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Epidemiological studies have principally relied on measurements of telomere

length (TL) in leucocytes, which reflects TL in other somatic cells. Leucocyte

TL (LTL) displays vast variation across individuals—a phenomenon already

observed in newborns. It is highly heritable, longer in females than males and

in individuals of African ancestry than European ancestry. LTL is also longer

in offspring conceived by older men. The traditional view regards LTL as a

passive biomarker of human ageing. However, new evidence suggests that a

dynamic interplay between selective evolutionary forces and TL might result

in trade-offs for specific health outcomes. From a biological perspective, an

active role of TL in ageing-related human diseases could occur because short

telomeres increase the risk of a category of diseases related to restricted cell pro-

liferation and tissue degeneration, including cardiovascular disease, whereas

long telomeres increase the risk of another category of diseases related to

increased proliferative growth, including major cancers. To understand the role

of telomere biology in ageing-related diseases, it is essential to expand telomere

research to newborns and children and seek further insight into the underlying

causes of the variation in TL due to ancestry and geographical location.

This article is part of the theme issue ‘Understanding diversity in

telomere dynamics’.
1. Introduction
The effort to identify persons whose biological age is out of step with their calend-

rical age has largely fuelled the field of telomere epidemiology. However, only

recent research has confronted the deeper and much more relevant question of

whether telomere length (TL) might be causal in ageing-related diseases in the

general population, which is the focus of this ‘Reflections’ paper. Genetically

engineered deficiencies in telomerase and other telomere-maintenance proteins

[1–3] have confirmed that short telomeres curtail the lifespan of mice, but only

after several generations. That is because inbred strains of mice have very long tel-

omeres; thus, sustained deficiency in telomere maintenance across several

generations is necessary to shorten telomeres to a length that impacts health

and consequently longevity of these mice.

We can draw a reasonable inference from such mice models to rare human dis-

eases that stem from single detrimental mutations, e.g. dyskeratosis congenita [4]

and idiopathic pulmonary fibrosis [5]—genetically inherited diseases marked by

critically short TL. These diseases result from germline mutations in telomere regu-

lating proteins, including TERT, TERC, TINF2, WRAP53, PARN, RTEL1, ACD,

CTC1, DKC1, NHP2 and NOP10 [6,7]. However, genetically engineered mice

have been less successful in modelling the role of telomeres in ageing-related dis-

eases, principally cancer and cardiovascular disease, which are complex human

traits driven by multiple genes and gene-environment interactions. Although

important, the role of telomere biology in such polygenic traits is typically subtle;
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it is rarely expressed as a distinct phenotype that in itself explains

susceptibility or resistance to a given disease. For these reasons,

our present understanding of the connection in the general

population between TL and these adult-onset diseases has

been largely derived from epidemiology and population gen-

etics, disciplines that generate associative data, which are

usually insufficient to establish cause-and-effect relationships

(but see §3b).

Here we distil the essence of a large body of research to paint

a broad picture of the role of telomeres in ageing-related human

diseases. Our focus is on epidemiological research because we

believe that insight into the role of TL in human health and

disease in the general population has been principally derived

from population studies. However, under the section titled

‘The cancer-degenerative-disease trade-off’, we also discuss

research in mammals that explains fundamental principles

essential for understanding human telomere biology.

TL undergoes progressive shortening in replicating somatic

cells in vitro and age-dependent shortening in somatic tissues

in vivo. The popular view regards the pace of this shortening

as a ticking biological clock, i.e. a ‘replicometer’. Accordingly,

individuals with comparatively short TL are considered bio-

logically older than their peers because their telomere clock

is ticking at a faster pace. Based on the premise that ageing

and hence short telomeres are deleterious, numerous investi-

gators reported that many detrimental traits and potentially

harmful environmental factors are associated with short telo-

meres in humans. Accordingly, comparatively short TL has

become the stand-in parameter for poor health—physical

and mental—regardless of the person’s age. As we discuss in

§3, such a view is short-sighted, since not only short telomeres

but also long telomeres might exact a price. Our personal take

on the findings that lead to this key conclusion requires under-

standing the sources of variation in human telomere length,

which is covered under a section with this title. Finally, we

offer the way forward for further research leading to a better

understanding of the role of telomeres in ageing-related

human diseases.
2. Sources of variation in human telomere
length

(a) Variation within somatic cells of the individual and
variation across individuals

