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A B S T R A C T

It is of increasing interest to study “brain age” - the apparent age of a subject, as inferred from brain imaging data.
The difference between brain age and actual age (the “delta”) is typically computed, reflecting deviation from the
population norm. This therefore may reflect accelerated aging (positive delta) or resilience (negative delta) and
has been found to be a useful correlate with factors such as disease and cognitive decline. However, although
there has been a range of methods proposed for estimating brain age, there has been little study of the optimal
ways of computing the delta. In this technical note we describe problems with the most common current
approach, and present potential improvements. We evaluate different estimation methods on simulated and real
data. We also find the strongest correlations of corrected brain age delta with 5,792 non-imaging variables (non-
brain physical measures, life-factor measures, cognitive test scores, etc.), and also with 2,641 multimodal brain
imaging-derived phenotypes, with data from 19,000 participants in UK Biobank.
1. Introduction

Brain imaging (and other sources of relevant data) can be used to
predict “brain age” - the apparent age of individuals, when comparing
their data against a population dataset spanning a range of ages. The
difference between brain age and actual age (the “delta”) is often then
computed, providing a measure of whether a subject's brain appears to
have aged more or less than the population average for their actual
chronological age. For example, looking at structural MRI data, a high
degree of atrophy (e.g., caused by disease) would cause a subject's brain
to appear older than a normal age-matched brain [Franke et al., 2010;
Cole et al., 2017; Cole and Franke, 2017].

The approach typically taken is to use one or more imaging modal-
ities, for example, acquiring a T1-weighted structural image from each
subject. The data then receives some level of preprocessing, e.g., align-
ment to standard space and tissue type segmentation. The imaging data
then becomes “features” for predicting brain age - for example, from
voxelwise maps of grey matter partial volume estimates, the voxelwise
values themselves can be the features. Alternatively, a smaller number of
more highly-condensed features, such as volumes of grey matter within
multiple distinct brain regions of interest, may be generated. The entire
h).

rm 1 June 2019; Accepted 5 Jun

vier Inc. This is an open access a
dataset of multiple subjects' features, and their true ages, are fed into a
supervised-learning algorithm (e.g., regression, support vector machine,
deep learning), which learns to predict the subjects' ages from their brain
imaging features. The hope is that a given subject's predicted brain age
will deviate from their true age according to a meaningful delta, as long
as this training is not badly overfitting.

While there have been a range of methods proposed for estimating
brain age (i.e., choice of imaging-derived features to use, and choice of
supervised-learning approach), there has been very little study of the
optimal ways of then computing the delta. Presumably this is in part
because this seems like a very simple calculation (delta equals brain age
minus age). However, there are frequently various sources of bias in
estimating brain age delta, which can give rise to significant false posi-
tives and false negatives when looking for associations between delta and
other measures [Le et al., 2018]. Here we describe some important
problems with this most common approach, and present potential im-
provements via explicitly laid out (albeit simple) mathematical
frameworks.

We study these effects in simulated and real data, and suggest simple
models for removing bias and increasing the accuracy of delta estimation.
This includes models for correcting underestimation of brain aging,
e 2019
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removing the resulting dependency of delta on age, modelling nonlinear
dependence of brain aging (as a function of age), and studying non-
additive brain age delta. One of the causes of bias (regression dilution,
see below) has recently also been discussed in depth in [Le et al., 2018],
where the same linear correction as Eq. (4) below was proposed. A
closely-related linear correction was also recently proposed in [Liang
et al., 2019], although these authors suggest that regression towards the
mean is the only source of bias, and we find empirically that
non-Gaussian distribution of subject ages can be a major cause of bias.

2. Methods and results

In order to present the clearest description of the gradual develop-
ment of models throughout the paper, we do not separate out Methods
and Results sections, but intermix discussions of model improvements
with simulation and real-data results.

2.1. Common approach

We start with some basic definitions, and outline the typical approach
for brain age delta estimation. Actual age is Y (an Nsubjects� 1 vector),
brain age is YB and the delta is δ ¼ YB � Y . The imaging data matrix is X,
which has Nsubjects rows and D columns; the columns are features from the
imaging data, and might be different voxels, or different IDPs (imaging-
derived phenotypes - summary measures of brain structure and
function).1

It is common to try to predict YB from X:

YB ¼ Y þ δ ¼ f ðXÞ: (1)

Although many alternatives have been proposed for the form of f ðÞ
and the fitting of its model parameters, the issues explored in this paper
generally hold, irrespective of these choices (e.g., most brain age litera-
ture shows underestimation of brain age for old subjects, and over-
estimation in young subjects). We start with a very simple linear model,
with f ðXÞ ¼ Xβ, a multiple regression with parameters β (a D� 1 vector).
We therefore have:

Y ¼Xβ1 � δ1; (2)

where we have added subscripts to differentiate some variables in this
model from later variants. Clearly δ1 is the brain age delta being esti-
mated, and the noise term in this formulation.

