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Purpose: The clinical, pathological, gene expression, and prognosis of invasive mucinous adenocarcinoma (IMA) differ from those of 
invasive non-mucinous adenocarcinoma (INMA), but it is not easy to distinguish these two. This study aims to explore the value of 
combining CT-based radiomics features with clinic-radiological characteristics for preoperative diagnosis of solitary-type IMA and to 
establish an optimal diagnostic model.
Methods: In this retrospective study, a total of 220 patients were enrolled and randomly assigned to a training cohort (n = 154; 73 
IMA and 81 INMA) and a testing cohort (n = 66; 31 IMA and 35 INMA). Radiomics features and clinic-radiological characteristics 
were extracted from plain CT images. The radiomics models for predicting solitary-type IMA were developed by three classifiers: 
linear discriminant analysis (LDA), logistic regression-least absolute shrinkage and selection operator (LR-LASSO), and support 
vector machine (SVM). The combined model was constructed by integrating radiomics and clinic-radiological features with the best 
performing classifier. Receiver operating characteristic (ROC) curves were used to evaluate models’ performance, and the area under 
the curve (AUC) were compared by the DeLong test. Decision curve analysis (DCA) was conducted to assess the clinical utility.
Results: Regarding CT characteristics, tumor lung interface, and pleural retraction were the independent risk factors of solitary-type 
IMA. The radiomics model using the SVM classifier outperformed the other two classifiers in the testing cohort, with an AUC of 0.776 
(95% CI: 0.664–0.888). The combined model incorporating radiomics features and clinic-radiological factors was the optimal model, 
with AUCs of 0.843 (95% CI: 0.781–0.906) and 0.836 (95% CI: 0.732–0.940) in the training and testing cohorts, respectively.
Conclusion: The combined model showed good ability in predicting solitary-type IMA and can provide a non-invasive and efficient 
approach to clinical decision-making.
Keywords: computed tomography, invasive mucinous adenocarcinoma, radiomics, machine learning

Introduction
Lung cancer is a major contributor to cancer-related deaths, with adenocarcinoma being the most predominant subtype.1 

Invasive mucinous adenocarcinoma (IMA) is a unique variant of lung adenocarcinoma, less common than invasive non- 
mucinous adenocarcinoma (INMA), accounting for approximately 2–5% of lung adenocarcinoma.2,3 IMA and INMA are 
two distinct entities. As the name suggests, IMA is characterized as abnormal intracytoplasmic mucin production by 
columnar and goblet cells, which is rarely observed in INMA.4 Additionally, IMA exhibits distinct molecular features, 
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with KRAS mutations being the most frequent oncogenic driver mutation (63% to 90%), followed by NRG1 fusions and 
ERBB2.4–6 However, EGFR mutations, the most common oncogenic driver mutation in INMA, are notably rare in IMA. 
The recurrence rate of intrapulmonary IMA is higher than that of INMA, which is associated with a higher incidence of 
the spread through air spaces (STAS).7,8 These distinct characteristics of IMA necessitate different treatment approaches 
compared to INMA. The precise clinical diagnosis of IMA is essential for guiding treatment and predicting the prognosis 
of patients. Due to the cytologic usually inconspicuous or absent atypia, definitive diagnosis of IMA through biopsy is 
normally challenged.9 In contrast, computed tomography (CT) offers a non-invasive examination technique that provides 
a comprehensive and direct overview of the entire tumor.

The common clinical symptoms of IMA include cough, chest pain, and chest congestion.10,11 Coughing up with 
white, foamy sputum occurs more frequently in INMA and can sometimes be the primary symptom of IMA. These 
clinical manifestations lack specificity, as more than half of patients with IMA are asymptomatic at the time of their 
initial diagnosis, with the majority of IMA lesions detected during routine CT screening.11,12 Radiologically, IMAs can 
present as either solitary-type or pneumonic-type based on CT findings.13,14 The solitary-type is defined as a solitary 
nodule or mass with a defined shape. The solitary-type is the most common radiological morphology of IMA 
(79.4–81.9%),10,11 while pneumonic-type is considered as a progressive period of solitary-type.14,15 Solitary-type IMA 
has diverse imaging features, including lobulated or spiculated margin, bubblelike vacuole or cavitation, air broncho
gram, and pleural retraction, as reported in previous studies.10,14,16–18 However, these CT features lack specificity and 
can also be observed in INMA, which impedes the identification of solitary-type IMA.

