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Abstract: New Schiff base complexes [Cu2(HL1)(L1)(N3)3]·2H2O (1) and [Cu2L2(N3)2]·H2O (2)
were synthesized. The crystal structures of 1 and 2 were determined by single-crystal X-ray
diffraction analysis. The HL1 ligand results from the condensation of salicylaldehyde and
1-(2-aminoethyl)piperazine, while a new organic ligand, H2L2, was formed by the dimerization of
HL1 via a coupling of two piperazine rings of HL1 on a carbon atom coming from DMF solvent.
The dinuclear building units in 1 and 2 are linked into complex supramolecular networks through
hydrogen and coordination bondings, resulting in 2D and 1D architectures, respectively. Single-point
and broken-symmetry DFT calculations disclosed negligible singlet–triplet splittings within the
dinuclear copper fragments in 1 and 2. Catalytic studies showed a remarkable activity of 1 and 2
towards cyclohexane oxidation with H2O2 in the presence of nitric acid and pyridine as promoters
and under mild conditions (yield of products up to 21%). Coordination compound 1 also acts as an
active catalyst in the intermolecular coupling of cyclohexane with benzamide using di-tert-butyl
peroxide (tBuOOtBu) as a terminal oxidant. Conversion of benzamide at 55% was observed after 24 h
reaction time. By-product patterns and plausible reaction mechanisms are discussed.

Keywords: copper complexes; Schiff bases; supramolecular polymers; DFT calculations; exchange
couplings; catalysis; alkane functionalization; C–H bonds; amidation

1. Introduction

Design of functional coordination polymers involving transition metals is a hot topic in modern
chemistry due to the wide range of properties exhibited by this class of materials [1,2]. The presence
of a regular lattice with controlled intermetallic separations provides a basis for novel magnetic
materials [3,4] and creates favourable conditions for catalytic activity [5–7]. Porosity is another
important feature of coordination polymers and metal–organic frameworks, which enables their
applications for gas storage and controlled release, activation of small molecules, drug delivery, and
many others [8–10]. Activation and subsequent functionalization of alkanes bearing inert sp3 C–H
bonds towards industrially significant products is one of the fields of relevant importance in modern
catalysis [11], and therefore, the development of efficient new catalytic systems is a topic of current
attention [5,12–14]. Moreover, design and preparation of simple, cheap, and efficient catalysts based
on copper complexes attract special attention [15], being inspired by the natural copper-containing
enzymes (methane monooxygenases), which catalyse the oxidation of methane and heavier alkanes at
ambient conditions [12].
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Among many different ligands that can be used for the preparation of polymeric and polynuclear
coordination compounds [5,16,17], the Schiff bases attract a strong continuous interest since they can be
easily designed as novel ligand systems through the in situ condensation of a large library of amines and
aldehydes [18,19]. Earlier, we reported the iron(III) complex [Fe(HL1)Cl2(DMF)]Cl·DMF (where HL1 is
the Schiff base ligand, resulting from the condensation of salicylic aminoethylpiperazine and aldehyde),
which showed a high catalytic activity in cyclohexane oxidation with H2O2 [20]. Additionally, it
was found that the copper complexes [Cu(HL1)(NO3)(DMF)](NO3)·H2O and [Cu(HL1)Cl2]· 12 DMSO
with the same ligand, HL1, as well as the compound [CuCl2La]·DMF, where La is a product of
the condensation of aminoguanidine and 2-pyridinecarbaldehyde, display a prominent behaviour
in this catalytic reaction but using a pyridine as promoting agent [21]. Continuing our studies
aiming at synthesis and investigation of novel catalytic systems [5,22–26], we prepared the two new
complexes [Cu2(HL1)(L1)(N3)3]·2H2O (1) and [Cu2L2(N3)2]·H2O (2) bearing known HL1

− (in 1) and
novel H2L2-derived (in 2) Schiff base ligands, studied their solid-state crystal structures, analysed the
spin density distributions, and tested their catalytic activity in the reactions of amidation of cyclohexane
with benzamide using tBuOOtBu as oxidant and oxidation of cyclohexane with hydrogen peroxide.

2. Materials and Methods

All the chemical reagents were used as received. Elemental analyses for CHN were made by the
Microanalytical Service of the Instituto Superior Técnico. The IR spectra were taken on a BIO-RAD
FTS 3000MX (Bio-Rad Laboratories Inc., Hercules, CA, USA) instrument in KBr pellets.

2.1. Synthesis of [Cu2(HL1)(L1)(N3)3]·2H2O

The 1-(2-aminoethyl)piperazine (1 mmol, 0.13 mL) and salicylaldehyde (1 mmol, 0.11 mL) were
dissolved in 15 mL of methanol. The resulting light-yellow solution was stirred at 50–60 ◦C for 30
min. Then, 0.17 g (1 mmol) of CuCl2·2H2O in 3 mL of methanol, 0.27 g (1 mmol) of FeCl3·6H2O in 3
mL of methanol, and 1.3 g (20 mmol) of NaN3 in 2 mL of water were added dropwise in this order.
After the addition of the solutions of salts, the reaction mixture got green colour, which turned to
dark-brown after the addition of sodium azide. The resulting dark-brown solution was stirred for 30
min, then filtered and kept at room temperature. The powder, which was found to be a mixture of
brown and green microcrystals, was obtained in 1 day. Dark-green crystals suitable for single-crystal
X-ray study were formed from the filtrate after 1 month. Yield: 0.16 g, 42% (based on copper chloride).
Anal. calc. for Cu2C26H40N15O4 (M = 753.803): C, 41.43%; N, 27.87%; H, 5.35%. Found: C, 41.4%; N,
27.6%; H, 5.4%.