This multiple regression can be solved with standard simple
methods,2 for example, setting β1 ¼ XþY using the pseudo-inverse Xþ ¼
ðX 'XÞ�1X '. This gives the initially predicted brain age YB1 ¼ XXþY, and
brain age delta:

δ1 ¼Xβ1 � Y ¼ XXþY � Y ¼ ðXXþ � IÞY : (3)

Two complications are immediately clear: δ1 will be orthogonal to the
imaging data matrix X (though there is no reason to assume that this is
desirable), and it will not be orthogonal to age (Y). This latter issue is
likely to be problematic, given the simplest conception of the delta as
being the difference between brain age and age, as a useful (objective,
non-changing) description of a subject's brain-health that is not depen-
dent on their current age. In the extreme case of X being an entirely
useless model for brain aging, Xβ1 � 0 and δ1 will just be �1 times the
actual age.

In addition, there are several factors that almost always cause the
1 We assume throughout that Y and all columns in X are demeaned (shifted to
have zero mean), to simplify equations with no loss of generality. Also, for
readability, we do not in general differentiate in our notation between true
parameters and estimates of those parameters.
2 Alternatively, if this is poorly conditioned, e.g., with the number of features

D too large, using penalised regression.

529
estimated β1 to be biased towards zero (Fig. 1), resulting in under-fitting
to Y and hence “moving” age dependence into δ1:

1. It is typical for more sophisticated fitting methods (e.g., sparse/reg-
ularised regression) to result in underestimation of β1 [Grosenick
et al., 2013].

2. It is common for datasets to not have a Gaussian distribution (across
all subjects) for age, often because of hard limits on age in the study
design. In the linear model framework, it does not generally matter
what the distribution of the predictors is (here, X), but a non-Gaussian
distribution in the independent variable (here Y) can cause serious
bias (typically underestimation) in the estimated β1.

3. Errors in measurement of the predictors (X) also likely cause under-
estimation of β1 (“regression dilution”) [Le et al., 2018].

Note that the above formulations, as they stand, model the entire set
of subjects together, to estimate brain age and the delta, and these causes
of bias often exist in such a scenario. In practice, researchers often use
cross-validation (or a group of healthy subjects and a clinically distinct
subject group), where model parameters are learned from training data
and then applied to left-out data in order to estimate delta, in a way that
is more robust against model over-fitting. Applying such cross-validation
(as opposed to all-in-one fitting) can be yet another factor causing non-
orthogonality between estimated delta and age (because, like with reg-
ularisation, the tendency would be to increase under-fitting).

Finally, with β1 being underestimated, and age-dependence therefore
moved into δ1, there is the danger that association tests against non-
imaging variables (e.g., cognitive status, health outcomes) will be
dominated by true age (i.e., be driven by the aging process), rather than
the intended brain age delta. Obviously this can be eliminated through
careful deconfounding of the non-imaging variables, but with age-
dependence left in δ, this still results in loss of statistical sensitivity. To
re-iterate the danger here: if (as seems to happen frequently in the
literature) estimated brain age delta is not orthogonal to age, and if other
variables (cognitive status, health measures, etc.) have not been decon-
founded with respect to age, then any apparent associations between
“brain age delta” and the non-imaging measures might be more driven by
age and not true delta.

2.2. Stage-2 correction of delta

One very simple approach to correct for all of the above issues is to
remove age dependence in δ1 in a second step. For now we will assume
only linear corrections, and will return to nonlinear correction later.

The method is easily motivated by considering the scatterplot of δ1
against Y (Fig. 2). As discussed above, ideally we would want the data to
be distributed around δ1 ¼ 0, with no overall slope (dependence on Y). If
an overall slope is present, we can simply fit a straight line to the full data
cloud and subtract this:

δ1 ¼ Yβ2 þ δ2 (4)

where we have defined δ2 (the residuals from this fitting), to be
orthogonal to age, with biases (and modelling failures due to poor X)
removed.

Although it is perfectly convenient (and easy to understand) to carry
out this modelling in two separate steps, they can easily be combined into
a single calculation:

δ2 ¼ δ1 � Yβ2
¼ δ1 � YYþδ1
¼ ðI � YYþÞδ1
¼ MYðXXþ � IÞY

(5)

¼ MYXXþY (6)



Fig. 1. Examples of different causes of biased estimation of the model fit. The black line shows the correct model fit (B ¼ A), while the red line shows the fitted
model (B ¼ Aβ). A. The model A is Gaussian distributed, and simulated B is set to be equal to A, with Gaussian noise added to B. The true model fit (β ¼ 1) is correctly
estimated. B. Increased measurement noise on B increases the error in the model fit (σ), but does not cause bias (even though the data cloud appears rotated). C.
Changing A to being non-Gaussian does not harm the model fitting. D. Applying regularised model-fitting (here Tikhonov regularisation) biases the model fit towards
zero (even though the data cloud is not rotated). E. Adding measurement noise to A (i.e., after it has been used to generate B) causes regression dilution. F. Truncating
B (a special case of non-Gaussianity in B) causes a biased model fit.