Conventional CT images contain a large amount of useful information that is often not fully utilized. Radiomics can 
extract morphological and pathophysiological quantitative information of tumors from CT images, which are closely 
linked to clinical outcomes in the field of oncology management.19 In the re-grading of lung cancer, CT-based radiomics 
serves as a practical and cost-effective tool commonly employed to differentiate between benign and malignant lung 
nodules and assess the degree of invasiveness of lung adenocarcinoma.20,21 Machine learning is a sub-field of artificial 
intelligence. Traverso et al22 proposed that machine learning-based radiomics can help construct robust predictive 
models. Thus, in this study, we aim to develop and validate radiomics models using machine learning algorithms. 
Additionally, we investigate the potential enhancement in discrimination of solitary-type IMA by integrating clinic- 
radiological and radiomics features into a combined model, as opposed to utilizing either the clinical or radiomics model 
independently.

Materials and Methods
Patients
The clinical and imaging data of patients with lung adenocarcinoma in our hospital between December 2015 to July 2022 
were retrospectively analyzed. The inclusion criteria as follows: (1) availability of thin-section chest CT examination 
within 2 weeks before surgery; (2) pathologically confirmed IMA and INMA. The exclusion criteria as follows: (1) 
pneumonic-type IMA presenting on CT images; (2) pathologically proved mixed invasive mucinous/non-mucinous 
adenocarcinoma (≥ 10% of both non-mucinous and mucinous component); (3) history of antitumor therapy before CT 
examination, such as radiotherapy or chemotherapy; (4) incomplete clinical and imaging data. A total of 220 patients (75 
males and 145 females, mean age 61 years, ranging from 28 to 84) were enrolled in this study, including 104 cases of 
IMA and 116 cases of INMA. This study was approved by the institutional review board of the First Affiliated Hospital 
of Soochow University. Informed written consent was waived due to the retrospective nature and the utilization of de- 
identified data. The study was conducted in accordance with the Declaration of Helsinki (as revised in 2013).

The patients were randomly assigned to a training cohort (IMA, n = 73; INMA, n = 81) and a testing cohort (IMA, 
n = 31; INMA, n = 35) in a 7:3 ratio. All cases in the training cohort were used to train the prediction model, while cases 
in the testing cohort were utilized to assess the model’s performance independently. Clinical and radiological features 
were collected for analysis, including gender, age, maximum diameter of the lesion displayed by MPR lung window 
setting, tumor density (solid or subsolid), shape (round/oval or irregular), tumor lung interface (obscure or clear), 
presence of lobulation, spiculation, pleural retraction, air bronchogram, lower lobe involvement, and presence of air- 
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containing space like bubblelike vacuole or cavitation.17 All features were independently assessed by two radiologists (6 
and 14 years of experience in thoracic CT imaging diagnosis, respectively) using the Picture Archiving and 
Communication System (PACS). Any disagreements were resolved through discussion. Furthermore, the largest lesion 
with pathologic result was selected for analysis when multiple lesions were present.

Pathologic Evaluation
The slides of the resected specimens were formalin-fixed, paraffin-embedded, and stained with hematoxylin and eosin 
(H&E). Based on the WHO classification of lung adenocarcinoma, invasive adenocarcinoma is defined as pure mucinous 
type adenocarcinoma (mucinous component ≥ 90%), mixed mucinous/non-mucinous type adenocarcinoma (both non- 
mucinous and mucinous component ≥ 10%), and non-mucinous adenocarcinoma (minimal mucinous component < 
10%).2,3 Pure mucinous adenocarcinoma was enrolled as IMA in this present study. The pathologic evaluation was 
performed by two pathologists who was experienced in pulmonary pathologic analysis.