2.2. Synthesis of [Cu2L2(N3)2]·H2O

The 1-(2-aminoethyl)piperazine (1 mmol, 0.13 mL) and salicylaldehyde (1 mmol, 0.11 mL) were
dissolved in 15 mL of DMF. The resulting light-yellow solution was stirred at 50–60 ◦C for 30 min.
Then, 0.46 g (2 mmol) of Cu(NO3)2·2.5H2O in 5 mL of DMF and 1.3 g (20 mmol) of NaN3 in 5 mL
of DMF/water mixture (1:1) were added dropwise in this order. The resulting dark-brown solution
was stirred for 30 min, then filtered and kept at room temperature. Dark-green crystals suitable for
single-crystal X-ray study were formed in 1 month. Yield: 0.12 g, 17% (based on copper nitrate). Anal.
calc. for Cu2C27H38N12O3 (M = 705.78): C, 45.95%; N, 23.82%; H, 5.43%. Found: C, 45.1%; N, 23.3%;
H, 5.4%.

2.3. Crystallography

The single-crystal X-ray data for 1 and 2 were acquired on a Bruker AXS KAPPA APEX II
(Bruker AXS Inc., Madison, WI, USA) diffractometer. Cell parameters were retrieved and refined
using the Bruker SAINT (Bruker AXS Inc., Madison, WI, USA) program. SADABS (Bruker AXS Inc.,
Madison, WI, USA) was used for correction of absorption [27]. Both structures were solved by direct
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methods and refined against F2 using the SHELX-2018/3 (University of Göttingen, Göttingen, Germany)
program [28] (Table 1). The hydrogen atoms of water molecules (in 1 and 2) and aminogroup of
piperazine ligand (in 2) were localized and refined (O−H and N–H distances were restrained to 0.85
and 0.91 Å, respectively). The interatomic H···H separations in water molecules were restrained to
1.38 Å. The remaining H-atoms were placed at calculated positions and refined using the riding model
with Uiso = 1.2Ueq. Hirshfeld analysis and surface visualisation were made using the CrystalExplorer
(University of Western Australia, Crawley, Australia) 17.5 program [29].

Table 1. Crystal data and structure refinement for 1 and 2.

1 2

Empirical Formula C26H41Cu2N15O4 C27H38Cu2N12O3
Formula Weight 754.82 705.77
Crystal System Orthorhombic Monoclinic
Space Group Pbca P 21/c

a/Å 13.6181(10) 11.3959(16)
b/Å 19.6836(14) 19.983(3)
c/Å 25.2572(18) 13.3403(17)
α/◦ 90 90
β/◦ 90 90.335(6)
γ/◦ 90 90

V/Å3 6770.3(8) 3037.8(7)
Z 8 4

Calculated Density/g cm−3 1.481 1.543
T, K 296(2) 296(2)

µ(Mo-Kα)/mm−1 1.313 1.452
F(000) 3136 1464

Reflections Collected/Unique 44613/5951 21704/5812
Rint 0.1175 0.1057

Reflections with F2 > 2σ(F2) 3586 2005
Θmin, Θmax/

◦ 2.199, 25.014 3.220, 26.373
R1, F2 > 2σ(F2) 0.0743 0.0486
wR2 (all data) 0.2190 0.1192

GoF 1.096 0.729
Radiation Mo Kα Mo Kα

CCDC numbers 2036334 2036341

2.4. DFT Calculations

Single-point and broken-symmetry [30–32] calculations were performed by using the B3LYP/G
functional [33–36] with the TZVPP basis set for the copper atoms and coordination sphere, and SVP
basis set for all other atoms. The ORCA 4.2.1 (Max Planck Institute for Coal Research, Mülheim
an der Ruhr, Germany) package was used [37] with integration grids Grid4. The chain-of-spheres
RIJCOXS approximation was applied, with the support of the auxiliary basis def2/J [38]. The X-ray
atom coordinates of 1 and 2 were used without geometry optimization. The dummy H atoms (used for
generation of structure fragments for H-bonded synthon in 2) were generated by using the Avogadro
1.2.0 (University of Pittsburgh, Pittsburgh, PA, USA) program [39]. The exchange couplings were
determined according to the formalism JAB = −(EHS − EBS) / (SA + SB)2 (where EHS and EBS are energies
of high-spin and broken-symmetry states, respectively) [40–43]. The isosurfaces of spin densities were
drawn using the VESTA 3.5.2 (National Institute for Materials Science, Tsukuba, Japan) program [44].
Shortened examples of the ORCA inputs for single point and broken symmetry calculations are given
in the Listings S1 and S2.
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2.5. Catalytic Oxidation of Cyclohexane

An amount of 5 µmol of solid catalyst was weighed into a flask. Then, 4.4 mL of CH3CN,
50 µmol of promoter (pyridine or HNO3 in the form of stock solutions in acetonitrile), 0.5 mL of
nitromethane solution (internal standard; 1 mL of CH3NO2 mixed with 9 mL of CH3CN), 108 µL
(1 mmol) of cyclohexane, and 0.28 mL (5 mmol) of H2O2 (50% aqueous) were added in this order at
50 ◦C under stirring (CAUTION: the combination of air or molecular oxygen and H2O2 with organic
compounds at elevated temperatures may be explosive!). Aliquots (ca. 0.5 mL) of reaction mixture
were transferred, upon cooling, into a vial containing an excess (ca. 150 mg) of solid Ph3P (according
to the method developed by Shul’pin [45]) and then analysed directly by gas chromatography (GC) or
gas chromatography–mass spectrometry (GC–MS) techniques. The aliquots containing nonreduced
peroxides may show incorrect amounts of cyclohexanol and cyclohexanone due to spontaneous
decomposition of cyclohexyl hydroperoxide in a GC injector and/or column [45].