Fig. 2. Examples of the two stages of age prediction. The black lines show the ideal unbiased model fits. A,D. The plots of predicted brain age from steps 1 and 2,
vs. actual age. B,E. The plots of estimated brain age delta from steps 1 and 2, vs. actual age. C,F. The plots of estimated brain age delta from steps 1 and 2, vs. true delta.
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where MY ¼ I � YYþ is the “residual-forming matrix”, which orthogon-
alises a vector with respect to Y.3 The second term in the brackets in Eqn.
(5) disappears becauseMYY ¼ 0. A simple intuitive interpretation of this
is that XXþY is the predicted age from step 1, and therefore δ2 is just the
orthogonalisation of this with respect to actual age. The predicted brain
age from this second step is YB2 ¼ Y þ δ2.

Fig. 2 uses a simple simulation to illustrate the two stages of the
model fitting described above. In A and B the biases in the one-stage
modelling are apparent, and these are removed in D and E. Further-
more, the correlation of estimated delta with the true delta is improved in
the second step.

2.3. Switching predictor matrix and age

Alternatively, one could frame the modelling in an arguably more
natural framework, with X being dependent on YB:

X ¼ f ðYBÞ
¼ ðY þ δ3Þγ þ ε ðfor exampleÞ
¼ Yγ þ δ3γ þ ε

(7)

where γ is a 1� D row vector, meaning that Yγ is a rank-1 approximation
to X. This approach has the advantage of looking “causally sensible”
(brain aging affects what we measure of the brain). Also, if this is solved
using Y as the predictor variable, δ3 will be treated as being in the re-
siduals and hence is defined as being orthogonal to age (and not to X).
Finally, some problems such as regression dilution go away, as we can
generally assume that there are no errors in Y.

However, one might (in general correctly) expect that this model is
not as statistically powerful as the above approaches, given that each
column in X is being modelled separately from each other (with respect
to estimating γ).

Again, this formulation can be easily solved:

γ ¼ YþX
X � Yγ ¼ X � YYþX ¼ MYX ¼ δ3γ þ ε

δ3 ¼ MYXX'Yk
(8)

where scaling factor k ¼ ðY 'YÞ=ðY 'XX 'YÞ, as derived from multiplying by
the right-pseudo-inverse of γ. This defines the residuals ε as being
vertically orthogonal to age, and horizontally orthogonal to γ.

It can immediately be seen that δ3 becomes equal to kδ2 if X is first
orthonormalised before being used here (i.e., Xþ ¼ X '). This makes
intuitive sense as we would now be saying that the columns in X do not
depend on each other, so the potential for statistical insensitivity in the
formulation of Eq. (7) disappears.

2.4. Improved prediction accuracy via singular value decomposition

It is straightforward (and typical) for the first stage of the common
approach to use regularised modelling applied to X, particularly given
that X is frequently formed from (unwrapped)maps of voxels, resulting in
there being too many variables in X for trivial application of multiple
regression. Even if this were not the case, regularised estimations are
known to often perform better than non-regularised estimations in terms
of statistical efficiency, for a sufficiently good choice of the regularisation
parameter.

As one option for regularisation, X can be pre-reduced using SVD
(singular value decomposition): X ¼ USV ', where the J strongest eigen-
subject-vectors from U (those that explain the strongest variance in X)
would be used in place of X. This procedure is sometimes referred to as
principal-component-regression [Massy, 1965; Franke et al., 2010], and
has the general effect of “denoising” X and therefore improving overall
3 Here we are using pseudo-inverse notation even though Y is just a column
vector.
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modelling for an appropriate choice of J. By definition, U is orthonormal,
and hence, as discussed above, this causes δ2 and δ3 to be the same (apart
from the overall scaling). It is important to note that, even when using
effective regularisation, it remains the case (as demonstrated in examples
below) that the initial estimate (δ1) most commonly used in brain age
studies remains suboptimal and biased. In the following sections we
illustrate this with simulated and real data.
2.5. Cross-validation

Although not a primary focus of this paper, we briefly discuss here the
use of cross-validation. In general, when there is any risk of an analysis
over-fitting the data (e.g., where there is some data-dependence in the
processing, such as is the case with any supervised machine learning), it
is important to use methods such as cross-validation to avoid inflated
estimates of modelling success.

The models covered in this paper are sufficiently well-conditioned
when run on large subject numbers that cross-validation is not ex-
pected to change results greatly. In practice, we found that results re-
ported in the various simulations reported below were only significantly
altered (when using cross-validation) where the models fitted had the
greatest numbers of features - i.e., when using the full (no SVD) model for
X, or when using the maximum number of SVD eigenvectors. Neverthe-
less, all results reported below were estimated using cross-validation,
which we now describe briefly.