Since blood is easily accessible, data on the epidemiology and

population genetics of TL are principally derived from measure-

ments of TL in blood. Unlike birds, reptiles, fish and other lower

vertebrates whose mature erythrocytes are nucleated, human

erythrocytes, which outnumber leucocytes by approximately

eight hundred to one (available at: http://www.nlm.nih.gov/

medlineplus/ency/article/003642.htm, accessed 24 August

2017), have no nuclei. Therefore, only leucocytes are available

for TL measurements in the human blood. However, leucocytes

comprise multiple lineages and sub-lineages with differing TLs

[8,9]. Moreover, somatic tissues display variation in TL that

largely arises from their different replicative history, such that

minimally proliferative tissues, e.g. skeletal muscle and fat,

display longer telomeres than the highly proliferative skin and

the haematopoietic system [10,11]. That said, differences in TL

across leucocyte lineages [12] and somatic cells [10,11] of the

same person are much narrower than TL variation across
persons in a given population. It follows that leucocyte TL

(LTL), i.e. the mean TL of all leucocytes, represents TL in differ-

ent leucocyte lineages and somatic cells [10–12]. The upshot is

that an individual with a long (or a short) LTL has invariably

long (or short) TLs in the majority if not all normal somatic

cells. Still, LTL dynamics after birth reflects TL of haematopoie-

tic stem cells and progenitor cells at birth, and telomere

shortening due to replication of these cells in the bone marrow

and further replication of lymphocytic lineages in the thymus

and secondary lymphoid organs [13,14].

(b) Telomere length dynamics during growth
The rate of TL shortening is considerably faster during early

stages of human growth and development than throughout

adulthood [8,9]. Most information in this regard is derived

from studies in leucocytes. The parsimonious explanation for

the rapid LTL shortening during growth is the expansion of

the haematopoietic system through replications in tandem with

the growing soma [15]. However, with the exception of some

information related to skeletal muscle [11], little is known

about the pace of TL shortening in somatic cells other than leuco-

cytes. Also minimal information is available about factors other

than body mass [11,16] that influence the inter-individual vari-

ation in TL dynamics during childhood/adolescence and the

extent of their lasting effect on TL in adults.

(c) The heritability effect on telomere length
The environment (in utero and during extra-uterine life) might

play a role in fashioning LTL by modifying its pace of age-

dependent shortening. For instance, exposure to air pollutants

in utero [17] and cigarette smoke [18–21] are associated with

short LTL. However, a major component of LTL is constitutive.

For a given age, approximately 60% of the inter-individual

variation in LTL and 30% of its age-dependent attrition are

heritable [22–24].

(d) The sex effect on telomere length
Oestrogen may transcriptionally regulate the catalytic subunit

of human telomerase, hTERT [25,26]. Therefore, the approxi-

mately 150 base pairs longer LTL in women than men

[18,20,27–29] has been attributed in part to oestrogen and the

presumably slower rate of LTL shortening during the premeno-

pausal period [30]. Although reasonable on the face of it, this

notion has been challenged based on longitudinal observations

showing that age-dependent LTL attrition is in fact faster in

premenopausal than postmenopausal women [31]. Moreover,

recent findings indicate that the LTL sex gap is already

observed at birth [27] and might be influenced by the gonadal

hormonal milieu in utero [32].

(e) The paternal-age-at-conception effect on telomere
length

The finding that offspring conceived by older fathers have a

longer LTL, i.e. the effect of paternal age at conception (PAC)

[24,27,33–35], is an intriguing phenomenon, possibly of funda-

mental importance for the trans-generational regulation of TL.

The PAC effect amounts to approximately 15 base pairs longer

LTL per each additional year of the father’s age, meaning that

an offspring conceived by a 35-year-old man has an average

LTL that is longer by 150 base pairs than a similar offspring
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conceived by a 25-year-old man. This effect on LTL is consider-

able, given that the average annual rate of LTL shortening in

adults is approximately 25 base pairs [36]. The PAC effect

might stem from the longer TL in sperm of older men [34,37–

39], which is inherited by the offspring in a Mendelian fashion

(i.e. in allele-specific manner) [40,41]. The longer TL in sperm

of older men has been attributed to high telomerase activity in

the testes and presumably the male germ cells in humans and

other mammals (telomerase is silent in mature sperm) [42–44].

However, TL elongation in the male germ cells can come

about only if telomerase ‘overshoots’ with cell replication, such

that TL becomes progressively longer in successive waves of

newly formed sperm [39]. Alternatively, ageing might promote

selection of male germ cells with a longer TL [35].