2.6. Catalytic Amidation

The reactions were carried out under N2 atmosphere in a Schlenk tube under stirring and control
of temperature. First, 12.5 µmol of the catalyst and 0.5 mmol of benzamide were weighted into
the Schlenk tube in solid form. Then 1 mL of chlorobenzene and 0.54 mL (5 mmol) of cyclohexane
were added in this order. Then 184 µL (1 mmol) of the oxidant tBuOOtBu was added at room
temperature. The mixture was frozen with liquid nitrogen. Then the Schlenk tube was pumped and
filled with N2 a couple of times. The frozen mixture was left to warm up under vacuum, and the above
procedure was repeated. After that, the Schlenk tube was filled with N2 and heated at 90 ◦C. After
24 h, the reaction mixtures were cooled to room temperature. Then 10 mL of acetonitrile and 100 µL
of α,α,α-trifluorotoluene (used as a GC internal standard) were added. The resulting mixture was
analysed by GC/GC–MS techniques.

2.7. Gas Chromatography

A PerkinElmer Clarus 500 (PerkinElmer, Waltham, MA, USA) gas chromatograph (SGE BP-20
capillary GC column (Trajan, Melbourne, Australia) 30 m× 0.22 mm× 25µm dimensions) equipped with
a FID detector and a PerkinElmer Clarus 600 (PerkinElmer, Waltham, MA, USA) gas chromatograph
(two SGE BPX-5 capillary GC columns (Trajan, Melbourne, Australia), the same dimensions) equipped
with a FID detector and with a PerkinElmer Clarus 600 C (PerkinElmer, Waltham, MA, USA) electron
impact mass spectrometer were used for quantitative and qualitative analyses of the catalytic mixtures
(helium carrier gas was used). All Electron Ionization (EI) mass spectra were recorded using 70 eV
ionization energy. The identification of product peaks at the chromatograms was made on the basis of
the NIST v. 2.2 mass spectral database (PerkinElmer TurboMass v. 5.4.2.1617 software was used).

3. Results

3.1. Synthesis and Spectroscopic Analysis

The complexes 1 and 2 were prepared employing a stepwise synthetic approach (Figure 1). The
first step was the in situ formation of a Schiff base proligand by condensation of salicylaldehyde and
1-(2-aminoethyl)piperazine. In the next step, the obtained in situ Schiff base proligand was reacted
with a metal precursor. Such method of complex preparation is commonly used in the synthesis of
coordination compounds and allows the use of the Schiff base ligand immediately after its formation.
For 1, the interaction of copper(II) and iron(III) chlorides with NaN3 in a methanol solution of the Schiff
base ligand using the molar ratio of CuCl2:FeCl3:Ligand = 1:1:1 resulted in a dark-brown solution. The
powder (later it was found to be a mixture of brown and green microcrystals) precipitated in 1 day,
while dark-green microcrystals of 1 were formed from the filtrate in 1 month. Complex 2 was formed
by means of the interaction of copper(II) nitrate with NaN3 in a DMF solution of the Schiff base using
the molar ratio of Cu(NO3)2:Ligand = 2:1. The dark-brown solution was heated and magnetically
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stirred for 30 min in open air, then filtered to remove undissolved solid and kept at room temperature
until dark-green crystals of 2 suitable for X-ray crystallographic study were formed (ca. 1 month).
Unexpectedly, single-crystal X-ray analysis of 2 disclosed a new organic ligand, (L2)2−, formed in situ
(Figure 1). The formation of 2 can be understood by assuming a partial decomposition of DMF solvent
into formaldehyde and dimethylamine with subsequent C–N coupling between formaldehyde and
piperazine aminogroups [46]. This process is known for piperidine and piperazine chemistry [47–49].
The search via the Cambridge Structural Database (CSD, version 5.41, August 2020) [50,51] revealed
six crystal structures of piperazine-based organic and coordination compounds [52], three of which
were obtained by coupling piperazine groups in DMF media.
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Figure 1. Schematic representation of the formation of 1 and 2.

The IR spectra of 1 and 2 in the 4000–400 cm−1 (Figures S1 and S2) range indicate the presence
of the Schiff base ligands. The broad bands of medium intensity around 3400 cm−1 were assigned to
ν(O–H) vibrations of uncoordinated water molecules. The strong bands at 1638 (1) and 1630 cm−1

(2) were assigned to ν(C=N) stretching vibrations of the Schiff bases. The presence of both terminal
and end-on bridging azide ligand in 1 was identified by the strong νas(N3) absorption peaks at 2130
and 2053 cm−1, respectively [53]. The very strong νas(N3) absorption peak at 2046 cm−1 showed the
presence of the terminal azide ligand in 2.

