relationship between NAFLD and skeletal muscle mass in

children and adolescents with overweight/obesity.

Methods: Two-hundred and thirty-four overweight/obese youths were enrolled. NAFLD

was diagnosed by ultrasononography, after exclusion of infectious and metabolic

disorders. Forty of the patients with NAFLD had also liver biopsy. Total and regional

lean body mass and total fat mass measurements were obtained by dual-energy X-ray

absorptiometry. The relative muscle mass (RMM) was defined as the percent of muscle

mass (kg) relative to the sum of muscle and fat (kg) mass. Appendicular skeletal muscle

mass (ASM) was calculated by the sum of muscle masses of the four limbs (kg), and

expressed as percent of body weight.

Results: Subjects were stratified according to tertiles of RMM. The prevalence of

abdominal obesity, dyslipidemia, insulin resistance, metabolic syndrome, NAFLD as well

as biopsy-proven nonalcoholic steatohepatitis (NASH) was significantly increased in the

lowest tertile of RMM. After controlling for age, sex and Tanner stage, children in the

lowest tertile of RMM had an increased risk for NAFLD (OR= 2.80, 95% CI=1.57–5.02)

compared to those in the other two tertiles. This association persisted after additional

adjustments for clinical and metabolic variables. Similarly, the risk of NAFLD in the lowest

tertile of ASM/weight index was significantly higher compared to those in the other two

tertiles after adjustment for the above confounders.

Conclusions: This is the first study to establish an independent association between low

muscle mass and NAFLD/NASH in overweight/obese youths. Considering the worldwide

increase of pediatric obesity, measurements of muscle mass may serve as useful method

of identifying among obese children those at high metabolic risk who may need intensive

lifestyle interventions to prevent NAFLD and its progression.
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INTRODUCTION

With the worldwide epidemic of obesity, nonalcoholic fatty
liver disease (NAFLD) has emerged as the most prevalent
chronic liver disease in adults as well as youths (1), and a
rising indication for liver transplantation. NAFLD include a
broad range of liver damage from simple steatosis, nonalcoholic
steatohepatitis (NASH), to cirrhosis (2). Both adult and
pediatric patients with NAFLD often manifest features of
metabolic syndrome (MetS) (e.g., abdominal obesity, increased
blood pressure, atherogenic dyslipidemia, insulin resistance,
and glucose abnormalities), and thus are at greater risk
for cardiovascular disease (CVD) (3–5). Although significant
progresses in our knowledge of the pathophysiology of NAFLD
have been achieved, mechanisms accounting for excess fat
in the liver have not yet fully clarified. Therefore, the
identification of all major factors affecting development of
NAFLD earlier in life is crucial to prevent the progression of
liver damage.

Recently, emerging evidence suggests that reduced skeletal
muscle mass contributes to the risk of many chronic diseases
including chronic liver diseases (6). The loss in lean body mass,
that is sarcopenia, has long been associated with liver cirrhosis
(7) as well as with a poor prognosis in patients with end-stage
liver disease (8). According to the revised European consensus
on definition and diagnosis of sarcopenia (9), this disease is
characterized by low muscle quantity and quality. Infiltration of
fat within and around skeletal muscle, that is myosteatosis, is
directly related to age and adiposity, with an increased risk of
adverse outcomes (10, 11). Although sarcopenia has long been
thought to be a disease of the elderly (9), it has been recently
reported to occur earlier in patients with cardiometabolic
disorders such as obesity, diabetes mellitus, MetS and CVD
(12). Indeed, several studies have reported in the adult non-
elderly and elderly populations a link between sarcopenia and
NAFLD (13), highlighting sarcopenia as an emerging risk factor
for NAFLD and its progression. Nonetheless, whether this
relationship would be found outside these populations it is
still unknown. We here report the results of an observational,
cross-sectional study investigating the relationship between
NAFLD and skeletal muscle mass in a pediatric population
with overweight/obesity.

METHODS

Patients
We enrolled 234 children and adolescents with
overweight/obesity [body mass index (BMI) > 85th percentile
according to age- and gender-specific percentiles of BMI] at the
outpatient Clinics of the Department of Pediatrics, Sapienza
University of Rome. Subjects were included if they were aged
6-18 years, nondiabetic, free from chronic diseases (including
kidney, endocrinologic, and liver disorders) as well as from
conditions known to influence body composition.

