
brain
sciences

Article

A Computational Model for Pain Processing in the Dorsal Horn
Following Axonal Damage to Receptor Fibers

Jennifer Crodelle 1,*,† and Pedro D. Maia 2,†

����������
�������

Citation: Crodelle, J.; Maia, P.D. A

Computational Model for Pain

Processing in the Dorsal Horn

Following Axonal Damage to

Receptor Fibers. Brain Sci. 2021, 11,

505. https://doi.org/10.3390/

brainsci11040505

Academic Editors: Michela

Chiappalone and Marianna Semprini

Received: 19 March 2021

Accepted: 13 April 2021

Published: 16 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics, Middlebury College, Middlebury, VT 05753, USA
2 Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019, USA;

pedro.maia@uta.edu
* Correspondence: jcrodelle@middlebury.edu
† Both authors contributed equally to this work.

Abstract: Computational modeling of the neural activity in the human spinal cord may help elucidate
the underlying mechanisms involved in the complex processing of painful stimuli. In this study,
we use a biologically-plausible model of the dorsal horn circuitry as a platform to simulate pain
processing under healthy and pathological conditions. Specifically, we distort signals in the receptor
fibers akin to what is observed in axonal damage and monitor the corresponding changes in five
quantitative markers associated with the pain response. Axonal damage may lead to spike-train
delays, evoked potentials, an increase in the refractoriness of the system, and intermittent blockage
of spikes. We demonstrate how such effects applied to mechanoreceptor and nociceptor fibers in the
pain processing circuit can give rise to dramatically distinct responses at the network/population
level. The computational modeling of damaged neuronal assemblies may help unravel the myriad of
responses observed in painful neuropathies and improve diagnostics and treatment protocols.

Keywords: pain processing; dorsal horn; neuronal dynamics; computational model; axonal damage;
painful neuropathies

1. Introduction

Pain is the most common patient complaint in medical consultations and an experience
that we will all have at some point during our life [1]. Our pain-processing mechanism
emerges from a complex interplay of cognitive and affective processes with neurochemical
and neuroanatomic systems [2]. The dorsal horn (DH) is an area of the spinal cord that
plays a central role in processing nociceptive, or painful, signals with the midbrain and
cortex providing top-down modulation to that circuitry [3]. As a consequence, this region
is a common target for analgesic action and is thought to undergo changes that contribute
to the exaggerated pain felt after nerve injury and inflammation [4]. For all its significance,
the heterogeneity of various neuronal components of the dorsal horn circuitry continues to
challenge our understanding of how we process painful sensory information.

Over the years, computational models of the neural activity associated with the DH
gave rise to key insights regarding nociception-processing [5–8]. Most models posit that
nociceptive activity is inhibited by Aβ-fibers unless the activity in the C-fibers (painful
stimuli) outweighs it, thus activating the peripheral nerves and create the experience of
pain. While this gate control theory greatly simplifies the physiological mechanisms of
pain processing [9–11], it does provide a reasonable starting point for most computational
and modeling efforts. In this study, we use the model introduced by Crodelle et al. [12,13]
as a platform to numerically simulate the population activity of projection, inhibitory, and
excitatory neurons in the DH under healthy and pathological conditions.

The dynamics of injured neuronal assemblies is a topic of broad and current interest in
computational neurology, with axonal damage and their distortions to the neural activity
being a hallmark feature of traumatic brain injuries and degeneration [14–17]. While there
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are multiple mechanisms associated with axonal damage (such as focal axonal swellings or
demyelination), they invariably alter the usual transmission of spike trains along neuronal
fibers. Maia et al. [14] assembled a list of phenomenological input/output rules describ-
ing commonly-observed forms of spike train distortions, which led to several studies
simulating the addition of an injured-neuron population to functional networks [18–23].

Having a computational model capable of simulating a broad repertoire of outcomes
from injured neurons in the DH may provide new insight into abnormal pain process-
ing, a symptom present in fibromyalgia, peripheral neuropathic pain, and other pain-
related disorders [24,25]. In what follows, we model the effects of axonal damage [14]
to mechanoreceptor and nociceptor fibers in the pain processing circuit [12,13] and il-
lustrate how different types of axonal dysfunction give rise to distinct responses at the
network/population level.