3.2. Crystal Structures

The crystal structure of [Cu2(HL1)(L1)(N3)3]·2H2O (1) consists of dinuclear molecules, where
copper(II) atoms are joined by end-on azide bridge (Figure 2), and two uncoordinated water molecules,
which join into supramolecular two-dimensional layers assisted by strong hydrogen bonds (Figure 3).
Although the hydroxyl groups of the Schiff bases deprotonate during the synthesis of 1, one of two
ligand molecules remains uncharged (HL1) because the secondary amine of the piperazine group is
protonated. Compound 1 contains two crystallographically independent copper(II) atoms, Cu1 and
Cu2. Each of them has a distorted square-pyramidal ON4 coordination environment (Figure 2) formed
by the donor atoms from tridentate chelating Schiff base ligand occupying three of the equatorial metal
coordination sites, while the remaining basal position is engaged with the N atom from terminal azide
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and the axial one with the N atom from bridging azide ligand. The equatorial Cu–X (X = O, N) bond
lengths assume values in the range of 1.927(6)–2.101(6) Å, while the apical Cu–N ones are 2.329(7) and
2.390(7) Å, for Cu1 and Cu2, respectively (Table 2). The N/O–Cu–Ntrans angles lie in the range from
157.7(4) to 174.0(3)◦. The Cu···Cu separation within the dinuclear molecule is 4.389(0) Å.
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Materials 2020, 13, 5435 7 of 19

Table 2. Selected geometrical parameters (distances/Å and angles/◦) for 1.

Cu1–O1 1.940(6) Cu2–O2 1.927(6)
Cu1–N2 2.101(6) Cu2–N8 2.088(6)
Cu1–N3 1.967(6) Cu2–N9 1.962(7)
Cu1–N4 1.996(7) Cu2–N10 1.949(8)
Cu1–N13 2.329(7) Cu2–N13 2.390(7)

O1–Cu1–N2 172.9(3) O2–Cu2–N8 174.0(3)
O1–Cu1–N3 92.2(3) O2–Cu2–N9 92.4(3)
O1–Cu1–N4 92.9(3) O2–Cu2–N10 91.8(3)
O1–Cu1–N13 94.0(2) O2–Cu2–N13 92.9(2)
N2–Cu1–N3 82.9(3) N8–Cu2–N9 83.8(3)
N2–Cu1–N4 90.0(3) N8–Cu2–N10 90.0(3)

N2–Cu1–N13 91.9(3) N8–Cu2–N13 91.6(2)
N3–Cu1–N4 158.9(3) N9–Cu2–N10 157.7(4)

N3–Cu1–N13 101.2(3) N9–Cu2–N13 88.8(3)
N4–Cu1–N13 98.9(3) N10–Cu2–N13 112.8(4)

The strong H-bonds of three types, O–H···O, N–H···O, and N–H···N [O2W–H21···O2, D–A 2.817(0) Å,
D–H···A = 160.79(0)◦; N7–H72···O2W, D–A 2.878(0) Å, D–H···A 152.63(0)◦; N7–H72···N12, D–A 3.152(0)
Å, D–H···A 121.71(0)◦], involving oxygen and nitrogen atoms from the O2-phenolate and N7-amine
moieties of Schiff base ligands, respectively, as well as N12 atom from a terminal azide ligand and
O2W atom from an uncoordinated water molecule, form the eight-membered supramolecular synthon
(Figure 3, in enlargement), which joins the neighbouring dinuclear molecules into supramolecular
chains. Besides, these chains are strengthened by N–H···N [N7–H71···N1, D–A 2.713(0) Å, D–H···A
158.31(1)◦] interactions between N7- and N1-amine moieties of Schiff bases. Moreover, the O1W
atoms of other solvated water molecules link supramolecular chains into two-dimensional layers,
showing the simultaneous formation of three H-bonds, namely, O–H···O, O–H···N, and N–H···O
[O1W–H12···O1, D–A 2.769(0) Å, D–H···A = 159.48(0)◦; O1W–H11···N4, D–A 3.187(0) Å, D–H···A
149.03(1)◦; N1–H1···O1W, D–A 2.823(0) Å, D–H···A 134.67(0)◦]. Further growth of the dimensionality of
the supramolecular 2D complex is not observed due to steric limitations: the bulky Schiff base ligands
prevent the formation of H-bonds between the layers (Figure 4, left). Rather, a complex topology of 2D
layers in structure 1 can be visualized by simplifying the structure and replacing the ligands with dots
(Figure 4, right).
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The X-ray analysis reveals that [Cu2L2(N3)2]·H2O (2) is formed by a dinuclear molecule (Figure 5)
and uncoordinated water, which form supramolecular chains due to hydrogen bonds (Figure 6).
The Schiff base ligand, (L2)2−, in 2 is doubly deprotonated and has two coordination sites having
the tridentate chelating (N,N,O) coordination mode (Figure 5). Thus, similar to 1, the Schiff base
predetermines the structure type formation and compensates the metal ion charge as well. Each of
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the two crystallographically independent copper(II) atoms, Cu1 and Cu2, has distorted square-planar
geometry with an ON3 donor set formed by the N,O-donor atoms of the Schiff base and terminal
azide ligands. The Cu–X (X = O, N) bond lengths in 2 range from 1.890(4) to 2.080(4) Å, while the
O(N)–Cu–Ntrans angles vary from 171.2(2) to 176.22(17)◦ (Table 3).