The study was approved by the Policlinico Umberto I Hospital
Ethical Committee, and the parents of all participants gave
informed consent.

Clinical and Laboratory Data
Anthropometric measurements were obtained with standard
methods. Weight and Height were determined using an
electronic scale and a wall-mounted stadiometer, respectively.
BMI was calculated as body weight in kg divided by the height in
meters squared. The pubertal status was evaluated by the Tanner
stage. The degree of obesity was quantified using Cole’s least
mean-squaremethod, which expresses BMI as standard deviation
score (SDS) (14).

After the subject fasted overnight, blood samples were
collected for the determination of glucose, insulin, total
cholesterol, high-density lipoprotein cholesterol (HDL-C),
triglycerides (TG), alanine aminotransferase (ALT), and
aspartate aminotransferase. Insulin resistance was assessed
by the homeostasis model assessment of insulin resistance
(HOMA-IR) (15).

Ultrasound Examination of the Liver
Liver ultrasonography was performed by a single operator
blinded to clinical and laboratory data. Diagnosis of fatty
liver was based upon liver echogenicity exceeding that of the
renal cortex and spleen, attenuation of ultrasound wave, loss
of definition of the diaphragm, and poor delineation of the
intrahepatic architecture (16).

Dual Energy X-ray Absorptiometry Scans
Total and regional lean body mass (kg) and total fat mass (kg)
were obtained by a total body scanner (Hologic QDR-4500W).
The relative muscle mass (RMM) was defined as the percent of
muscle mass relative to the sum of muscle and fat mass [e.g.,
100 x muscle mass (kg) / muscle mass (kg) + fat mass (kg)], a
measure to estimate the contribution of relative muscle mass to
body composition (17–19). Appendicular skeletal muscle mass
(ASM) was calculated by the sum of muscle masses in the four
limbs (kg), and expressed as percent of body weight [ASM/weight
(kg) x 100]. We also calculated ASM after adjusting for height
squared (ASM/ht2) (17–19).

Liver Biopsy
A subgroup of obese children with ultrasound-diagnosedNAFLD
had also liver biopsy to assess either the presence of NASH, or
other competing liver diseases. Percutaneous needle liver biopsy
was performed as previously described (15). The histologic
features of steatosis, lobular and portal inflammation, and
hepatocyte ballooning, and fibrosis were scored according to
the NAFLD Clinical Research Network criteria (20). Diagnosis
of NASH was based on the presence of steatosis with
necroinflammation and hepatocyte ballooning (21).

Definitions
NAFLD was defined as the presence of fat in the liver on
ultrasound (US) in the absence of an alternate identifiable cause.
High blood pressure (BP) was defined by BP≥ 95th percentile for
age, sex, and height (22). High waist circumference (WC), high
TG, and low HDL-C were defined using age- and gender-specific
percentiles (23). Impaired fasting glucose was defined by a value
of fasting glucose≥ 5.6 mmol/L. MetS diagnosis was based on the
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TABLE 1 | Characteristics of study population according to tertiles of RMMa.