2. Materials and Methods
2.1. Overview of Spinal Cord Model for Pain Processing

In what follows, we utilize the firing-rate model for the processing of painful stimuli
in the human spinal cord developed in [13]. The model is based on the widely-used
gate-control theory of pain [9]. Shortly, projection neurons (P in Figure 1A) receive input
from excitatory (E) and inhibitory (I) interneurons, as well as directly from two types of
afferent fibers: Aβ fibers and C fibers. While there are many different types of afferent
fibers carrying sensory information about touch, pressure, itch, burning, and pain, in this
model, we focus on the nociceptive pain processing circuit and refer to all fibers carrying
mechanical touch information as Aβ fibers and those carrying slow pain as C fibers, as has
been done previously [5,13]. Each population (P, E, and I) responds to a weighted input of
firing rates from input (presynaptic) populations as determined by individual nonlinear
response curves in the formalism of [26,27]. The model also includes N-methyl-D-aspartate
(NMDA) type synapses from the C fibers to the P neurons modeled as a modulation of the
synaptic weight as a function of P-neuron firing rate. All model details can be found in [13]
and Appendix A.
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Figure 1. Firing-rate neural network model for pain processing. (A): Schematic of the spinal-cord
circuitry. Projection neurons [P in (A)] receive input from excitatory (E) and inhibitory (I) interneurons,
as well as directly from two types of afferent fibers: Aβ fibers and C fibers. (B): Typical output response
(firing rate of P neurons in (A)) of a healthy network to a brief painful stimuli at 0.5 s.

The underlying mechanism for the model to produce a prototypical pain response,
see Figure 1B, is the timing of the input from the Aβ and C fibers. Due to factors like axon
myelination and diameter, the afferent fibers have significantly different conduction speeds
leading to a distribution of arrival times in the DH of about 0–20 ms for Aβ and 90–300 ms
for C [28]. To capture this characteristic, we introduce the delay and distribution on the
Poisson spike trains for each fiber so that the DH output matches the experiments (again,
see Figure 1B). Throughout the simulation, each fiber also has a spontaneous background
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firing rate of 1 Hz [29]. Finally, we average the Poisson spikes generated on each fiber
(380 Aβ fibers and 820 C fibers for a total of about 1200 as observed in one nerve bundle
of rat [30,31]) over all fibers to yield an average firing rate for Aβ fibers and C fibers.
This average firing rate for the fibers then serves as a weighted input to the nonlinear
response functions of the DH populations. We measure the painful output of the model by
quantifying characteristics of the response of the P neurons during the time at which the C
fibers reach the DH (about 700 ms–750 ms), which will be further explained in Section 2.4.

2.2. Modeling Effects of Neuronal Injury to Spike-Train Activity

Maia et al. [14] posited eight types of phenomenological input/output rules describing
spike train distortions caused by the major forms of neuronal injury, including axonal
swellings [15–17] and demyelination [32]. In their formulation, a spike train {xn} is
transformed into another spike train {yn} according to some rule. If faithful conduction
occurs, the input/output spike trains will match (yn = 1 · xn). In the case of severe injury,
the axonal impairment will delete all spikes in the train (yn = 0 · xn). While these two
cases would lead to trivial outcomes at the population level, some other types of distortion
would not (see Figure 2B):

(i) Evoking potentials: In this rule, a single input spike triggers the formation of k
additional spikes.

(ii) Intermittent blocking: In this rule, the spike train switches between (total) blocking
and normal conduction periodically (with period f = 2π/ω).

(iii) Increasing refractoriness: In this rule, consecutive spikes may be deleted if the inter-
spike interval between them is below τ. This effectively increases the refractory period
of the spike train.

We note that the latter impairment is strongly frequency-dependent; spike trains with
higher firing rates are more strongly affected than spike trains with lower firing rates. This
will ultimately lead to confusions of higher firing rates by lower ones. For more details
regarding the mathematical formulation and numerical implementation of these rules,
see [14].
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Figure 2. (A): Focal Axonal Swellings (FAS)—also called varicosities or beadings—are enlarged,
heterogeneous structures along axonal shafts that may dramatically distort conduction and synaptic
transmission (see [16,33,34] and references therein). In our schematics, normal axonal segments
are indicated in green, while the FAS portions are highlighted in pink/red. FAS are the most
common forms of neuronal injury that may follow mechanical trauma or neurodegenerative disorders.
(B): Previous computational modeling work characterized different ways in which FAS may affect
spike train propagation [14–17]. In this work, we will simulate axonal injury by incorporating FAS
effects that lead to (i) creation and (ii–iii) deletion of spikes. At the population level, neuronal injuries
may lead to dramatically different pain-processing responses (in red) compared to the healthy system
(in blue).