Materials 2020, 13, x  8 of 20 

 

azide ligands. The Cu–X (X = O, N) bond lengths in 2 range from 1.890(4) to 2.080(4) Å, while the 
O(N)–Cu–Ntrans angles vary from 171.2(2) to 176.22(17)° (Table 3).  

 

Figure 5. Molecular structure of 2 (building unit) showing the atom numbering. H atoms and 
uncoordinated water molecule are omitted for clarity. Colour scheme: Cu, cyan; O, red; N, blue; C, 
grey. 

The uncoordinated water molecules tie complex molecules of 2 together, forming 1D 
supramolecular chains by means of strong hydrogen bonding between the oxygen atoms of the Schiff 
bases and the nitrogen atoms of N3

− anions (Figure 6) [O1W–H1∙∙∙O1, D–A 2.908(0) Å, D–H∙∙∙A = 
157.66(1)°; O1W–H2∙∙∙N10, D–A 3.010(9) Å, D–H∙∙∙A = 167.82(1)°]. Moreover, a weak contact of 
2.940(7) Å exists between Cu2 atom and N6 atom from azide anion, which additionally reinforces 
polymeric chains and participates in the formation of the 10-membered supramolecular synthon 
(Figure 6, enlargement). The bond angles N6(3)∙∙∙Cu2–X (X = N7, N8, N10, O2) in the range from 
84.41(0)° to 97.85(0)° also confirm the existence of this contact. Thus, in fact, Cu2 atom has a distorted 
pyramidal (4+1) coordination environment. The intermolecular Cu∙∙∙Cu separation is 11.209(2) Å. The 
supramolecular chains in 2 are densely packed, revealing an overall zigzag shape along the b axis 
(Figure 7). A simplified topology of 1D chains of 2 is shown in Figure 7, bottom. 

 

Figure 6. Representation of the supramolecular chain in 2, viewed along the crystallographic c axis, 
with the inset showing synthon formed by H-bonding between Schiff base ligand, terminal azide 
group, and uncoordinated water molecule, as well as weak Cu–N contact. The hydrogen atoms are 
omitted for clarity. Colour scheme: Cu, cyan; O, red; N, blue; C, grey. 

Figure 5. Molecular structure of 2 (building unit) showing the atom numbering. H atoms and
uncoordinated water molecule are omitted for clarity. Colour scheme: Cu, cyan; O, red; N, blue; C, grey.
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Table 3. Selected geometrical parameters (distances/Å and angles/◦) for 2.

Cu1–O1 1.905(4) Cu2–O2 1.890(4)
Cu1–N1 1.924(5) Cu2–N7 1.943(5)
Cu1–N2 2.080(4) Cu2–N8 2.077(4)
Cu1–N4 1.949(4) Cu2–N10 1.953(5)

O1–Cu1–N1 92.36(19) O2–Cu2–N7 92.4(2)
O1–Cu1–N2 175.51(18) O2–Cu2–N8 176.22(17)
O1–Cu1–N4 92.32(18) O2–Cu2–N10 90.9(2)
N1–Cu1–N2 84.24(19) N7–Cu2–N8 84.53(19)
N1–Cu1–N4 173.6(2) N7–Cu2–N10 171.2(2)
N2–Cu1–N4 91.30(18) N8–Cu2–N10 91.90(19)

The uncoordinated water molecules tie complex molecules of 2 together, forming 1D
supramolecular chains by means of strong hydrogen bonding between the oxygen atoms of the
Schiff bases and the nitrogen atoms of N3

− anions (Figure 6) [O1W–H1···O1, D–A 2.908(0) Å,
D–H···A = 157.66(1)◦; O1W–H2···N10, D–A 3.010(9) Å, D–H···A = 167.82(1)◦]. Moreover, a weak
contact of 2.940(7) Å exists between Cu2 atom and N6 atom from azide anion, which additionally
reinforces polymeric chains and participates in the formation of the 10-membered supramolecular
synthon (Figure 6, enlargement). The bond angles N6(3)···Cu2–X (X = N7, N8, N10, O2) in the range
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from 84.41(0)◦ to 97.85(0)◦ also confirm the existence of this contact. Thus, in fact, Cu2 atom has
a distorted pyramidal (4+1) coordination environment. The intermolecular Cu···Cu separation is
11.209(2) Å. The supramolecular chains in 2 are densely packed, revealing an overall zigzag shape
along the b axis (Figure 7). A simplified topology of 1D chains of 2 is shown in Figure 7, bottom.Materials 2020, 13, x  9 of 20 

 

 

 

Figure 7. Top: packing of the supramolecular chains in 2 along the b axis. The hydrogen atoms are 
omitted for clarity. Bottom: simplified topology of 2. Colour scheme: Cu, cyan; O, red; N, blue; C, 
grey.  

Table 2. Selected geometrical parameters (distances/Å and angles/°) for 1. 