RMM P

Tertile1 Tertile II Tertile III

Number of subjects 78 75 81

Age, years 11.3 (2.3) 11.5 (2.8) 12.5 (3.0) 0.06

Male sex, n (%) 38 (48.7) 33 (44.0) 61 (75.3) 0.001

Prepubertal status, n (%) 15 (19.2) 16 (21.3) 14 (17.2) 0.26

Weight, kg 65.0 (21.0) 59.3 (22.1) 64.1 (21.1) 0.21

Height, cm 149.7 (14.4) 151.7 (17.4) 158.9 (18.0) 0.01

BMI (kg/m2 ) 28.3 (4.5) 24.7 (3.7) 24.6 (3.3) < 0.0001

BMI-SD score 2.13 (0.40) 1.70 (0.39) 1.60 (0.39) < 0.0001

Waist circumference, cm 91.2 (13.2) 84.8 (14.0) 84.6 (12.0) 0.002

Systolic BP, mmHg 111 (11) 111 (9) 112 (13) 0.81

Diastolic BP, mmHg 69 (9) 68 (8) 69 (9) 0.82

Total cholesterol, mg/dL 170 (39) 177 (50) 163 (41) 0.19

HDL-C, mg/dL 46 (13) 47 (12) 49 (10) 0.17

Triglycerides, mg/dL 97(72-141) 91 (65-128) 76 (52–123) 0.031

TG/HDL-C ratio 2.1 (1.3-3.6) 1.9 (1.2-3.3) 1.6 (0.9-2.8) 0.029

AST, U/L 25 (20–34) 25 (20–30) 23 (19–29) 0.22

ALT, U/L 25 (17–47) 22 (15–35) 20 (15–32) 0.15

Glucose, mg/dL 4.8 (0.8) 4.8 (0.45) 4.8 (0.39) 0.84

Insulin, µU/mL 18 (12–24) 14 (9–19) 13 (9–18) 0.004

HOMA-IR 3.7 (2.5-4.8) 2.8 (1.9-3.9) 2.8 (2.0-4.0) 0.015

Total body fat mass, kg 28.0 (10.0) 22.8 (9.0) 19.0 (5.9) < 0.0001

Total lean body mass, kg 31.4 (9.6) 32.5 (12.7) 39.6 (14.6) < 0.0001

RMM, % 53.0 (3.3) 58.9 (1.5) 66.9 (4.8) < 0.0001

ASM, kg 15.1 (4.36) 15.5 (7.0) 20.7 (7.94) < 0.0001

ASM/weight index, % 24.5 (1.73) 26.2 (2.86) 30.8 (7.42) < 0.0001

ASM/ht2 6.7 (1.0) 6.4 (1.6) 7.6 (2.0) 0.001

NAFLD, n (%) 43 (55.2) 25 (33.3) 27 (33.3) 0.006

RMM, relative muscle mass; BMI, body mass index; BMI-SDS, BMI-SD score; BP,

blood pressure; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol; AST,

aspartate aminotransferase; ALT, alanine aminotransferase; HOMA-IR, homeostasis

model assessment of insulin resistance; ASM, appendicular skeletal muscle mass.
aTertile I, RMM: < 56.72; tertile II, RMM: 56.72–61.99; tertile III, RMM: > 61.99.

Results are expressed as n (%), mean (SD) or median (interquartile range).

presence of at least 3 risk factors: highWC, elevated BP, lowHDL-
C levels, hypertriglyceridemia and glucose impairment. Insulin
resistance was established on the basis of the 90th percentile
of HOMA-IR specific for age and gender in overweight/obese
children (24).

Statistical Analysis
Data are expressed as n (%), mean (SD), or median (interquartile
range). Overweight/obese children, with and without NAFLD,
were stratified into tertiles of the total skeletal muscle mass.
Differences among groups in quantitative variables were
evaluated by one-way analysis of variance or Kruskal–Wallis test,
as appropriate. Proportions were compared by the chi-square
test. Partial correlation and linear regression coefficients were
used to evaluate the relationship between variables. In order to
assess the risk of NAFLD in the first (lowest) tertile of RMM as
well as in the first (lowest) tertile of ASM/weight index compared

TABLE 2 | Age-, gender, and pubertal status- adjusted linear regression

coefficients between RMM and clinical variables.

All cases NAFLD

B coefficients (95% CI) B coefficients (95% CI)

Waist circumference, cm −0.320 (-0.387,−0.253)§ −0.327 (-0.414,−0.240)§

Systolic BP, mmHg −0.081 (-0.167, 0.006) −0.175 (-0.290,−0.060)*

Diastolic BP, mmHg −0.101 (-0.199,−0.002)* −0.107 (-0.261, 0.047)

ALT −0.035 (-0.060,−0.009)+ −0.032 (-0.061,−0.002)*

HDL-C, mg/dL 0.057 (-0.13, 0.127) 0.173 (0.07, 0.278)+

Triglycerides, mg/dL −0.014 (-0.25,−0.002)* −0.015 (-0.029,−0.001)*

TG/HDL-C ratio −0.454 (-0.78,−0.12)+ −0.500 (-0.87,−0.13)+

Glucose −0.307 (-1.76, 1.15) −0.903 (-2.54, 0.74)

Insulin −0.136 (-0.204,−0.067)§ −0.125 (-0.197,−0.052)+

HOMA-IR −0.396 (-0.632,−0.161)+ −0.346 (-0.585,−0.108)+

RMM, relative muscle mass; NAFLD, nonalcoholic fatty liver disease; CI, confidence

interval; BP, blood pressure; ALT, alanine aminotransferase; TG, triglycerides; HDL-

C, high-density lipoprotein cholesterol; HOMA-IR, homeostasis model assessment of

insulin resistance.