Image Acquisition
All the chest CT examinations were performed with multidetector CT scanners: Philips Healthcare (Brilliance 16, 
Brilliance iCT, IQON spectral CT), Siemens Healthineers (Somatom Sensation 64, Somatom Definition), GE 
Healthcare (GE revolution, Discovery CT 750 hD), Toshiba Medical System (Aquilion One). The CT scanning 
parameters were as follows: tube voltage, 100 to 120 kVp; automatic tube current; rotation time, 0.5 or 0.8s; detector 
collimation, 128×0.6 or 64×0.625 mm; slice thickness, 0.5–1.25 mm; reconstruction interval, 1–2.5 mm; matrix of 
512×512 mm. The CT images were acquired in the supine position with deep inspiratory breath-hold.

Tumor Segmentation
CT images were downloaded from PACS, anonymized, and then exported into 3D Slicer software (version 4.10.2). 
Tumor segmentation was performed by a radiologist with 6 years of experience in thoracic CT imaging diagnosis. The 
volume of interest (VOI) was manually contoured along the boundary of the tumor slice-by-slice with the lung window 
settings. Subsequently, another radiologist with 14 years of experience in thoracic CT imaging diagnosis confirmed the 
VOIs. All observers were blinded to the clinical and pathologic diagnosis. After four weeks, thirty patients were 
randomly selected for the evaluation of intra-observer and inter-observer reproducibility of the extracted radiomics 
features using intraclass correlation coefficient (ICC), with consistency considered good when ICC > 0.80.23

Radiomics Feature Extraction and Selection
We use the PyRadiomics platform to extract radiomics features, including first-order, shape, and texture features like gray 
level co-occurrence matrix (GLCM) features, gray level size zone matrix (GLSZM) features, gray level run length matrix 
(GLRLM) features, neighboring gray tone difference matrix (NGTDM) features, and gray level dependence matrix 
(GLDM) features. First and texture features were also calculated through filters, including wavelet, Laplacian of 
Gaussian (LoG), square, square root, logarithm, exponential, gradient, and local binary pattern (LBP).

The whole radiomics analysis process was conducted using the open-source software FeAture Explorer Pro (FAE, 
version 0.5.2).24 The workflow of radiomics analysis is presented in Figure 1. First, upsampling was used to balance the 
positive and negative samples in the training set. Next, the z-score normalization method was applied to each radiomics 
feature by subtracting and dividing the mean value by the standard deviation. Subsequently, the Pearson correction 
coefficient (PCC) was employed to reduce the dimensions of the feature matrix by comparing the similarity of each pair 
of features and removing one of the highly correlated features (PCC > 0.99). Finally, recursive feature elimination (RFE) 
was employed to select relevant features by iteratively removing the least important ones based on the classifier, with the 
number of features ranging from 1 to 20.

Models’ Construction and Evaluation
Based on the selected radiomics features, three common machine learning classifiers, linear discriminant analysis (LDA), 
logistic regression-least absolute shrinkage and selection operator (LR-LASSO), and support vector machine (SVM) 
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were utilized to construct radiomics models. The training cohort underwent hyperparameter optimization by using 5-fold 
cross-validation. In 5-fold cross-validation, the entire dataset was randomly separated into five subsets. When one subset 
was used as a testing set, the other four groups were used as training set. The training-testing procedures were repeated 
five times until each sample in the dataset was used as a training and testing sample once. The best radiomics model was 
determined by comparing metrics including area under the curve (AUC) from the receiver operating characteristic (ROC) 
curve, accuracy (ACC), sensitivity (SEN), specificity (SPE), positive predictive value (PPV), negative predictive 
value (NPV).