Cu1–O1 1.940(6) Cu2–O2 1.927(6) 
Cu1–N2 2.101(6) Cu2–N8 2.088(6) 
Cu1–N3 1.967(6) Cu2–N9 1.962(7) 
Cu1–N4 1.996(7) Cu2–N10 1.949(8) 
Cu1–N13 2.329(7) Cu2–N13 2.390(7) 

    
O1–Cu1–N2 172.9(3) O2–Cu2–N8 174.0(3) 
O1–Cu1–N3 92.2(3) O2–Cu2–N9 92.4(3) 
O1–Cu1–N4 92.9(3) O2–Cu2–N10 91.8(3) 
O1–Cu1–N13 94.0(2) O2–Cu2–N13 92.9(2) 
N2–Cu1–N3 82.9(3) N8–Cu2–N9 83.8(3) 
N2–Cu1–N4 90.0(3) N8–Cu2–N10 90.0(3) 

N2–Cu1–N13 91.9(3) N8–Cu2–N13 91.6(2) 
N3–Cu1–N4 158.9(3) N9–Cu2–N10 157.7(4) 

N3–Cu1–N13 101.2(3) N9–Cu2–N13 88.8(3) 
N4–Cu1–N13 98.9(3) N10–Cu2–N13 112.8(4) 

Figure 7. Top: packing of the supramolecular chains in 2 along the b axis. The hydrogen atoms are
omitted for clarity. Bottom: simplified topology of 2. Colour scheme: Cu, cyan; O, red; N, blue; C, grey.

3.3. Hirshfeld Surface Analysis

Analysis of the Hirshfeld surface (HS) [54] was performed to visualize the differences in
coordination environments around crystallographically independent copper centres. The normalized
contact difference (dnorm) surfaces for 1 and 2 are shown in Figure 8. The shapes of Hirshfeld surfaces
for all copper centres agree with their coordination environments (square-pyramidal ones, differing
by apical distances). The surfaces of crystallographically independent copper centres in 1 reveal a
significant difference in the apical positions (Figure 8). In contrast, the HS plots for both copper centres
in 2 are similar. The fingerprint plots [54] for 1 and 2 are depicted in Figure 8, inset. The outer surface
contacts are constructed mainly of those with N (65.1 and 44.5%), O (18.3 and 16.3%), H (14.7 and
38.5%), and C ones (1.9% and 0.7% for 1 and 2, respectively). As can be seen, the contribution of Cu···H
contacts is much higher for 2, while structure 1 shows a larger amount of Cu···N contacts.
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3.4. DFT Calculations

Single-point and broken-symmetry DFT calculations were used to evaluate the spin structures
of 1 and 2. In all cases, the highest Mulliken spin populations were located on copper centres
as well as on coordinated N,O-atoms within the equatorial planes (Figure 9, Listings S3–S7).
Surprisingly, the bridging azide group in 1 revealed nearly zero spin density on its nitrogen
atoms (Listing S3), suggesting negligible magnetic exchange between the copper centres. The
magnitude of singlet–triplet splitting in 1 was evaluated by broken-symmetry DFT calculations,
which gave the JCuCu value of −0.44 cm−1. The correctness of these calculations was confirmed
by applying the same methodology towards the estimation of a singlet–triplet splitting and spin
structures in literature complexes bearing a similar Cu–(N3)–Cu fragment. The complex [CuLb(N3)]2

(HLb = (2-[1-(2-dimethylaminoethylimino)ethyl]phenol) reveals a Cu–N–Cu angle of 118.5◦, being
slightly lower that the respective angle in 1 (136.8◦) [55]. The calculated spin density discloses
the mutual arrangement of magnetic orbitals different from 1 (Figure 9). The predicted magnetic
exchange between unpaired electrons on copper centres, JCuCu = 0.84 cm−1 (Figure S3, Listing S6), is
very close to the experimentally determined value of −1.97 cm−1. Another example is the complex
[Cu2(N3)(Lc)2](ClO4)3 bearing the cagelike ligand m-bis[bis(1-pyrazolyl)methyl]benzene (Lc) [56].
In this case, the DFT single-point calculations disclosed a significant spin density localized on the
azide bridging ligand (Figure S4, Listing S7). The broken-symmetry DFT calculations suggested a
quite strong antiferromagnetic exchange of −427.6 cm−1 (Listing S7), this result being similar to that
obtained earlier [56]. Although the magnitude of the exchange was overestimated (the experimentally
determined JCuCu was −223 cm−1), the calculations correctly predicted the sign and tendency of the
exchange. These results are in conformity with those previously reported and point out the correctness
of the methodology chosen.
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DFT calculations predict the magnetic exchange between copper centres in 2 to be very weak:
JCuCu = −1.54 and −2.02 cm−1 for interactions within the molecule of 2 (d(Cu···Cu) = 11.21 Å) and
within the dimeric H-bonded synthon (d(Cu···Cu) = 6.53 Å), respectively (Figure 9). Although examples
of significant long-range exchange interactions at more than 6 Å distance are known [57], the ligand in
2 and the H-bonded network in the synthon are poor transmitters of superexchange interactions; thus
the magnetic couplings in the structure of 2 should be negligible.

3.5. Catalytic Oxidation of Cyclohexane

The catalytic properties of 1 and 2 were investigated in the oxidation of cyclohexane (CyH) with
H2O2 under mild conditions (atmospheric pressure and 50 ◦C temperature) in the presence of nitric
acid or pyridine (Py) as promoters (Figure 10).

Materials 2020, 13, x  12 of 20 

 

3.5. Catalytic Oxidation of Cyclohexane 

The catalytic properties of 1 and 2 were investigated in the oxidation of cyclohexane (CyH) with 
H2O2 under mild conditions (atmospheric pressure and 50 °C temperature) in the presence of nitric 
acid or pyridine (Py) as promoters (Figure 10). 