( f ) The ancestry effect on telomere length
Sub-Saharan Africans have an average LTL that is longer by

approximately 400 base pairs than African Americans [45],

whose LTL is longer by about 200 base pairs than that of indi-

viduals of European ancestry (Europeans) [29,45,46]. The

shorter TL in Europeans might relate in part to polygenetic

adaptation due to skin depigmentation that came about with

the northbound migration out of equatorial Africa [45]. While

pigmented skin renders relative resistance to most forms of

cutaneous melanoma, depigmented skin augments the risk of

UV light-induced mutations and consequently heightens the

risk of melanoma [45,47]. This lethal cancer is more common

in Europeans whose LTL is constitutively longer than LTL in

controls without the disease [48,49]. Such findings suggest

that without polygenic adaptation, which resulted in shorter

telomeres in Europeans than sub-Saharan Africans, contempor-

ary Europeans would have been even more susceptible to

melanoma than they are at present [45]. A comparatively long

TL is probably more advantageous in continental Africa

because of a high parasitic/infectious load, which requires a

robust immune response throughout the life course. Such a

response might draw upon the high proliferative potential

due to long TL in cells of the haematopoietic hierarchy.

Moreover, the effect of ancestry on TL may explain in part

two puzzling observations. First, while African Americans

have more risk factors for cardiovascular disease, they consist-

ently display less atherosclerosis than Europeans [50]. Second,

while African Americans have a shorter life expectancy, after

the age of 80, their life expectancy is longer than that of

Europeans [51,52]. This finding, referred to as the mortality

cross-over, is attributed to much lower coronary heart disease

mortality in African Americans compared to Europeans [52].

One potential explanation for these observations is the longer

TL in African Americans.
3. Competing interpretations of the links
between telomere length dynamics with
ageing and its related diseases

(a) The conventional view of the ‘clock-like’ nature of
leucocyte telomere length in vivo

Replication-mediated TL shortening ultimately leads to senes-

cence of human somatic cells in culture [53]; as such, TL reflects

the replicative history and replicative potential of cultured

somatic cells. These findings have been taken as evidence
that in humans TL, as expressed in LTL, serves as a replico-

meter. Based on this premise, it was proposed that an

adult with comparatively short LTL is biologically older than

his/her peers [54–56].

This paradigm was further broadened by the concept that

the inter-individual variation in age-dependent LTL shorten-

ing is largely driven by oxidative stress and inflammation.

Studies in cultured cells found that the G triplets of the telo-

mere repeats (TTAGGG) are highly sensitive to the hydroxyl

radical [57,58]. Such sensitivity of telomeres to the hydroxyl

radical might augment telomere shortening per stem cell/pro-

genitor cell replication, while the inflammatory response might

increase replications of haematopoietic stem cells and progeni-

tor cells [54–58]. Together, oxidative stress and inflammation,

the hallmarks of adult-onset cardiovascular disease, would

therefore augment LTL shortening [57–60]. These putative

mechanisms have provided the context for the inference that

associations of short LTL with cardiovascular disease [61,62]

and early mortality [63–66] in adults are the outcome of a

faster age-dependent LTL attrition, principally due to higher

burdens of oxidative stress and inflammation. A faster pace

of age-dependent LTL shortening has also been invoked in

explaining associations of short LTL with a host of human

diseases, including psychiatric disorders [67–69].

The evidence supporting the role of oxidative stress and

inflammation in the ageing process and the pathogenesis of

cardiovascular disease is strong [70–75]. However, given the

wide variation in LTL across newborns [27], oxidative stress

and inflammation may explain only a small component of

the variation in LTL after birth [76,77]. From this perspective,

the view of LTL as a clock, whose pace is modified by oxidative

stress and inflammation, overlooks the fact that the telomere

clock is not uniformly calibrated at ‘zero time’ across newborns

and the role of LTL at birth as a principal determinant of LTL

throughout the life course [76,77]. It follows that the use of

LTL as a marker of biological age might be limited without

the ability to scale the individual’s LTL to his/her LTL at

birth. Moreover, longitudinal studies indicate that adults

with more atherosclerotic burden [78] and insulin resistance

[79], a risk factor for atherosclerosis, have short LTL but

there is no evidence of a higher rate of age-dependent LTL

shortening in these individuals compared to peers.