Univariate and multivariate logistic regression analysis were applied to select independent clinic-radiological factors, 
which were subsequently used to develop a combined model. Based on the training set, we compared the clinic- 
radiological features selected by logistic regression analysis and the radiomics features obtained through RFE. 
Features with high correlation (PCC > 0.99) were removed, and the remaining features were then utilized to construct 
a combined model using the machine learning classifier that performed best in the radiomics model. In addition, a clinical 
model was constructed based on clinic-radiological factors. All models’ performances were evaluated in the training and 
testing cohort using the ROC curve and quantified by the area under the curve (AUC). Decision curve analysis (DCA) 
was conducted to assess the clinical utility of the three models.

Statistical Analysis
All statistical analyses were performed using the SPSS software (version 25.0, IBM Corp, Armonk, NY) and R software 
(version 4.1.0; https://www.r-project.org/). Numerical variables were expressed as means ± standard deviations or 
medians and interquartile ranges and compared by the Student’s t-test or the Mann–Whitney U-test. Categorical variables 
are expressed as percentages, and analyzed by chi-square test. After identifying statistically significant clinic-radiological 
variables in univariate analyses, we included them in multivariate logistic regression analyses and screened for 
independent risk factors predictive of solitary-type IMA by using a forward stepwise selection method. The AUC values 
of the models were compared by the DeLong test. The calibration curve was used to assess the calibration ability of the 
combined model. A two-sided P value < 0.05 was considered statistically significant.

Figure 1 The workflow of this study.
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Results
Patient Basic Characteristics
A total of 220 patients (104 cases of IMA and 116 cases of INMA) were enrolled and randomly assigned to the training 
and testing cohort at a 7:3 ratio. The training cohort consisted of 73 (47.4%) IMA patients and 81 (52.6%) INMA 
patients, while the testing cohort had 31 (47.0%) IMA patients and 35 (53.0%) INMA patients. As shown in Table 1, the 
clinic-radiological features of the two cohorts were well-balanced, supporting the rationale of the patient grouping. The 
median diameter of the IMA group in the training cohort was 12.95mm (IQR: 9.03–19.63), which was significantly 
smaller than that of the INMA group with a median diameter of 19.35mm (IQR: 13.33–24.58). The difference of 
diameter between the two groups in the testing cohort was also statistically significant (P < 0.05). In terms of location, 40 
(54.8%) IMAs and 23 (28.4%) INMAs were found in the lower lobe of the lung in the training set, showing a significant 
statistical difference. Moreover, characteristics such as tumor lung interface, lobulation, and pleural retraction were 

Table 1 Clinical and Radiological Characteristics of Patients in the Training and Testing Cohorts

Characteristics Training Cohort (n=154) Testing Cohort (n=66) #P

INMA (n=81) IMA (n=73) P INMA (n=35) IMA (n=31) P

Age (years, mean ± SD) 62.47±9.61 60.40±11.26 0.220 63.63±9.94 58.81±10.75 0.063 0.936

Max diameter (mm, IQR) 19.35 

(13.33,24.58)

12.95 

(9.03,19.63)

<0.001 19.65 

(14.70,28.4)

9.95 

(8.75,15.7)

0.001 0.804

Gender, n (%) 0.234 0.967 0.277

Female 48(59.3%) 50(68.5%) 25(71.4%) 22(71.0%)

Male 33(40.7%) 23(31.5%) 10(28.6%) 9(29.0%)
Solidity, n (%) 0.801 0.948 0.099

Sub-solid 24(29.6%) 23(31.5%) 7(20.0%) 6(19.4%)

Solid 57(70.4%) 50(68.5%) 28(80.0%) 25(80.6%)
Shape, n (%) 0.058 0.179 0.858

Round or oval 41(50.6%) 48(65.8%) 18(51.4%) 21(67.7%)

Irregular 40(49.4%) 24(34.2%) 17(48.6%) 10(32.3%)
Tumor lung interface, n (%) <0.001 0.014 0.906

Obscure 29(35.8%) 47(64.4%) 12(34.3%) 20(64.5%)