We applied 10-fold cross-validation, where the data samples are
randomly assigned into 10 roughly equal-sized groups. For each group of
left out data, the other 90% of samples (subjects) are used to “train”, i.e.,
estimate, model parameters. These parameters are then applied to the
left-out subjects. In this case, the training refers to 4 analysis stages: a)
confound removal (for real data), b) SVD reduction, c) δ1 initial esti-
mation and d) δ2=3 correction.

Finally, note that if automated model tuning is to be carried out (e.g.,
optimal SVD dimensionality to be estimated from the data), then clearly
this also should be done within a cross-validation framework.
2.6. Evaluations with simulations and real data

We now present results from simple but realistic simulations and real
data.

2.6.1. Simulation 1
For Simulation 1, we set the number of samples (subjects) to 20000,

set a fairly sharply truncated (non-Gaussian) distribution for the age
range (total range approximately 45-75y), and added Gaussian δ with
standard deviation 2y to form the gold-standard brain age. We then
defined 100 underlying components (processes) of subject variation in
“brain imaging” measures, the first being brain age, and the other 99
being random. We then mixed these ground truth population modes by a
(100x3000) sparse mixing matrix (random Gaussian noise to the fifth
power) to form 3000 imaging variables, resulting in an X of size
20000x3000. Finally, we standardised all columns in X to 1, and added
measurement noise with a standard deviation of 0.5. (Reducing this noise
to the kinder level of 0.1 does not make a large qualitative difference to
the results.) We ran the simulation 20 times, and show the mean and
standard deviation results across the 20.

The results can be seen in Table 1. The most important results are the
3 right-most columns, where (in the simulated datasets) Q shows how
well the different estimates of δ correlate with the true δ. The first row
shows results when the “raw” X is used (i.e., without SVD). This is out-
performed by the best SVD-based analyses. However, even in this case it
is clear that δ1 is not as accurate at recovering the true δ as δ2.

The best estimates of brain age delta are when using δ2 or δ3 with an
SVD reduction to 100 components. Reducing the number of subjects to
500 gives qualitatively similar results, with the best option again being



Table 1
Results from quantitative evaluations of brain age estimation. We show results for two different simulations and one real
dataset. Different rows are for different SVD dimensionality reductions, with the first in each experiment being with no use of
SVD at all. Columns 2–5 show the correlations of various estimated measures with true age. The next three show the mean
absolute value of three different brain age δ estimates (for the true δ in the simulations, it is 1.6y). The final three columns (“Q”)
show the most important aspect of the results: in the case of the simulations, these are the correlation between the true delta and
the different estimations of delta. In the case of the real data from UK Biobank, where we do not know the true delta, we are using
as a surrogate a summary measure of the significance of the correlation between estimated delta and 5792 non-imaging vari-
ables.
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SVD reduction to 100 components (and best δ2=3 prediction of true delta
having a correlation of 0.82).

In all cases there is strong (negative) correlation between estimated
brain age delta δ1 and actual age (column 2), an undesirable feature of
the most simple brain age modelling. This is at its worst for poor models
(very low SVD dimensionality), which in effect is like Fig. 1E (regression
dilution). We do not show these correlations for δ2 and δ3 as these are
zero by design. While many of these analyses show very good correlation
between actual age and predicted age (columns 3–5), it is clear (from the
final 3 columns) that this is not a good indicator of successful modelling
of the brain age δ.

When X is orthogonalised via SVD, δ2 and δ3 become identical (apart
from scaling factor k), and results improve for sufficiently large values of
J. The best results are achieved when setting the SVD dimensionality J to
be the “correct” number (here 100). Underestimating dimensionality
(e.g., here J¼ 50) damages estimation much more than overestimation
(e.g., J¼ 1000), an important result to keep in mind when choosing J.

The estimates of mean absolute values of δ largely show the expected
pattern of results: smaller δ in general indicates more successful model-
ling (as judged by the gold standard metric, the accuracy of recovering
the true δ). This is expected because successful modelling of age implies
relatively small modelling residuals, upon which delta is based. However,
there are clearly exceptions to this, e.g., with the smallest (across
different models) jδ2j corresponding to total modelling failure (SVD
J¼ 1).4 More importantly (in practice), the optimal modelling choices
can show slightly “supoptimal” mean absolute δ (see UK Biobank results
discussed below). Hence it is important to realise that simply choosing
(or tuning) a method that minimises estimated δ does not guarantee to
give the best overall results.
4 In the case where X is a useless model, δ2 tends to zero (because X explains
none of Y), whereas δ3 tends to infinity (because Y explains none of X: the fit
becomes horizontal and the horizontal errors large).
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While δ2 and δ3 are identical5 (up to a scaling factor) when using SVD,
their overall scaling performs quite differently, with the scaling of δ2
being more stable and accurate overall. This means that correlations
between δ2 and δ3 with true δ are the same, but, because of the difference
in overall scaling, once these are added to true age to form estimated
brain age, that will differ between the two models (as seen in r(Y, YB1) vs.
r(Y, YB2)).