*P< 0.05; +P <0.01; §P< 0.0001.

to the combined second and third tertiles, we performedmultiple
logistic regression analysis controlled for age, sex, Tanner stage,
and clinical confounders. Since the prevalence of cardiometabolic
risk factors in the first tertile was markedly different to that
observed in the second and third tertiles, the latter two tertiles
have been combined.

RESULTS

Characteristics of Study Population
Descriptive characteristics of participant samples according to
tertiles of RMM are summarized in Table 1. The subjects in the
lowest tertile of RMM had the greatest BMI, BMI-SDS, WC, total
body fat mass as well as the highest TG/HDL-C ratio, insulin, and
HOMA-IR values compared with those in the other two tertiles
of RMM. In comparison with subjects in the lowest RMM tertile,
those in the middle or highest RMM tertile were more likely to
be taller, and to have greater total lean body mass, absolute ASM,
ASM/weight index, and ASM/ht2. There was a near-significance
difference in age across the tertiles of RMM. Moreover, reduced
RMM was significantly associated with an increased prevalence
of NAFLD (P = 0.006). Conversely, there were no significant
differences in Tanner stage, BP, total cholesterol, liver enzymes
and glucose.

Relationship Between RMM and
Cardiometabolic Risk Factors
In all study children and adolescents, after controlling for age,
sex, and Tanner stage, RMMwere negatively correlated withWC,
diastolic BP, ALT, TG, TG/HDL ratio, insulin, and HOMA-IR
values (Table 2). When the analysis was limited to patients with
NAFLD, RMMwere significantly associated withWC, systolic BP,
TG, HDL-C and TG/HDL-C ratio, ALT, insulin and HOMA-IR
values. In the subjects without NAFLD, RMM was significantly
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TABLE 3 | Prevalence of metabolic syndrome and its individual components

according to RMM tertiles among the study population.

RMM

Tertile I

(n = 78)

Tertile II

(n = 75)

Tertile III

(n = 81)

P for linear

trend

Central obesity,

% (95% CI)

62.8

(52.1-73.5)

34.6

(23.8-45.4)

13.6

(6.1-21.1)

< 0.0001

Elevated BP,

% (95% CI)

29.5

(19.4-39.6)

17.3

(8.7-25.9)

27.1

(17.4-36.8)

0.75

High TG,

% (95% CI)

35.9

(25.3-46.5)

21.3

(12.0-30.6)

21.0

(12.1-29.9)

0.033

Low HDL-C,

% (95% CI)

38.5

(27.7-49.3)

20.0

(11.0-29.0)

19.7

(11.0-28.4)

0.008

Glucose ≥ 5.6 mmol/L,

% (95% CI)

1.3

(0.2-6.9)*

4.0

(1.4-11.1)*

3.7

(1.27-10.3)*

0.36

Insulin resistance,

% (95% CI)

70.5

(60.4-80.6)

52.0

(35.0-69.0)

51.8

(40.9-62.7)

0.023

NAFLD,

% (95% CI)

55.2

(32.9-70.5)

33.3

(22.6-44.0)

33.3

(23.1-43.5)

0.006

Metabolic syndrome,

% (95% CI)

29.5

(19.3-39.7)

12.0

(4.6-19.3)

3.7

(1.3-10.3)*

< 0.0001

RMM, relative muscle mass; CI, confidence interval; BP, blood pressure; TG, triglycerides;

HDL-C, high-density lipoprotein cholesterol; NAFLD, nonalcoholic fatty liver disease.

*For these percentages, the exact 95% CI was calculated using the Wilson method.

correlated only with WC [B coefficient,−0.311 (95% CI, -0.419/-
0.204); P< 0.0001].