Clear 52(64.2%) 26(35.6%) 23(65.7%) 11(35.5%)
Lobulation, n (%) 0.001 <0.001 0.423

No 13(16.0%) 30(41.1%) 2(5.7%) 13(41.9%)

Yes 68(84.0%) 43(58.9%) 33(94.3%) 18(58.1%)
Spiculation, n (%) 0.051 0.030 0.711

No 64(79.0%) 66(90.4%) 27(77.1%) 30(96.8%)

Yes 17(21.0%) 7(9.6%) 8(22.9%) 1(3.2%)
Pleural retraction, n (%) <0.001 0.019 0.185

No 25(30.9%) 51(69.9%) 16(45.7%) 23(74.2%)

Yes 56(69.1%) 22(30.1%) 19(54.3%) 8(25.8%)
Air bronchogram, n (%) 0.068 0.383 0.805

No 58(71.6%) 42(57.5%) 25(71.4%) 19(61.3%)

Yes 23(28.4%) 31(42.5%) 10(28.6%) 12(38.7%)
Air-containing space, n (%) 0.076 0.816 0.198

No 68(84.0%) 68(93.2%) 29(82.9%) 25(80.6%)

Yes 13(16.0%) 5(6.8%) 6(17.1%) 6(19.4%)
Lower lobe, n (%) 0.001 0.024 0.097

No 58(71.6%) 33(45.2%) 21(60.0%) 10(32.3%)

Yes 23(28.4%) 40(54.8%) 14(40.0%) 21(67.7%)

Notes: #P means the comparison between the training set and the testing set. n (%) represents categorical variables were reported as frequency and 
proportions. 
Abbreviations: SD, standard deviation; IQR, interquartile range; INMA, invasive non-mucinous adenocarcinoma; IMA, invasive mucinous adenocarcinoma.
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significantly different between the IMA and INMA groups (all P < 0.05). The remaining characteristics between the two 
groups showed no significant difference.

Clinic-Radiological Features Screening and Model Development
The univariate logistic analysis revealed that the tumor lung interface, lobulation, pleural retraction, and lower lobe were 
significantly associated with IMA in the training cohort. The following multivariate logistic analysis showed that the 
tumor lung interface (OR = 3.483; 95% CI: 1.647–7.365; P = 0.001) and pleural retraction (OR = 4.285; 95 CI%: 
2.003–9.166; P < 0.001) were the independent risk factors of IMA (Table 2). The following clinical model was 
developed using these two features.

Radiomics Feature Selection and Radiomics Model Development
Among the extracted radiomics features, 87.9% of features had good consistency (interobserver ICC ≥ 0.80), indicating 
good reliability of the radiomics features. Following feature reduction and selection, seven optimal radiomics features 
(one first-order feature and six texture features) were chosen for further analysis (Table 3). These selected radiomics 
features showed low correlation coefficients (Figure 2), which were employed in the construction of radiomics models 
for diagnosing IMA. The performance of radiomics models based on LDA, LR-LASSO, and SVM classifiers in both the 
training and testing cohorts is presented in Figure 3 and Table 4. Among all the radiomics models in the testing cohort, 
the SVM model showed the best performance, with an AUC of 0.776 (95% CI: 0.664–0.888), an accuracy of 0.697, 
a sensitivity of 0.613, and a specificity of 0.771. The radiomics model using the SVM classifier had the highest AUC 

Table 2 Univariate and Multivariable Logistic Regression Analyses for Selecting 
Clinical Radiological Features

Variable Univariate Analysis Multivariate Analysis

OR (95% CI) P OR (95% CI) P

Age 0.981(0.951–1.012) 0.220
Gender 1.495(0.770–2.902) 0.235

Max diameter 0.975(0.944–1.007) 0.119

Solidity 1.092(0.550–1.171) 0.801
Shape 1.873(0.977–3.591) 0.059

Tumor lung interface 3.241(1.675–6.272) <0.001 3.483(1.647–7.365) 0.001

Lobulation 3.649(1.716–7.761) 0.001 2.010(0.837–4.824) 0.118
Spiculation 2.504(0.973,6.443) 0.057

Pleural retraction 5.193(2.612–10.323) <0.001 4.285(2.003–9.166) <0.001

Air bronchogram 0.537(0.275–1.050) 0.069
Air-containing space 2.600(0.879–7.693) 0.084

Lower lobe 0.327(0.168–0.638) 0.001 0.467(0.218–1.002) 0.051

Abbreviations: OR, odd ratio; CI, confidence interval.