2.6.2. Simulation 2
Simulation 2 reflects a much simpler scenario (probably unrealisti-

cally simple), in order to illustrate what happens if there are no other
structured effects in the data apart from age dependency. In this case the
99 structured effects were removed, and noise standard deviation raised
to 10. When using the original X (i.e., no SVD), δ2 performs significantly
worse than δ3. Using SVD gives results that are as good as when using δ3
with no SVD (and using J > 1 gives almost identical results; using J ¼ 1
works well here because of the true data rank being 1). Most importantly,
the simple common approach (δ1) still results in suboptimal estimation of
true delta, and strong incorrect correlation with age.

2.6.3. Real data
The real data evaluation used IDPs from 19000 subjects in UK Bio-

bank. We used 2641 IDPs spanning a range of structural, diffusion and
fMRI phenotypes, to create X. Confounds were removed from the data as
done in [Miller et al., 2016; Elliott et al., 2018] (although of course
age-dependent confounds were not removed from X). While it is common
(and generally sensible) to derive brain-aging models from healthy sub-
jects only, and then apply those models to all subjects (including those
5 In fact, as can been seen in the “Q” columns, in practice here they are not
exactly identical, simply because these simulated datasets are fit in a cross-
validated way, with randomly assigned fold memberships causing small varia-
tions in outcomes.



Fig. 3. Brain age prediction results with real
data from UK Biobank (N¼19000). A,B) The
first two scatterplots show the clear bias (age-
dependence) in δ1 being corrected in δ2 (each
point is one subject). C) shows relative strengths
of correlations of δ1 and δ2 with (fully decon-
founded) non-imaging variables, with the latter
showing consistently stronger associations (each
point relates to the association of a single non-
imaging variable to brain age delta). P-values
are uncorrected for multiple comparisons. D)
shows the change in associations with δ1, without
(x axis) vs. with (y axis) age-deconfounding of the
non-imaging variables; this illustrates the danger
of looking for associations between biased brain
age delta and non-imaging variables that have
not been corrected for age dependence. E) shows
a similar story, when using δ2 on the y axis; bias
can cause (probably unwanted and misleading)
associations (points under the y¼ x line), while
applying the corrections described here can raise
sensitivity to finding (what are hopefully valid)
associations in other cases (points above the line).

6 Without loss of generality, and to simplify notation and interpretation, in
our equations and in the simulations, by Y2 we mean a quadratic term that has
been orthogonalised with respect to Y and demeaned. If Y has already been
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with disease), we did not remove individual subjects from the modelling
here using UK Biobank data, given that the fractions of imaged subjects
having specific existent diagnoses are low (less than 10% having mental
health or neurological diagnoses).

The methods described above were applied to estimate brain age
delta. As this is real data we do not know the “true” delta, and therefore
as a surrogate for this, for the “Q” columns, we instead estimated the
significance of the correlation between estimated deltas and 5792 non-
imaging variables, after applying the same deconfounding (though now
including age-dependent confounds) to those variables. In general we
would hope that “higher correlation is better”: accurately estimated brain
age delta should have stronger correlations with interesting non-imaging
variables such as health outcomes and biophysical markers. In order to
turn the 5792 correlations into a single summary statistic, with emphasis
on stronger associations rather than weakest (null) associations, we took
the 99th percentile of �log10ðPÞ over all non-imaging variables as our
measure of success (“Q”).

Doing SVD reduction with J � 50 components gave the best results,
and δ2=3 gave much stronger associations with non-imaging variables
than δ1. Encouragingly, a relatively wide range of J (e.g., 20–100) all
gave similar strong results. The “symmetry” of Q (as a function of J,
looking either side of the optimal dimensionality) for real data is
different than the pattern found in the simulated data, where success fell
off very quickly as dimensionality was reduced to being lower than the
true dimensionality. We hypothesised that this was because the simu-
lated data had a true strong cutoff in the eigenspectrum, whereas real
data has a much more gradually falling eigenspectrum, as structured
signals are of varying strength. We re-ran Simulation 1, this time with the
strengths of the added 99 dimensions of structured subject covariation
533
being modulated by a random number uniformly drawn from 0:1. The
results were unchanged with respect to the optimal dimensionality (still
being 100, and having Q¼ 0.97). However, now the results were more
symmetric about this, i.e., lower dimensionalities did not perform as
badly, with even a low J of 25 giving Q¼ 0.8.