Brain Sci. 2021, 11, 505 4 of 12

2.3. Injury Protocols for Receptor Fibers

In this study, we opted to damage the receptor fibers (C and Aβ fibers) with the injured
rules listed above. The goal of our injury protocols is twofold: (i) to illustrate a large variety
of potential outcomes at the collective level, and (ii) to study the effects of each parameter
of the system. For the C-fibers, we introduce injured neurons to its population that distorts
spike trains by evoking potentials, blocking spikes intermittently, and by increasing their
refractoriness. For the Aβ fibers we introduce injured neurons that delay their spike trains
by d? ms. In our first simulations, we target the fiber populations separately, but in the last
one, we consider a “mixed-effect” protocol where damaged C-fibers evoke potentials (that
increases pain) concomitantly with spike train delays in the Aβ fibers (that reduces pain).
This creates a “tug-of-war” between the injuries, and a state in which minor fluctuations
could lead to significant oscillations in pain perception.

2.4. Quantitative Markers for Pain Response

It is challenging to quantify pain in a clinical setting since it involves cognitive and
affective processes along with the patients’ subjective assessments. To avoid ambiguities
in this work, we characterize the pain response with the set of quantitative markers
illustrated in Figure 3. The output of the model is the response that the projection neurons
integrate from the DH and transmit to the cortex within the time interval [t0, t f ]. The model
was calibrated such that πthresh = 25 Hz represents the firing-rate threshold for painful
responses [12,13]. Figure 3 shows a typical painful response and depicts the following
quantitative markers:

ATotal = Total area under the curve

A∗ = Area above πthresh

π∗ = Average firing rate response, π∗ = A∗/|t f − t0|
πmax = Maximum achieved firing rate

NC = number of times the painful response crosses πthresh

The addition of injured fibers to the neuronal population may significantly alter the
overall pain response and consequently, these four quantitative pain markers.

Figure 3. Quantitative markers for pain response: πthresh = 25 Hz represents the firing-rate threshold
for painful responses; A∗ (checked area) is the total area above that threshold, ATotal (striped area)
denotes the total area of the pain response (including above πthresh); t0 defines the initial time of pain
response and t f the final time of the pain response; and πmax denotes the maximum achieved firing
rate of the pain response. We also define the average firing-rate response, π∗ = A∗/|t f − t0| and the
number of times NC that the signal crosses the pain threshold (NC = 2, not depicted).
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3. Results
3.1. Effects of Different Injuries on C Fibers

Figure 4 illustrates how the painful response changes when populations of injured
C fibers are introduced into the system. In these simulations, the injured neurons are
all of the same type, i.e., we consider only one input/output rule to govern spike train
distortion at a single time. The top panels in Figure 4 show the effect of the intermittent
blocking injury with frequency of π/20 (A) and π/40 (B), respectively. In both cases, the
switches between (total) blocking and normal conduction within the spike trains lead to
oscillations in the overall response. The maximum achieved firing rate (πmax), the area of
the curve above 25 Hz (A∗) and the average firing rate response (π∗) all decay after injury.
The injured responses also appear to be more irregular than the stereotypical response.
The mid panels in Figure 4 show a contrasting case, where the pain response increases
due to the evoked potentials (which may occur with a probability of 20% and 40% in
Panels C and D, respectively). In this case, πmax, A∗ and π∗ increase proportionally to the
evoked probability. Finally, the bottom panels in Figure 4 show the effects of the increased
refractoriness injury type. In this rule, a consecutive spike is deleted if it’s within 15 ms
(Panel E) or 25 ms (Panel F) from the preceding spike, and as a consequence, all quantitative
pain markers also decay.
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Figure 4. Example realizations of the DH projection neuron output to each of the three injuries on the C-fibers. (A,B): Projec-
tion neuron firing rate in response to intermittent blocking injury with frequency of π/20 and π/40, respectively; (C,D):
evoked potential injury for an evoked probability of 20% and 40%, respectively; and (E,F): increased refractory injury with
a period of 15 ms and 25 ms, respectively. See Section 2.2 for more details about each injury. (a–f): Three quantitative
measures area above threshold, A∗; average firing rate response, π∗; number of threshold crossings of firing rate response,
NC, for each injury for normal (blue) and injured (red) responses in the projection neurons. See Section 2.4 for more details
on each quantitative pain marker.
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Figure 5 expands on the qualitative results above by quantifying the markers for
pain response as a function of the percentage of injured neurons in the targeted fiber
population. The top panel of Figure 5 shows the result for intermittent blockage (with
period f = 2π/10); we observe a monotonic decay in the parameters [π∗, A∗, A0, πmax],
but a maximum NC value is achieved near 25% injury level. The middle panel of Figure 5
shows analogous plots for the increased refractoriness injury (with τ = 10 ms). The
markers follow a similar trend with the exception of NC that seems to exhibit a sigmoid-like
shape. These two forms of injury contrast dramatically to the evoked potential injury
shown in the bottom panel of Figure 5. There, the parameters [π∗, A∗, A0, πmax] increase
monotonically while NC decays. Overall, these results show that different types of axonal
injuries in the C-fibers can lead to dramatic differences in all quantitative markers of pain.
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Figure 5. How the different pain quantitative markers (π∗, A∗, A0, πmax and NC) change as a function
of the type (intermittent blocking, evoked potentials, and increased refractory) and amount (% of
C fibers damaged) of neuronal damage in the C-fibers. The blue dashed line indicates the mean
response for a healthy population.