Table 3 Selected Features of Radiomics Model and Combined Model

Radiomics Model Combined Model

Lung_exponential_gldm_dependencevariance Lung_exponential_gldm_dependencevariance

Lung_lbp-2D_gldm_smalldependencehighgraylevelemphasis Lung_lbp-2d_gldm_smalldependencehighgraylevelemphasis
Lung_log-sigma-5-0-mm-3D_glszm_sizezonenonuniformitynormalized Lung_original_glrlm_shortrunlowgraylevelemphasis

Lung_original_glrlm_shortrunlowgraylevelemphasis Lung_wavelet-hhl_glcm_correlation

Lung_wavelet-HHH_glcm_Correlation Pleural_retraction
Lung_wavelet-HHL_glcm_Correlation Tumor_lung_interface

Lung_wavelet-HLL_firstorder_Skewness
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compared to the other two classifiers, LDA and LR-LASSO (all P > 0.05). Therefore, the SVM classifier was chosen as 
the machine learning algorithm for developing the radiomics model in this study.

Combined Model Construction and Validation
We constructed the combined model by integrating the clinic-radiological features selected through multivariate logistic 
regression analysis with the radiomics features obtained through RFE (Table 3). To uniformly and objectively assess 
diagnostic performance, we constructed the clinical model, radiomics model, and combined model using SVM classifier. 
The results of the ROC curve analysis for predicting IMA are illustrated in Figure 4. Detailed statistics of the diagnostic 
efficacy in the three models are summarized in Table 5. The combined model showed the best discriminative ability in 
both training and testing sets, with AUC values of 0.843 and 0.836, respectively. In the testing set, the combined model, 
with the best predictive efficacy (AUC = 0.836, 95% CI: 0.732–0.940), was superior to the radiomics model (AUC = 
0.776, 95% CI: 0.664–0.888, P = 0.149) and the clinical model (AUC = 0.642, 95% CI: 0.528–0.757, P = 0.003). There 
was no significant difference between the clinical model and the radiomics model in the testing cohort (P = 0.102). The 

Figure 2 Radiomics heatmap. Heatmap describing the correlation coefficient matrices of seven selected radiomics features.
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calibration curve demonstrated a good concordance between prediction and observation of the combined model 
(Figure 5), and the Hosmer-Lemeshow test indicated good calibration of the combined model in both the training and 
testing sets (P = 0.598; P = 0.522). Furthermore, DCA curve analysis revealed that the combined model provided 
a higher clinical benefit when compared to the clinical and radiomics models, with the threshold probability range of 0.35 
to 0.9 (Figure 6).

Discussion
In this study, we developed and validated CT-based radiomics model for distinguishing solitary-type IMA and INMA. 
The results showed that the radiomics model had good discriminatory efficacy, especially when combined with clinic- 
radiological predictors. Therefore, a combined model was constructed based on radiomics features and clinic-radiological 
predictors, which yielded the best predictive performance for solitary-type IMA, with AUCs of 0.843 (95% CI: 
0.781–0.906) and 0.836 (95% CI: 0.732–0.940) in training and testing sets, respectively. Furthermore, compared to 
radiomics and clinical models, the combined model showed improved accuracy, sensitivity, and specificity, offering 
valuable information for clinicians to develop personalized treatment plans.

As a distinct pathological type of lung adenocarcinoma, IMA presents unique clinical, pathological, and prognostic 
characteristics compared to INMA. The definitive diagnosis of IMA usually requires invasive biopsy or post-surgical 

Figure 3 The receiver operating characteristic (ROC) curves of the LDA, LR-LASSO, and SVM in the training (A) and testing (B) cohorts.