The real data results are illustrated further in Fig. 3, showing clearly
the value in correcting the estimate of brain age delta, and the danger of
computing associations between biased brain age delta and non-imaging
variables that have not been deconfounded for age.
2.7. Nonlinear relationships between age and imaging data

One cannot assume that the effect of aging on imaging measures is a
linear function of age; indeed, acceleration of the effects of aging (in
older age) seems quite likely, particularly in disease. The above models
are simple to adapt to include an additive nonlinear term in Y, the most
natural extension being to add a quadratic term.6

YB ¼Y þ Y2αþ δ ¼ Xβ (9)

To adapt the first model described above, we can integrate the
quadratic correction into the second step (that also corrects for bias in
estimating the linear effect in step 1). Hence we subsume the quadratic
term into the initially estimated δ (which is particularly straightforward
demeaned, then Y2 will already be close to being orthogonal to Y.
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if we assume that the quadratic term has been orthogonalised with
respect to Y):

δ1 ¼ Y2αþ δ ¼ Xβ1 � Y ¼ XXþY � Y ¼ ðXXþ � IÞY ðstep 1Þ (10)

δ1 ¼
�
Y Y2

�
β2q þ δ2q ¼ Y2β2q þ δ2q ðstep 2Þ (11)

where β2q has two free parameters, covering the linear and quadratic
regressors. Note that the first step is identical to what we had before;
hence the unchanged subscript in δ1. This can all be combined:

δ2q ¼ δ1 � Y2β2q
¼ MY2XX

þY ;
(12)

where MY2 ¼ I� Y2Yþ
2 .

Fig. 4 uses a simple simulation to illustrate the two stages of the
model fitting described above. In A and B the biases in the one-stage
modelling are apparent, and these are removed in D and E. Further-
more, the correlation of estimated delta with the true delta is improved in
the second step.

Note that step 1 above assumes that it is most useful to group the
quadratic term into the residuals of the first model fitting. It may be that
some study populations have a linear age effect that is smaller than the
quadratic, for example with young healthy adults around the peak of the
lifespan “growth-aging inverted-U curve”. In such cases, it might be
possible that step 1 should fit to the quadratic term rather than the linear,
with step 2 being unchanged.

For the second model, that switches predictor matrix and age, again
the extension to a quadratic term in Y is straightforward:

X¼ �
Y þ Y2αþ δ3q

�
γ þ ε (13)

γ ¼ Yþ
2 X (14)

X�Y2γ ¼ X � Y2Yþ
2 X ¼ MY2X ¼ δ3qγ þ ε (15)

δ3q ¼ MY2XX 'Yk; (16)
Fig. 4. Examples of the two stages of quadratic-fit age prediction. The black lines
1 and 2, vs. actual age. B,E. The plots of estimated brain age delta from steps 1 and 2,
true delta.
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where γ becomes two rows of parameters (and hence incorporating α),
and for the final line we have post-multiplied by just the first row of γþ,
i.e., X 'Yk. According to the model in Eq. (13), the two rows of γ should be
identical (up to a scale factor), but in practice there will normally be
much less variance in the data associated with the quadratic term, andwe
find indeed that results are improved by only using the linear term (i.e.,
using the first row of γ). (Again, in some populations, it may be better to
use the quadratic part of the model rather than the linear, for the estimate
of γ.)

Table 2 shows quantitative results from simulations of nonlinear
brain aging, and from the UK Biobank real data. For the simulations, we
start with the first linear simulation above, and add quadratic aging ef-
fects. For these 3 simulations we set true quadratic-term α values (Eq. (9))
of 0, 0.01 and 0.025 respectively, corresponding to total deviations away
from linear brain aging of 0, 4y and 10y.

With no simulated nonlinear effect (Sim1), the quadratic models give
identical results to the linear models (i.e., there is no noticeable penalty
being paid for the additional model flexibility, presumably because,
given the simplicity of the corrections to delta, overfitting is negligible).
When a quadratic effect is included in the simulation, the quadratic-
correction models (i.e., generating δ2q and δ3q) provide a major
improvement in accuracy over the linear models. Accuracy of recovering
the true δ remains high even for large amounts of nonlinear behaviour,
providing J is optimal. As before, optimal SVD data reduction out-
performs using the original data matrix X.

The quadratic modelling in the UKB real data accounts approximately
for a 2y total deviation from the linear fit. Including this quadratic
modelling results in improvements in the strength of associations with
non-imaging variables, although these improvements are here very
small. In disease populations this might be expected to be much greater.
Where the nonlinear effect is greater, it is straightforward (particularly
for the first, two-stage, model) to extend the above formulations to higher
powers, or, possibly more well-conditioned, nonlinear modelling such as
with splines.

In all cases the “common” approach (δ1) performs significantly worse
than these models that correct for bias and nonlinearity in brain age
prediction.
show the ideal linear model fits. A,D. The plots of predicted brain age from steps
vs. actual age. C,F. The plots of estimated brain age delta from steps 1 and 2, vs.