Cardiometabolic Profile Across RMM
Tertiles in the Study Population
The prevalence of high WC, high TG, low HDL-C, insulin
resistance, NAFLD and MetS was significantly increased in the
lowest tertile of RMM (Table 3).

To evaluate the potential independent contribution of RMM
on NAFLD, multiple logistic regression analyses were performed
(Table 4A). After controlling for age, sex and Tanner stage,
children in the lowest tertile of RMM had an increased risk
for NAFLD (OR = 2.80, 95% CI =1.57-5.02) compared to
those in the other two tertiles. This association persisted after
adjusting for potential confounders such as central obesity,
elevated BP, elevated TG, low HDL-C, and insulin resistance,
although the strength of association was slightly attenuated.
When MetS (as a single clinical entity) was entered in the
regression model in addition to age, gender and Tanner stage,
the association remained statistically significant (OR= 2.20, 95%
CI= 1.19-4.05).

We also evaluated the adjusted associations of ASM/weight
index with NAFLD (Table 4B). In model 1, controlled for age,
sex and Tanner stage, the risk of NAFLD (OR = 2.99, 95%
CI =1.41-6.31) in the lowest tertile of ASM/weight index was
significantly higher compared to that in the other two tertiles.
These results remained unchanged after additional adjustments
(including central obesity, elevated BP, elevated TG, low HDL-C,
and insulin resistance, or MetS).

TABLE 4A | Adjusted odds ratio (95% CI) of the lowest tertile of RMM for NAFLD.

RMM

I II and III P value

Adjusted model 1 2.80 (1.57-5.02) 1.00 (referent) 0.001

Adjusted model 2 2.18 (1.17-4.07) 1.00 (referent) 0.014

Adjusted model 3 2.18 (1.13-4.18) 1.00 (referent) 0.019

Adjusted model 4 2.20 (1.19-4.05) 1.00 (referent) 0.012

TABLE 4B | Adjusted odds ratio (95% CI) of the lowest tertile of ASM/weight

index for NAFLD.

ASM

I II and III P value

Adjusted model 1 2.99 (1.41-6.31) 1.00 (referent) 0.004

Adjusted model 2 2.29 (1.04-5.06) 1.00 (referent) 0.04

Adjusted model 3 2.33 (1.01-5.40) 1.00 (referent) 0.048

Adjusted model 4 2.54 (1.16-5.58) 1.00 (referent) 0.02

Model 1: adjusted for age, gender and pubertal status; Model 2: adjusted for age, gender,

pubertal status, and central obesity; Model 3: adjusted for age, gender, pubertal status,

central obesity, high blood pressure, elevated triglycerides, low high-density lipoprotein

cholesterol, and insulin resistance; Model 4: adjusted for age, gender, pubertal status

and MetS.

CI, confidence interval.

Findings in Children With Biopsy-Proven
NAFLD
Twenty-four children (60.0%) had definite-NASH, while
16 (40.0%) had not-NASH. In comparison with children
and adolescents with not-NASH, those with NASH showed
significantly lower RMM [mean, 55.7 (SD, 6.0) vs. 63.4 (6.0) %;
P < 0.0001] and lower ASM/weight index [mean, 25.6 (SD, 2.8)
vs. 28.6 (2.9) %; P = 0.006]. Also, the prevalence of NASH was
significantly increased in the lowest tertile of RMM [70.8 (95%
CI, 61.8-79.8) % vs. 29.2 (20.2-38.2) %; P < 0.001] as well as in
the lowest tertile of ASM/weight index [62.5 (95% CI, 47.5-77.5)
% vs. 37.5 (22.5-52.5) %; P < 0.003] compared to those in the
other two tertiles, respectively.

Some degree of fibrosis was present in 72.5% of patients with
histologically diagnosed NAFLD, of whom 30% showed stage 1,
40% stage 2 and 2.5% stage 3 fibrosis. There were no significant
differences in RMM and ASM/weight index between patients
with fibrosis grade ≥2 and those with fibrosis ≤ 1.