Table 4 Predictive Ability of Models Using Different Machine Learning Classifiers

Model AUC (95% CI) ACC SEN SPE PPV NPV

LDA Training 0.825(0.758–0.892) 0.792 0.767 0.815 0.789 0.795
Testing 0.755(0.637–0.872) 0.697 0.677 0.714 0.677 0.714

LR-LASSO Training 0.835(0.770–0.900) 0.792 0.671 0.901 0.860 0.753

Testing 0.760(0.645–0.875) 0.682 0.581 0.771 0.692 0.675
SVM Training 0.830(0.765–0.896) 0.786 0.699 0.864 0.823 0.761

Testing 0.776(0.664–0.888) 0.697 0.613 0.771 0.704 0.692

Abbreviations: AUC, area under the curve; CI, confidence interval; ACC, accuracy; SEN, sensitivity; 
SPE, specificity; PPV, positive prediction value, NPV, negative prediction value; LDA, linear discriminant 
analysis; LR-LASSO, logistic regression-least absolute shrinkage and selection operator; SVM, support 
vector machine.
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pathology, both of which are often challenged. Radiomics, a novel noninvasive diagnostic method, captures the under
lying heterogeneity of tumors and serves as an alternative to tissue biopsy in specific settings, providing more 
information on the internal characteristics of tumors.19,25 Radiomics has shown significant advantages in predicting 
lung cancer phenotypes, identifying immunotherapy-related biomarkers, and diagnosing immune checkpoint inhibitor- 
related pneumonitis.26–28 Prior studies have highlighted the benefits of the radiomics approach in the diagnosis of 
IMA.29,30 Kakino et al31 have proposed that the contrast enhancement of contrast images may affect some radiomics 
features and their variability when compared to non-contrast CT images. Thus, different from the approach taken by 
Zhang et al,29 we develop the model focusing on extracting radiomics features from the plain CT image. The AUC of our 
radiomics model was found to be comparable to the model created by Zhang et al,29 which indicated that the radiomics 
model based on plain CT images was equally effective in distinguishing between IMA and INMA. Previous studies have 
shown that machine learning algorithms can improve the diagnostic performance of models.32–35 In this study, we 
utilized different algorithms to optimize radiomics analysis for the improvement of stability and generalization. We 
assessed the performance of various classifiers in distinguishing IMA and INMA, and the results indicated that the SVM 

Figure 4 ROC curves of the clinical model, radiomics model, and combined model for differentiating solitary-type IMA and INMA in the training cohort (A) and testing 
cohort (B).

Table 5 Predictive Performance of Three Models in the Training and Testing 
Cohort

Model AUC (95% CI) ACC SEN SPE PPV NPV

Training cohort

Clinical 0.695(0.622–0.768) 0.695 0.699 0.691 0.671 0.718
Radiomics 0.830(0.765–0.896) 0.786 0.699 0.864 0.823 0.761

Combined 0.843(0.781–0.906) 0.799 0.781 0.815 0.792 0.805

Testing cohort
Clinical 0.642(0.528–0.757) 0.636 0.742 0.543 0.590 0.704

Radiomics 0.776(0.664–0.888) 0.697 0.613 0.771 0.704 0.692

Combined 0.836(0.732–0.940) 0.773 0.807 0.743 0.735 0.813

Abbreviations: AUC, area under the curve; CI, confidence interval; ACC, accuracy; SEN, 
sensitivity; SPE, specificity; PPV, positive prediction value; NPV, negative prediction value.
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Figure 5 The calibration curve of the combined model in the training (A) and testing (B) sets.