Table 2
Results from quantitative evaluations of brain age estimation in the presence of nonlinear brain aging.We show results
for 3 realistic simulations and a real dataset. The 3 simulations have different strengths of nonlinearity in brain age Y2α, with α ¼
0;0:01;0:025 respectively. Different rows are for different SVD dimensionality reductions, with the first in each experiment
being with no use of SVD. We show mean absolute value of different brain age δ estimates (for the true δ in the simulations, it is
1.6y) and then correlations between estimated and true δ (for the simulations) and significance of associations with non-imaging
variables (for real data), as above.
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2.8. Non-additive brain age delta

A different model for brain aging would be for each person to be aging
at a different rate, meaning that their delta (according to the above
models) is changing with age, as opposed to being fixed. Unfortunately,
this cannot trivially be distinguished from having constant delta, at the
level of the individual subject, if there is only one measurement (time-
point) per subject.

This ambiguity arises because subject-specific rate of aging would be
considered to create a spread of trajectories around the population mean
aging curve. By this definition, the effect of interest is orthogonal to the
population mean aging effect, and therefore gets included in estimates of
delta given above. Hence, the above aging models do not explicitly
identify multiplicative brain aging, yet readily fit data from individual
subjects at a single timepoint as an additive offset term regardless of the
cause (constant offset vs. multiplicative).

However, while additive and multiplicative brain aging cannot easily
be disambiguated at the subject level, it is possible to apply the above
models, and then use the resulting delta values to estimate how scaling of
the size of delta is changing with age in the population as a whole:

δ ¼ δ0ð1þ λY0Þ; (17)

where we form a temporary version of age Y0, which is a linear mapping
of Y into the range 0:1, and hence jδ0j relates to the brain age delta
distribution for the youngest subjects in the data. The product on the
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right is a pointwise product between the two column vectors δ0 and ð1þ
λY0Þ. The reason for formulating things this way will now become clear,
where we solve by squaring, taking the natural log, approximating the
log function on the right using a power series expansion, and solving with
linear regression:

log
�
δ2
� ¼ log

�
δ20
�þ log

�ð1þ λY0Þ2
�

¼ log
�
δ20
�þ 2logð1þ λY0Þ

log
�
δ2
��

2 ¼ logðjδjÞ � D0 þ λY0;

(18)

where D0 ¼ logðδ20Þ is the noise in this model and this assumes that λ is
not very large and negative. Hence fitting the model Y0 to data logðjδjÞ
gives us an initial λ, which we can then adjust for the expansion
approximation error:

λ0 ¼ Yþ
0 logðjδjÞ (19)

λ1 ¼ eλ0 � 1: (20)

To evaluate this with simulated data, we took the first linear simu-
lation described above, and added age-dependence by setting true
lambda to 0.5 according to Eq. (17). We then ran the simulation 10 times,
with J¼ 100, estimating λ from δ2. This resulted in estimated λ ¼
0:46� 0:09.

On real data from UK Biobank, using δ2q estimated using optimal SVD
setting of J ¼ 50, we find that λ¼ 0.13, with the regression-based fitting
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also estimating this as being significantly greater than zero (P¼ 0.001).
This corresponds to an increase in “spread” of brain age delta of about
jδjλ ¼ 0:4y when moving from the youngest to oldest subjects in UKB
(45–80y). This provides evidence for a modest non-additive brain aging
effect in this largely healthy, aging population.

2.9. Further results from UK Biobank brain age estimation

We carried out brain age delta estimation on UK Biobank data as
described above, and also for females and males separately. Below we
report results using δ2q.

The delta estimations for females were almost identical when
comparing delta estimated purely for females vs. estimated from the all-
in-one delta estimation from females and males together (r¼ 0.98). The
Table 3
The strongest associations between brain age delta a
subjects, males and females combined. Positive corre
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same was true for males (r¼ 0.97). From the all-in-one analysis, females
had a mean brain age delta that was 0.7y higher than in males.

We then correlated these various versions of brain age delta against
5792 non-imaging variables from UK Biobank, and converted these un-
corrected P-values into � log10P. As expected from the above results,
these vectors of correlation significance (with one entry in the vector for
each non-imaging variable) were highly similar when comparing sex-
separated delta estimation for females against when taking the deltas
for females from the all-in-one estimation (r¼ 0.98). The same was found
for males (r¼ 0.98). Hence, for sex-specific results reported below, we
only list those from the sex-separated delta estimations.

Comparing �log10P derived from all subjects (both sexes) from the
all-in-one analysis against the sex-separated estimates of �log10P showed
greater differences (all subjects vs. female: r¼ 0.87, vs. male: r¼ 0.73).
nd non-imaging variables in UK Biobank, 19038
lations (red italics) imply accelerated brain aging.



Table 4
The strongest associations between brain age delta and non-imaging variables in UK Biobank, for just
the 10112 females, and just the 8926males. Positive correlations (red italics) imply accelerated brain aging.
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Comparing �log10P derived from female-only analysis against male-only
gave r¼ 0.36.