DISCUSSION

To our knowledge, this is the first study to assess in a pediatric
population the relationship of skeletal muscle mass with NAFLD.
We demonstrated that (1) overweight/obese youths with lower
muscle mass have a greater risk of NAFLD compared to
those with higher muscle mass; (2) the inverse association
between NAFLD and muscle mass in children and adolescents
is independent from anthropometric and metabolic variables;
and (3) overweight/obese youths with lower muscle mass have
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a greater prevalence of cardiometabolic risk factors (e.g., central
obesity, dyslipidemia, and insulin resistance) as well as MetS. In
the subgroup of obese patients with US-diagnosed NAFLD who
underwent liver biopsy, we also demonstrated the association
between reduced muscle mass and NASH.

Several cross-sectional studies in adult patients have showed
that sarcopenia is associated with NAFLD, NASH and NAFLD-
associated advanced fibrosis (25–29). Notably, in a nationally
representative sample of both obese and non-obese Korean
adult individuals, Lee et al. (25) provided robust evidence of
an independent association of NAFLD with sarcopenia. They
demonstrated that patients with sarcopenia had a higher risk
of NAFLD independently of the status of obesity as well as of
MetS compared with subjects with a preserved muscle mass.
More recently, in a large, longitudinal population-based cohort
study, Kim et al. confirmed this association and suggested
a causal link (30). The authors tested the effects of RMM
modifications over time on the occurrence of new NAFLD or
the resolution of pre-existing NAFLD (30). Skeletal muscle mass
index (SMI) as assessed at baseline was inversely related to
incident NAFLD and positively related to the resolution of pre-
existing NAFLD. Furthermore, an increase in SMI over 1-year
period had significant favorable effects either on the development
of new NAFLD or the improvement of pre-existing NAFLD,
even after controlling for glycometabolic variables and baseline
SMI (30).

Although in 1984 Forbes (31) described for the first time
a low muscle mass phenotype in obese children, since then
very little attention has been paid to its metabolic implications
in pediatrics. Only recently, children and adolescents with low
muscle mass and strength have been shown to be at increased
risk of developing metabolic dysfunction and CVD (18, 32–
35), as previously reported in the adult nonelderly and elderly
populations (6). In a large sample of U.S. youth, aged 8–20 years,
Kim et al. (18) demonstrated an inverse association between
RMM and cardiometabolic risk factors. In addition, they showed
that the odds of having an adverse level for all risk factors
with the exception of diastolic BP gradually diminish as RMM
increases. A more recent study involving 660 apparently healthy
adolescents, showed that those with low muscle mass (into the
first quartile) had higher cardiometabolic risk (higher values
of BMI z-score, WC, systolic BP, diastolic BP, TG, TC/HDL-C,
insulin, HOMA-IR, and MetS z-score) than adolescents in the
other quartiles regardless of nutritional status (17). Furthermore,
low muscle mass increased the obesity-related cardiometabolic
risk. In the present study involving a Caucasian pediatric
population with overweight/obesity, we confirmed the inverse
relationship between low muscle mass and cardiometabolic risk
factors, and we first showed an independent association between
low muscle mass (total and appendicular) and NAFLD as well
as NASH.

There is growing recognition that reduced lean tissue,
notably skeletal muscle, can co-occur in the presence of
obesity, the so-called sarcopenic obesity (12, 36–38). Clinical
evaluation of muscle mass in the obese subjects, however, is
a real pitfall, since a reduced skeletal muscle mass may be
masked by the presence of excess fat (37). The concordance

of these two conditions, e.g., low level of muscle mass and
excess weight, is associated with worse clinical outcomes
than is either condition alone (39–41); therefore, attempts
to preserve muscle mass and to lessen the consequences
of low muscle mass might be more fruitful if initiated at
childhood than if initiated at adulthood. Accordingly, in
obese children a systematic muscle mass assessment is needed
to improve diagnosis and treatment of those presenting a
disparity in muscle and fat stores at an early stage. As such,
more and more attention is being paid to the reference
technology as well as to the diagnostic criteria to assess
muscle mass in different contexts and populations including
obese children.