 
Figure 10. Catalytic oxidation of cyclohexane with H2O2, catalysed by complexes 1 and 2. 

Both complexes (0.14 mol% loading) reveal high activities in the oxidation of cyclohexane (CyH) 
with H2O2 (5 equiv.) in acetonitrile under mild conditions (50 °C temperature and atmospheric 
pressure) using pyridine (Py) as a promoting agent (5 mol%), reaching TONs (turnover numbers) up 
to 140. The highest reaction rate of 7.1 × 10–5 M∙s–1 (supported by the yield of products of 21%) is 
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Figure 10. Catalytic oxidation of cyclohexane with H2O2, catalysed by complexes 1 and 2.

Both complexes (0.14 mol% loading) reveal high activities in the oxidation of cyclohexane (CyH)
with H2O2 (5 equiv.) in acetonitrile under mild conditions (50 ◦C temperature and atmospheric
pressure) using pyridine (Py) as a promoting agent (5 mol%), reaching TONs (turnover numbers) up
to 140. The highest reaction rate of 7.1 × 10−5 M·s−1 (supported by the yield of products of 21%) is
observed at 30 min for the 2/Py catalytic system (Figure 11). Pyridine is able to promote proton transfer
steps that are required in the metal-catalysed formation of HO• from H2O2 [58,59]. This role can be
further relevant because the N,N,O-ligands have their basic sites blocked by H-bonds and thus cannot
effectively promote the above H+-transfer steps. Moreover, pyridine is able to coordinate metal centres,
eventually favouring the formation of a catalytically active species [21,60–63].
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oxidation of 0.2 M of cyclohexane with 1.0 M of H2O2 (50% aqueous) in the presence of promoter
(1 × 10−2 M) catalysed by complex 1 or 2 (1 × 10−3 M) in acetonitrile at 50 ◦C.

Although nitric acid can act as an efficient promoting agent (e.g., for copper-catalysed oxidations
with H2O2 [5,64]), in the present case, this promoter is much less efficient, leading to ca. 1% of yield
and showing the two orders’ lower reaction rate of W0 = 6.8 × 10−7 M·s−1. This can be due to the
preferable protonation of the azide ligands to the N,N,O-ones, which thus remain fully coordinated to
the metal centre, without the formation of an unsaturated coordination environment.

The main reaction product is cyclohexyl hydroperoxide (CyOOH), as evidenced by the GC–MS
analysis of the reaction mixtures [65–67], where the hydroperoxide was detected directly (Figure 12).
The peak of Cy–OOH completely disappears after the addition of PPh3, which quantitatively reduces
the hydroperoxide to the respective alcohol [45]. Observation of CyOOH as a major reaction product
is expected for the reaction route where hydroxyl radical is a main C–H attacking species [5,14]. In
this mechanism, a cyclohexane C–H bond is homolytically split to form the cyclohexyl radical Cy•.
The latter reacts with dioxygen to form the peroxyl radical CyOO•, which could be reduced by a
copper catalyst to produce the alkyl peroxyl anion CyOO− and finally cyclohexyl hydroperoxide
CyOOH. The reaction proceeds with a selectivity towards cyclohexanol and cyclohexanone of more
than 95%. The by-product pattern, recorded after 24 h, reveals a complex mixture of cyclohexane
diols, hydroxycyclohexanones, and other species (Figure S5). This pattern is expected for a hydroxyl
radical attack of cyclohexane [20,66,68,69], in this way providing additional evidence for this type of
oxidation mechanism.
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3.6. Catalytic Amidation of Cyclohexane

Complex 1, revealing much higher solubility in acetonitrile and cyclohexane than 2, was tested
as a catalyst in the reaction of intermolecular amidation of cyclohexane in chlorobenzene medium
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Figure 13. Catalytic amidation of cyclohexane, catalysed by 1.

The reaction of benzamide with 10 equivalents of cyclohexane in the presence of 2 equivalents of
oxidant (tBuOOtBu, di-tert-butyl peroxide, DTBP) and catalyst 1 (2.5 mol% relative to benzamide) at
100 ◦C and under N2 atmosphere affords N-cyclohexyl benzamide (Figure 13). Chlorobenzene solvent
was used due to its high boiling temperature and good solubility of the complex. The conversion
of benzamide was 55% after 24 h, supported by a TON of 23. The reaction by-products are those
formed through the methylation of chlorobenzene and benzamide via the attack of the methyl radical,
typically forming in low quantities from the tBuOOtBu oxidant during its thermal splitting [70]. The
observation of chloro-2-cyclohexylbenzenes (Figure 14) suggests the participation of chlorobenzene
radicals, appearing as a result of the reaction of tBuO• radical with chlorobenzene solvent. The search
for dichloro-biphenyls disclosed traces of this by-product (Figure 14), thus confirming the participation
of chlorobenzene radicals as intermediates.
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Figure 14. Fragment of the chromatogram showing the reaction products and by-products of the
amidation of cyclohexane with benzamide catalysed by 1. The initial parts of the chromatogram
containing peaks of the solvent, substrate, and internal standard are omitted for clarity.