(b) The alternative view of telomere length as a
determinant in ageing-related diseases

Recent research has converged on the premise that TL might

be an active determinant in adult-onset disease. The wide TL

variation across newborns and children suggests a consider-

able influence of TL in early life on TL throughout the

human life course [11,27]. Such findings do not challenge the

potential role of oxidative stress and inflammation during the

life course in the association of short LTL with cardiovascular

disease. However, they suggest that the overall influence of

LTL dynamics during adulthood on LTL may be small com-

pared to LTL at birth and its dynamics prior to adulthood.

Consequently, most individuals who enter adult life with

short (or long) LTL maintain short (or long) LTL throughout

their remaining life [78–80]. In addition, the view that oxi-

dative stress and inflammation explain the association of

short LTL with cardiovascular disease has no explanation for

findings that long LTL is also associated with some major

sporadic cancers [81,82].
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Further support for the alternative view comes from genetic

analyses. Genome-wide association studies have mapped LTL-

associated single-nucleotide polymorphisms (SNPs) to genetic

loci, the majority of which harbour LTL maintenance genes

[47,83–85]. Genetic risk scores (GRSs) based on these SNPs

were developed to predict susceptibility to cardiovascular dis-

ease and major cancers. When the GRS predicts short LTL, the

probability of developing cardiovascular disease is increased

[83,86–88]; when GRS predicts long LTL, the probability of

developing major cancers is increased [86,89–93].

Individually, findings of (i) LTL precedence, i.e. having

short (or long) LTL is largely determined prior to adulthood,

decades before disease onset; (ii) directionality, i.e. short LTL

predicts increased cardiovascular disease risk, while long LTL

predicts increased cancer risk; and (iii) genetics, i.e. LTL-based

GRSs predict disease risk, do not prove causality. However,

jointly they provide compelling support for the inference that

TL plays a causal role in cardiovascular disease and cancer—

the two disease categories that largely define longevity in the

US and other middle- and high-income nations.

This conclusion also suggests that mechanisms other than,

or in addition to, oxidative stress and inflammation during

adulthood might explain LTL variation across the general

population and TL disease association. These include dimin-

ished replicative potential and perhaps compromised repair

ability when TL is short and increased proliferative potential

and increased risk of cancer when TL is long [94,95]. Such a

paradigm is of particular relevance for cancer, given that telo-

mere biology is at the centre of the interplay between mutations

and cell replication dynamics. Moreover, as discussed in the

next section, a causal role of TL in cancer and cardiovascular

disease aligns with the general notion that evolutionary

forces fashion TL in mammals through balancing two

diametricallyopposing forces: cancerand degenerative diseases.
4. The cancer/degenerative-disease trade-off
Evolution is largely driven through interaction between

environmental factors and mutagenesis, which is also the key

element in the development of cancer. Large mammals (e.g. ele-

phants and whales) have considerably more dividing cells

compared with humans and more so compared with mice,

which are routinely studied in laboratory settings. Consider a

mouse with adult weight of thirty grams and lifespan of 2–3

years versus an elephant with adult weight of six tons and life-

span of 60 years. The ratio of elephant/mouse is 200 000 for

body mass and 60 for lifespan. Somatic cells experience, there-

fore, numerous more replications for growth and maintenance

of the elephant’s body mass than the mouse’s body mass.

Since the fidelity of DNA replication is not absolute, everything

else being equal, the overall mutational burden, and hence

cancer risk, in the elephant would be more than a million-fold

higher than that of the mouse. However, Peto pointed out

that cancer risk does not always scale with body mass [96].

Evolutionary driven mechanisms that increase cancer resistance

in the large mammals—which are typically long-lived—might

provide an explanation to the ‘Peto’s paradox’ [97].

Recent findings point to increased copy numbers of specific

genes that may reduce cancer risk in the elephant and the bow-

head whale. In the African and Asian elephants, increased

copies of TP53-related sequences (p53) have been detected by

genome-wide DNA sequencing [98], and some of these
sequences produce functional proteins [99]. Thus, the ele-

phant’s resistance to cancer may be in part due to extra copies

of a powerful tumour suppressor gene [100]. While the bow-

head whale shows no increase in TP53 dosage, its DNA

displays increased variants or copies of DNA damage repair

genes (mutations in ERCC1 and PCNA and FEN1 duplications)

that may account for augmented cancer resistance [101].

Humans are long-lived mid-size mammals. Their somas

and those of the elephant and the whale share a dual trait,

i.e. repressed telomerase activity and short TL compared to

most short-lived small mammals [102]. In principle, short

TL/repressed telomerase in somatic tissues would limit repli-

cative potential and attenuate replication-dependent build-up

of driver mutations that might bring about malignant trans-

formation. While there are clearly exceptions to this view,

the concept of constitutively short TL/repressed telomerase

being a cancer protection mechanism has been experimen-

tally tested in a large series of mammals and remains a

valid explanation.