3.2. Optimal Spike Delays Parameters for Aβ Fibers

In this section, we target the second type of afferent fiber with our injury protocols.
Due to myelination and larger diameter size, the conduction speed in the Aβ fibers is much
faster than in the C fibers, and any stimulation of Aβ fibers will reach the dorsal horn about
100 ms before the response from stimulation of the C fibers. Since we measure pain with
respect to the activity of the projection neurons during the C response (recall Figure 3),
the most likely way for injured activity on the Aβ fibers to affect the C response is to slow
down the conduction speed or delay the spikes.

Figure 6A shows the change in the total area marker, Atotal, for delay times from 50 ms
to 300 ms. First, we point out that there exists an optimal delay time of t? = 125 ms that
minimizes the total area, Atotal. Figure 6B shows the population responses for this optimal
delay parameter as compared to a healthy response. Notice that stimulation on the Aβ
fibers during the C response (∼600–800 ms) leads to an inhibition of the firing rate of the
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projection neurons due to the circuitry suggested by gate control theory. Namely, that Aβ
fibers synapse onto the inhibitory interneurons, which in turn synapse onto the projection
neurons. In the original paper by Crodelle et al. [13], this is the mechanism by which the
phenomenon known as pain inhibition works. The amount of pain inhibition depends on
the timing of the Aβ stimulation, with optimal pain relief found for time delays that allow
the Aβ pulse to occur near the beginning of the C response, as is the case for t? = 125 ms.

A B

Figure 6. Damaging the Aβ fibers. (A): Damaging 50% of the Aβ fibers with different delay values to
find the optimal delay time, d? = 125 ms, that yields the minimal total area. Note that no C fibers
were damaged and we are calculating the total area Atotal. (B): Population responses of the projection,
excitatory, and inhibitory neurons. The colored curves represent a healthy response, while the red
curves represent the damaged response for the optimal delay time d? = 125 ms. Note the shaded
region is the standard deviation over 30 realizations.

Now that we established how pain might be affected by damaging the Aβ fibers, we
go on to investigate possible interactions between damage on the Aβ fibers and on the
C fibers.

3.3. Damaging Both Aβ and C Fibers

From Section 3.1, we saw that intermittent blocking and increased refractory in C-fibers
both led to decreases in the response of the projection neurons, while evoked potentials led
to an increased response. Since damaging the Aβ fibers (at particular delay times) also led
to a decrease in the projection neuron response, it is redundant to consider the influence of
two mechanisms to decrease pain. Instead, we consider evoked potentials on the C fibers
so as to study the interplay between an increased response due to the C fibers and the pain
inhibition evoked on the Aβ fibers due to delayed spike damage.