Currently, various techniques are available for estimating or
measuring muscle mass. Unfortunately, no consensus has yet
been reached on the best technique to estimate or measure it
(42). Among them, computed tomography (CT) and magnetic
resonance imaging (MRI) are ideal in terms of accuracy, but
their routine use in many clinical settings is compromized by
the high cost of instrumentation, concerns of radiation exposure
(for CT), contraindications for scanning (for MRI), and limited
access to equipment (36–38, 42). Thus, both techniques are
not suitable for population screening, nor available at early
asymptomatic stages of the disease (37). Unsurprisingly, use of
these gold standard techniques to assess the muscle mass in the
clinical pediatric setting has been limited to children with end-
stage organ failure and/or increased fat stores requiring imaging
evaluation of the underlying chronic diseases while awaiting solid
organ transplantation (43, 44).

A yet poorly explored element of sarcopenia has been
quantification of fatty infiltration of muscle. However, evaluation
of fat deposition in muscles is complex, far from clinical practice,
especially in children and adolescents, and may be obtained
only using imaging techniques or more invasive methods like
muscle biopsy (45). CT andMRI are considered the gold standard
for intramuscular and intermuscular fat evaluation, respectively,
while other body composition methods including DEXA do not
allow to evaluate muscle quality parameters. Accordingly, this
limitation warrants further studies assessing in a selected group
of pediatric patients the relevance of myosteatosis by imaging
techniques in childhood “sarcopenic obesity.”

Bearing all these considerations in mind, despite many
limitations, DEXA has been proposed as the standard technique
for assessing muscle mass and body composition in research
and clinical practice because of its ease of use, relatively
low cost, minimal radiation exposure, short scan time and
accessibility (42).

In addition to the commonly reported appendicular lean-mass
estimates (i.e., estimation of the muscle masses in the four limbs,
representing about 75% of total body muscle mass) (37, 42),
using DEXA we also measured the contribution of RMM to body
composition. To this end, we followed the method proposed by
Kim et al. (18) as variation of the measure initially introduced
by Park et al. (46) to evaluate in adults the relationship between
muscle mass andMetS. In children the muscle-to-fat ratio (MFR)
has been established as the key indicator of low muscle mass
with the potential to stratify the risk of complications (19, 47).
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Indeed, in obese youths, the presence of a low muscle mass
in a combination with a high fat mass, which would result
in low MRF, may act synergistically leading to a more severe
cardiometabolic risk (19).

NAFLD diagnosis was based in the majority of participants
on US examination after exclusion of infectious and metabolic
disorders, while only a small sample size of children underwent
liver biopsy, which is the current standard to define the presence
and severity of NAFLD. Although US is the imaging modality
most widely used for the noninvasive assessment of liver steatosis,
due to its significant advantages such as being largely available,
relatively non-expensive, and easy to use, it has low sensitivity,
particularly in children who have lower degrees of steatosis (e.g.,
involving <33% of hepatocytes). In addition, US is inaccurate
for quantification of steatosis in youths. For these reasons, the
recent guidelines from the NASPGHAN Expert Committee have
recommended ALT as the best screening test for NAFLD in
children (48). However, in a very recent study, two screening
strategies were compared: the NASPGHAN strategy using an
ALT cut-off of >2x the gender-specific upper limit of normal
and the ESPGHAN strategy using elevated ALT>45 IU/L and/or
fatty liver on ultrasound. The study showed that by relying
on ALT values alone to screen for NAFLD, suspected NAFLD
might be missed in many children who are at risk to develop
the disease (49). In our study, it is possible that some subjects
with US-diagnosis of NAFLD (due to low sensitivity) were
enrolled in the control groups. However, the possible inclusion
of controls with NAFLD may have led to underestimation of the
differences in the RMM between cases and controls rather than
the opposite.