Figure 6 Decision curve analysis (DCA) for three models in the testing cohort. The curves indicated that the combined model had a higher clinical benefit when compared 
to the clinical and radiomics models, with a threshold probability range of 0.35 to 0.9.
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classifier was the best for developing the radiomics model. The SVM is a widely used and robust classifier for classified 
tasks, even when confronted with limited data availability.36

Consistent with previous research,10,18 we found that CT features such as tumors located in the lower lobe of the lung, 
tumor lung interface, lobulation, and pleural retraction were tightly associated with pulmonary solitary-type IMA. 
Furthermore, multivariate logistic regression analysis in our study revealed that the tumor lung interface (OR = 3.483; 
95% CI: 1.647–7.365) and pleural retraction (OR = 4.285; 95% CI: 2.003–9.166) were the independent predictors for 
solitary-type IMA. Unlike INMA, the characterization of IMA were the mixture of mucin accumulation and invasive 
tumor lesions. When excessive mucus within the lesion overflowed into the surrounding alveolar cavity, it would cause 
an indistinct and irregular interface.16 IMA tumors primarily consist of mucin accumulation and rarely surrounding 
desmoplastic reaction, which accounts for the reduced occurrence of contractive signs like spiculation and pleural 
retraction in IMA. Zhang et al18 have found that lesion solidity and the presence of air bronchogram or vacuolar signs 
were the independent influencing factors of IMA. However, these characteristics did not show significant statistical 
differences in our study, which could be attributed to the sample size.

In this study, the majority of radiomics features selected for modeling are high-order features that obtained through 
filters, which can eliminate noise in the original image or sharpen the original image while maintaining the same 
semantic meaning of features.37 Some studies found that filters may potentially help discern and amplify differences in 
radiomics-related metrics.38,39 According to that, we proposed that higher-order texture features could potentially offer 
improved discrimination between IMA and INMA. Our ROC analyses revealed that the AUC values for the radiomics 
model were 0.830 in the training set and 0.776 in the testing set. By integrating clinic-radiological factors with radiomics 
features, the combined model demonstrated superior performance compared to both the clinical and radiomics models, 
while also demonstrating high sensitivity and specificity. This improvement may be attributed to the comprehensive 
information contained within radiomics features, while CT morphological features provide a valuable addition that 
enhances the predictive performance of the combined model. Furthermore, the DCA curve also showed that the 
combined model provided a higher net clinical benefit when compared to the clinical model and radiomics model. 
Therefore, it could be inferred that combining the clinic-radiological characteristics and radiomics features can improve 
the precision of predicting solitary-type IMA. This preoperative combined model has the potential to serve as a valuable 
tool for diagnosing IMA and supporting decision-making in therapeutic planning.

There were several limitations in this study. Firstly, this was a retrospective study and all the image data were 
collected from a single institution, which might have selection bias. Secondly, we obtained the medical imaging data of 
patients from different CT scanners, which might affect the radiomics analysis. It is important to take into account the 
variability in CT scanners and the consistent acquisition parameters in future studies. Thirdly, it is necessary to collect 
multicenter data to enlarge the sample size and conduct external validation to verify the generalization ability of our 
findings in the future.

In conclusion, the combined model integrating the clinic-radiological factors with radiomics features can be 
a noninvasive and effective new method for preoperatively diagnosing solitary-type IMA. This preoperative diagnosis 
will aid in decision-making support for therapeutic planning in cases of solitary-type IMA.

Abbreviations
IMA, invasive mucinous adenocarcinoma; INMA, invasive non-mucinous adenocarcinoma; CT, computed tomogra
phy; VOI, volume of interest; RFE, recursive feature elimination; LDA, linear discriminant analysis; LR-LASSO, 
logistic regression-least absolute shrinkage and selection operator; SVM, support vector machine; GLCM, gray level 
co-occurrence matrix; GLSZM, gray level size zone matrix; GLRLM, gray level run length matrix; NGTDM, 
neighboring gray tone difference matrix; GLDM, gray level dependence matrix; LoG, Laplacian of Gaussian; LBP, 
local binary pattern; PCC, Pearson correction coefficient; ROC, receiver operating characteristic; DCA, decision curve 
analysis; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive 
value.
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