Figure 7 shows the percent change of total area from the healthy case to the injured
case for varying percentages of damaged C and Aβ fibers. We note that there is a sort of
“tug-of-war” between the increased activity due to the evoked potentials on the C fibers
and the pain inhibition elicited by the delayed spikes on the Aβ fibers. Interestingly, at
the boundary of these two behaviors, illustrated by the white region in the left plot and
the green curve in the contour plot, there is a balance between elicited spikes and spike
inhibition such that there is no change in total area due to the different injuries on the
two different fibers. This seems to suggest that small oscillations in the percentage of
fibers injured near the boundary could potentially lead to oscillations in the observed pain
response between increased pain and pain relief.
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A B

Figure 7. Damaging both Aβ and C fibers. In this simulation we consider a hybrid injury protocol
in which signals from Aβ fibers are delayed (with delay d? = 125 ms) while evoked potentials
are added to signals from C fibers (with evoked probability of 10%). This creates a “tug-of-war”
between the two injury types that would respectively decrease/increase the pain marker Atotal. The
horizontal/vertical axes correspond to the percentage of damaged fibers from each type. (A): Heat
map and (B): Contour curves are shown, with color indicating the fraction percent change of Atotal

from the baseline pain response. Note that white regions in (A) and the contour curve associated to
zero in (B) indicate injury combinations that would lead to the same Atotal observed in baseline, with
one type of injury effectively cancelling out the other.

4. Discussion and Conclusions
4.1. Overview of Results

In this study, we use the computational model introduced by Crodelle et al. [12,13]
to simulate pain processing in the dorsal horn under healthy and pathological condi-
tions. Figure 1A shows the underlying circuitry in which C fibers transmit pain signals
from the peripheral to the spinal cord while Aβ fibers transmit touch stimuli. In normal
conditions, projection neurons would integrate the input signals on the dorsal horn and
transmit a stereotypical pain response to the cortex (Figure 1B). This outcome can change
dramatically, however, if spike-train distortions associated with axonal damage [14–17]
are introduced in the system (see Figure 2). In Figure 3, we define five quantitative pain-
markers [Atotal, A∗, π∗, πmax, NC] to characterize the observed changes in pain response
caused by different injury protocols. Figures 4 and 5 show our results for when C-fibers
are targeted with three different types of axonal injury (intermittent blocking, evoked
potentials, and increased refractoriness). Figure 6 demonstrates another path for pain
desensitization, where Aβ fibers are targeted and have their spike-trains delayed. Finally,
in Figure 7 we consider a “tug-of-war” scenario where damaged C fibers increase the
painful signal (by evoked potentials) while damaged Aβ fibers contribute in the opposite
direction (by spike-train delays).

Our main goal throughout this work was to illustrate how a variety of non-trivial out-
comes may emerge at the collective level from different types of injury protocols. Axonal
damage in the C-fibers leading to evoked potentials/increased refractoriness translated
to monotonic increase/decrease of all quantitative pain markers (Figures 4 and 5). How-
ever, the NC marker (that counts the number of times the pain signal crosses the typical
πthresh = 25 Hz threshold) behaves very differently for the intermittent blocking injury
(see top-right plot in Figure 5). In this kind of injury, the spike trains are blocked inter-
mittently, which leads to an oscillatory-kind of collective response (see Figure 4B). If the
percentage of injured neurons is small(large), the oscillations remain above(below) the
π = 25 Hz pain threshold, which in both cases lead to small NC counts. For an intermediate
percentage, however, NC will achieve its maximum value. We posit that intermittent block-
ing and multiple crossings of pain threshold might be linked with throbbing/pulsating
types of pain. Moreover, this feature does not require large percentages of injured neurons
to be significant, which might explain its prevalence in clinical settings.
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Pain desensitization can also be achieved, in a more subtle way, by targeting Aβ fibers.
Specifically, we demonstrated that the occurrence of spike-train delays in Aβ fibers will
derange the expected response of the inhibitory neurons, which in turn, will lead to an
overall weaker pain signal. Figure 6 shows that a delay of d? = 125 ms leads to a minimal
area under the curve (Atotal) in the pain response. We conclude our exploration by creating
a “tug-of-war” scenario in which the pain desensitization caused by these damaged A-
fibers competes with the sensitization caused by damaged C-fibers (that evoke potentials).
As shown in Figure 7, these effects can cancel each other out (in the white boundary-like
region between regimes). We conjecture that this delicate balance between the regimes
could be offset, for instance, by fluctuations in the patient’s circadian rhythm. In particular,
healthy subjects typically experience the highest sensitivity to pain in the middle of the
night and lowest in the afternoon, while patients suffering from neuropathy experience
an approximately 12-h shift in their rhythmicity [12]. Altogether, improvements in the
knowledge of the transmission of pain from the damaged nerve to the pain-processing
center in the spinal cord may lead to better diagnostics and treatment protocols.