Notably, the shortest mouse telomeres are longer than the

longest human telomeres. Telomerase knockout mouse cells

immortalize with identical frequencies to normal mouse cells

and about ten million-fold greater frequency than human

cells [103,104]. Apparently, mice and many other short-lived

small mammals do not use telomere-based replicative ageing

as an anti-cancer protection mechanism. Rather, their long

repetitive G-rich telomere sequences might have evolved to

serve as a ‘buffer’ that reduces the hydroxyl radical damage

to important coding genes [103].

Moreover, genes near telomere ends may be regulated by

TL-dependent chromatin interactions, a phenomenon known

as telomere position effects over long distances (TPE-OLD).

Genes such as human ISG15 and TERT might become dysregu-

lated with progressive telomere shortening. These findings

might have implications for how cells turn off telomerase

when telomeres reach an optimal length during fetal develop-

ment and how most cancer cells reactivate telomerase when

telomeres become short [105,106]. Thus, replicative senescence

due to short telomeres may paradoxically augment cancer risk

through telomerase de-repression. We note that such a

phenomenon would survive selection because it principally

occurs when telomeres are short, i.e. beyond the reproductive

period when the force of evolution wanes.

Other studies also indicate that although senescence is an

anti-cancer modality, senescent cells secrete a constellation of

proteins termed senescence-associated secretory pathway

(SASP) proteins, which can lead to dysfunctional tissues

and provide a microenvironment that is pro-carcinogenic

[107,108]. The clearance of these cells has been suggested to

improve tissue function in mice [109,110]. Collectively,

these findings indicate that the mere presence of senescent

cells might bring about both tissue degeneration and

cancer susceptibility through mechanisms that are telomere

dependent and independent.
5. The way forward
The metaphor that likens telomere dynamics to a ticking clock

and the misconception that short telomeres are detrimental

while long telomeres are invariably advantageous speaks to

the importance of understanding that in the general population

telomeres ostensibly converge to an optimal length, which
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probably strikes a balance between the advantages and disad-

vantages of having relatively short versus long telomeres. This

balance is of particular relevance given that in advanced

societies longevity has almost doubled in the last two centuries

and in light of an ongoing debate that has left unsettled

whether there is a natural limit to the human lifespan

[111,112]. Whether or not TL dynamics plays an active role in

the ageing process itself, in principle, TL could impose a ceiling

on the lifespan of many humans.

It is noteworthy that the overall risks of cardiovascular

disease or cancer due to respectively short or long telomeres

may be small. However, this might be because the optimal

TL strikes a balance between these two disease categories

and shifts their impact primarily to the post-reproductive

years. All else being equal, an upward or downward drift

in the average TL by 1–2 kb would probably result in a

respective upsurge in cancer or cardiovascular disease inci-

dence in the general population. For this reason alone, it

is of interest to understand the factors that maintain the

optimal human TL across generations, the dynamics of

which is probably tailored to the genetic makeup in particular

environmental settings.

In this context, the overwhelming majority of epidemiologi-

cal studies have been performed on adults. As the vast variation

in TL are observed prior to adulthood, it is important to learn

the nature of the factors that influence TL during early develop-

ment. Moreover, most genome-wide association studies have

been performed on Europeans [113]. Thus, extending
epidemiological research and genome-wide association studies

of TL to non-European populations in their natural habitat and

in new settings due to migration will go a long way towards

understanding the role of gene–environment interaction in set-

ting the optimal TL and its potential role in ageing-related

diseases and longevity.

Finally, the wide inter-individual variation of TL through-

out the human life course demands large sample sizes to

detect the influence of specific factors (inherent and extrinsic).

TL measurements display a high measurement error in the

majority of epidemiological studies. While high measurement

errors can be offset by increasing sample size, most of these

studies have disregarded power considerations indicating that

hundreds, if not thousands, of subjects might be needed to

obtain reliable LTL results [114,115]. Lack of a systematic atten-

tion to LTL measurement error and power limitations explain in

part inconsistent findings of association of LTL with a host

of traits, including longevity in the elderly, sex and race. It is

essential, therefore, that we step back and have a second look

at major studies that used flawed design and sub-optimal TL

measurements to miss important connections between TL and

biological parameters that do exist and detect associations

with traits and diseases where none exit.
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