Based on previous studies [24,70] and considering the data obtained herein, a plausible reaction
mechanism can be proposed (Figure 15), where the radical species and principal intermediates are
shown. The reaction starts from the thermal splitting of DTBP, which becomes notable at temperatures
higher than 90 ◦C. Hydrogen abstraction from cyclohexane by tBuO• radical affords cyclohexyl radical,
which is trapped by a copper catalyst (Figure 15). Hence, the efficiency of the C–H amidation strongly
depends on the affinity of a metal complex catalyst to alkyl radicals. The proposed mechanism foresees
the change of copper oxidation state from Cu(II) to Cu(I) and vice versa (Figure 15). Such processes are
expected for radical oxidative transformations catalysed by copper, where the change of the oxidation
state occurs upon the reaction of a copper catalyst with peroxide and/or radical species [5,14,15].
Participation of both Cu(I) and Cu(II) intermediates in the radical amidation of cyclohexane was
suggested earlier [70].
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Recently, we reported polynuclear copper complexes bearing aminoalcohol ligands with bulky
aliphatic substituents, catalysing cyclohexane amidation with 20% conversation of benzamide under
similar conditions [24]. In the present work, catalyst 1 shows a considerably higher activity (55%
conversion), at the same time affording higher amounts of methylation products (Figure 15). Elevated
amounts of methylated products, particularly N-methylbenzamine, suggest that 1 acts as an efficient
trap for both methyl and cyclohexyl radicals.

4. Conclusions

We described the synthesis and crystal structures of two novel supramolecular compounds of
copper, [Cu2(HL1)(L1)(N3)3]·2H2O (1) and [Cu2L2(N3)2]·H2O (2), which were synthesized by reacting
the in situ prepared Schiff base proligands HL1 or H2L2 with copper salts in nonaqueous media in the
presence of an azide source. For 2, under the experimental conditions, in DMF medium, the piperazine
groups of HL1 undergo coupling with the formation of the proligand H2L2. The crystal structures
of the complexes were determined by X-ray diffraction. The crystal structure of 1 features dinuclear
molecules joined by strong hydrogen bonds into 2D layers of complex topology. In contrast, dinuclear
copper units in the structure of 2 self-organize into 1D polymeric chains. Despite the significant
difference in the intermetallic distances, broken-symmetry DFT calculations disclosed surprisingly
small singlet–triplet splitting in both 1 and 2. Catalytic studies revealed that 1 and 2 act as efficient
catalysts in the oxidation of cyclohexane with H2O2, promoted by pyridine, while nitric acid promoter
was found to be much less efficient. Cyclohexyl hydroperoxide was directly detected by GC–MS
technique, confirming a free radical catalytic mechanism. Complex 1, possessing sufficient solubility
in chlorobenzene, also shows a significant catalytic activity towards amidation of cyclohexane with
benzamide, where a key role of the copper catalyst concerns trapping free cyclohexyl radicals, bringing
them into reaction with benzamide.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/23/5435/s1,
Figure S1: IR spectrum of 1, Figure S2: IR spectrum of 1, Figure S3: Left: isosurface of the DFT calculated spin
density for the triplet state of [CuLb(N3)]2 (CSD refcode RUYQAE) with the cutoff value of 0.002 e a0

3 (yellow
and blue correspond to a positive and negative density, respectively). Right: the same fragment, showing the
atoms numbering scheme, Figure S4: Left: isosurface of the DFT calculated spin density for the triplet state of
cation of [Cu2(N3)(Lc)2](ClO4)3 (CSD refcode JUDNED) with the cutoff value of 0.002 e a0

3 (yellow and blue
correspond to a positive and negative density, respectively). Right: the same fragment, showing the atoms
numbering scheme, Figure S5: Fragment of the chromatogram showing the by-products in the course of oxidation
of cyclohexane (0.2 M) with H2O2 (1.0 M, 50% aqueous), in the presence of pyridine (1 × 10−2 M) catalysed by
complex 1 (1 × 10−3 M) in acetonitrile (total volume of the reaction solution was 5 mL) at 50 ◦C, after 24 h, Listing
S1: Shortened example of the ORCA input for DFT single point calculations of the triplet spin state of 1 (only
metal atoms are shown; the inputs for 2 and literature complexes are similar), Listing S2: Shortened example of
the ORCA input for DFT broken symmetry calculations of 1 (only metal atoms are shown; the inputs for 2 and
literature complexes are similar). Listing S3: Selected output of the ORCA DFT broken symmetry calculations
of 1. The numberings of the atoms, corresponding to X-ray structures, are shows in red colour (for triplet state).
Listing S4: Selected output of the ORCA DFT broken symmetry calculations of 2 (dimer). The numberings of the
atoms, corresponding to X-ray structures, are shows in red colour (for triplet state), Listing S5: Selected output of
the ORCA DFT broken symmetry calculations of 2 (H-bonded synthon, Figure 5). The numberings of the atoms,
corresponding to X-ray structures, are shows in red colour (for triplet state), Listing S6: Selected output of the
ORCA DFT broken symmetry calculations of [CuLb(N3)]2 (refcode RUYQAE, Figure S3). The numberings of the
atoms, corresponding to X-ray structures, are shows in red colour (for triplet state). Listing S7: Selected output of
the ORCA DFT broken symmetry calculations of cation of [Cu2(N3)(Lc)2](ClO4)3 (refcode JUDNED, Figure S4).
The numberings of the atoms, corresponding to X-ray structures, are shows in red colour (for triplet state).
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