4.2. Connection to Neuropathic Pain

Our framework may provide insights into neuropathic pain, a form of pain-disorder
that affects 7%–10% of the general population in which the underlying pathophysiology
remains a contested topic [35]. Lesions on the peripheral fibers (Aβ, Aδ and C fibers) are
linked to distortions of sensory signals into the spinal cord and the brain [35,36]. One piece
of the puzzle unraveled by micro-neurography studies is the presence of ectopic activity
in primary afferent fibers [37,38]. If an afferent fiber is disconnected from the periphery
due to an injury or a lesion (for example, neuroma C fiber afferents), the remnants can
generate ectopic activity [39] while the intact fibers may become hyperexcitable [40]. The
enhanced excitability of spinal neurons produces may enable afferent fibers to activate
second-order nociceptive neurons, generating the so-called central sensitization [41,42].
Thus, incorporating injured neuronal populations into the computational models of pain
processing might shine new light on different types of stimulus-evoked pain (hyperalgesic
vs. allodynic) or painful neuropathies associated with other diseases [43,44].

4.3. Limitations and Future Work

The modeling effort presented here represents a high-level overview of potential
mechanisms that might underlie the observed effects of axonal injury on pain experience.
The study has several limitations. First, the circuitry in the spinal cord is much more
complicated than presented here (see [45] for a review) and is still being unraveled [4,46].
In addition, the gate control theory of pain is flawed and doesn’t account for many observed
phenomena [10,11], although many models use it as a basis for spinal circuitry [5,6,8]. The
population-level firing-rate model used in this work does not reflect the reality that DH
neurons are heterogeneous and exhibit distinctive action potential shapes and sizes, as well
as different ion distributions. However, as shown in [13], the model uses distinct response
curves for each population motivated by experiments and includes N-Methyl-D-Aspartate
(NMDA)-like synapses by modeling the weight to the projection neurons as a function of
the projection neuron activity. As a result, this simplified spinal-cord model can replicate
known experimental pain phenomena such as pain inhibition and wind up.

Finally, our injury protocols should be regarded as a proof-of-concept at this stage
since a single type of axonal injury (per fiber population) is unrealistic; Maia et al. [21], for
instance, reported different types of focal axonal swelling distributions (which included
normal transmission, filtering, reflection, and total blockage regimes). Other neuronal
subpopulations (besides C fibers and Aβ fibers) may also be dysfunctional, which could
lead to more sophisticated mixed effects and tugs-of-war. In future work, we expect to
gather more experimental evidence/parameters to calibrate the model more realistically for
different pain disorders. All things considered, the computational modeling of damaged



Brain Sci. 2021, 11, 505 10 of 12

neuronal assemblies is a promising avenue that may help unravel the myriad of responses
observed in painful neuropathies.
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DH Dorsal Horn
FAS Focal Axonal Swelling

Appendix A. More Details on the Spinal-Cord Model

Here we present more details on the firing-rate model used in this work for pain
processing in the spinal cord, a simplified version of the model developed in [13]. We
assume that the average firing rate of the projection, inhibitory, and excitatory neuron
populations, fP, fI, and fE, respectively, follow the dynamic equations

d fP

dt
=

P∞(gAβP fAβ(t) + gAδP fAδ(t) + (gCP + gNMDA) fC(t) + gEP fE − gIP fI)− fP

τP
,

d fE

dt
=

E∞(gCE fC(t)− gIE fI)− fE

τE
, (A1)

d fI

dt
=

I∞[gAβI fAβ(t)]− fI

τI
,

where t is time in seconds, and τP = 0.001 s, τE = 0.01 s, and τI = 0.02 s are the intrinsic
time scales of each population. The populations communicate via average synapses that
we refer to as weights gij from presynaptic neuron populations i (i = Aβ, Aδ, C, P, E, I) to
neuron population j (j = P, E, I).

We also include N-methyl-D-aspartate (NMDA) type synapses from the C-fibers to
the P population through modification of the synaptic weight, gNMDA by the average firing
rate of the P population

dgNMDA

dt
=

M∞( fP)− gNMDA

τNMDA
, (A2)

where τNMDA = 1 s.
The nonlinear response function for each population has the form

y∞(x) = max(y)
1
2

[
1 + tanh

(
1
αy

(
x− βy

))]
, y = P, E, I, M,

mimicking the F-I curves found in [5]. Finally, for all pieces of the model, we use the same
parameter values as in the original work [13].

https://github.com/jcrodelle/damagedFibers
https://github.com/jcrodelle/damagedFibers
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