Although this study was not designed to clarify the pathogenic
link between sarcopenia and NAFLD, we acknowledge that
the two conditions have in common several pathophysiologic
processes, especially insulin resistance, chronic inflammation,
and decreased physical activity (50). Skeletal muscle is the most
effective organ for whole-body insulin-mediated glucose disposal
(51), and therefore is the key element for maintaining effective
glucose homeostasis in many chronic diseases. As such, the
loss of muscle mass reduces the quantity of the primary target
for insulin, favoring glucose intolerance and gluconeogenesis,
which are key to the pathogenesis of NAFLD. Interestingly,
Petersen et al. (52) demonstrated that, after high carbohydrate
meals, young insulin-resistant subjects showed a marked defect
in muscle glycogen synthesis and diverted much more of their
ingested energy into hepatic de novo lipogenesis, resulting in
increased hepatic triglycerides synthesis, while young insulin-
sensitive individuals stored more of their ingested energy in
liver and muscle glycogen. In our study, low muscle mass was
related to NAFLD independently of insulin resistance. Thus, it
is plausible that other mechanisms could be involved, including
subclinical inflammation and enhanced oxidative stress. Subjects
with sarcopenia have elevated concentrations of C-reactive
protein and inflammatory cytokines, which may promote
skeletal muscle catabolism (28, 53). Low-grade inflammation
and oxidative stress may also have a relevant role for the
occurrence of NAFLD and its progression. Moreover, skeletal
muscle is regarded as an endocrine organ able to secrete a

series of cytokines so-called myokines, which constitute a broad
network among metabolic tissues and organs including the liver
(54). Myokines produced and released by contracting skeletal
muscles counteract systemic inflammation and modulate glucose
and lipid metabolism (55). This might account for the well-
known favorable effects of physical activity toward the diseases
associated with “the diseasome of physical inactivity” (55).
Importantly, there is a growing body of evidence supporting
the beneficial effects of exercise and of physical fitness per
se in the pathogenesis of NAFLD (56). As a matter of fact,
exercise-only interventions (e.g., without modification of the
diet) have been shown to result in a significant reduction of the
amount of intrahepatic fat, even in the absence of significant
weight changes (57). The influence of physical inactivity on
both obesity and muscle reduction in children is common sense.
Both physical inactivity and sedentary behavior with consequent
muscle disuse can lead to a substantial decrease in lean body
mass, creating a vicious cycle causing both progressive inactivity
and sarcopenia.

Nutrition represents a key factor in the prevention and
treatment of both sarcopenia and obesity. Sarcopenia is
associated with an inadequate nutritional intake, and nutritional
interventions are essential to improve sarcopenia and the
subsequent morbidity and mortality in chronic liver diseases (58,
59). In contrast, obesity is a result of an excess consumption of
energy, resulting in an imbalance between the energy intake and
energy expenditure. As such, nutritional strategies for sarcopenic
obesity should target not only an optimal energy intake in order
to decrease excess fat mass, but also an optimal nutrient intake in
order to increase skeletal muscle mass (60). Recent studies have
shown that a combination of a moderate weight loss diet with
concurrent exercise (especially resistance exercise) may improve
body composition and physical performance in subjects with
sarcopenic obesity (61).

Gut dysbiosis might have a role in the development and
progression of NAFLD; therefore, the manipulation of gut
microbiota with probiotics might prove an effective treatment
strategy, particularly in subjects who are noncompliant to
lifestyle interventions (62). Few studies in children have
yielded promising results; however, several aspects of probiotic
beneficial action in NAFLD (e.g., type of strain and doses)
still need further elucidation (62). Of note, recently researchers
are focusing their interests on the possible involvement
of gut microbiota in the pathophysiology of sarcopenia
and physical frailty (63). Alterations in the gut microbiota
composition could in fact promote chronic inflammation and
anabolic resistance, ultimately conditioning reduced muscle
mass, impaired muscle function and adverse clinical outcomes
(63). Thus, the relationship between gut microbiota and
sarcopenic obesity remains a very promising area of research for
the future.

Some limitations of the present study should be considered:
(a) the cross-sectional nature, that does not allow determination
of cause-and-effect relationship; (b) the relatively small sample
size of children with biopsy-confirmed diagnosis of NAFLD;
(c) missing data on physical activity; and (d) lack of data on
modifications in muscle strength and quality.
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Nevertheless, despite these limitations, this is the first study
to establish a close and independent association between
low muscle mass and NAFLD/NASH in overweight/obese
youths. Considering the worldwide increase of pediatric obesity,
measurements of muscle mass may serve as useful method of
identifying among obese children those at high cardiometabolic
risk who may need more detailed medical examinations, and
lifestyle interventions including adequate nutritional support and
intensive exercise prescriptions for prevention of NAFLD and
its progression.
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