The strongest associations with non-imaging variables are shown in
7 Note that there is not a monotonic relationship between r and P, because of
different missing-data patterns in different variables resulting in varying N. Also,
unlike with the results correlating delta against the imaging IDPs below, here we
sort on P rather than r, given that the r values are rather small, leading to
increased relevance of P.
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Tables 3 and 4.7 Bonferroni correction, for the number of non-imaging
variables, gives a threshold for �log10P of 5.1, but to limit the number
of reported associations to a reasonable degree (and because effect sizes
become tiny at this threshold, the weakest passing this being 0.1%
variance explained!), we report results for �log10P > 8. The non-imaging
variables are denoted via unique variable codes and brief descriptions.
For more information on any variable, one can take the initial integer
from the ID, and search for the variable on the UK Biobank website: https
://biobank.ctsu.ox.ac.uk/showcase/search.cgi.

For these lists we have manually removed largely-redundant (highly

https://biobank.ctsu.ox.ac.uk/showcase/search.cgi
https://biobank.ctsu.ox.ac.uk/showcase/search.cgi


Table 5
The strongest associations between brain age delta and
imaging-derived phenotypes (IDPs) in UK Biobank, for all sub-
jects, and for just the 10112 females, and just the 8926 males.
IDP names listed in blue italics denotes where the correlations differ
between females and males by more than 0.05.
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similar) variables for purposes of readability, listing just the strongest
associated result in each case. If a variable is positively correlated with
brain age delta, this implies that accelerated brain aging is associated
with larger values of that variable, i.e., it is a “bad” life factor or bio-
logical measure. Of course, the results do not allow one to infer causality.

There are several strong patterns that emerge. Higher body weight,
body fat and bone density are all associated with reduced brain aging,
largely in females. Higher blood pressure, heart rate and blood haemo-
globin are all associated with accelerated brain aging, in both females
and males, but to a slightly stronger extent in males.

Smoking and alcohol are associated with accelerated brain aging.
There are several life-factor/life-style measures associated with delta,
presumably reflecting socio-economic status, where the biological cau-
sality is likely complex (e.g., household income, number of vehicles in
household, and possibly also related, time spent outdoors in summer).
Several measures from the cognitive testing are associated with brain age
delta, in all cases in the direction one might expect; measures of success/
accuracy correlate negatively, and measures of “time taken” (to complete
a cognitive task) correlate positively.

Finally, two associations related to clinical diagnosis/treatment, both
found in males, are that the number of treatments/medication taken, and
diagnoses of diabetes, are both associated with accelerated brain aging.

We also looked at the correlations between delta and the imaging
features (IDPs). This is expected to largely reflect which IDPs most
strongly contribute to the modelling of the brain age delta, but of course,
being a univariate analysis, is straightforward to interpret and does not
take into account redundancy across IDPs. Table 5 lists these, sorted
according to decreasing strength of correlations computed from all sub-
jects (females and males), but also showing correlations for just females
and just males. We do not report P here, as, given the relatively strong
correlations, the P values are too strongly significant to be differentially
informative. IDPs are included in the table if any of the 3 correlations
(from females only, males only, or all subjects) are stronger than 0.3.

We highlight in blue the IDPs for which the correlation with brain age
delta is different between females and males by more than 0.05. More
detailed descriptions of the IDPs (including expansions of some of the
anatomical acronyms) can be found here; http://www.fmrib.ox.ac.uk/
ukbiobank/IDPinfo_Jan2018.txt.

The strongest associations with delta are for grey and white total
volumes, both normalised for head size and unnormalised. (Note also
that we have used fully deconfounded versions of the IDPs for these
correlations with delta, which included regressing out head size). There
are then many measures of white matter microstructure (derived from
the diffusion MRI) that correlate with delta, a minority of which are
reasonably strongly different between the sexes.

3. Conclusions

We have discussed various problems and potential solutions relating
to the estimation of brain age delta. It has commonly been the case that
estimated delta is not orthogonal to age, and this can result in false as-
sociations with non-imaging variables, as well as a loss in sensitivity to
finding valid associations. While estimation bias is a common general
statistical issue, it is specifically problematic in the area of brain-age
modelling, because the final computed delta is the difference of the
estimated quantity and the true value.

We found that the strength of correlation of estimated brain age with
actual age is not guaranteed to be a good indicator of optimal delta
estimation, and neither is the (smallness of) the size of mean absolute
delta.

We have shown that brain age delta can be estimated well by fitting
one of the models described in this paper (e.g., see algorithm below),
where bias in brain age estimation, and nonlinear dependence can be
adjusted for.

We have also described how one might study non-additive effects of
aging, where different subjects age at different rates. One of the few
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studies that has carried out linear age adjustment of delta is [Cole et al.,
2017]. Interestingly, in this case, the adjustment reduced the strength of
associations with external information (in that case, heritability). While
this goes against most of our findings above, it may relate to non-additive
aging, in which case, combining the modelling (for non-additive aging)
presented here with the corrected delta models presented above might
optimise a delta estimation. Alternatively, it may simply be that the bias
(present in delta before correction) contributed to apparent heritability,
given that twins have the same age and so experience related bias.

One simple, effective and computationally cheap tool for modelling
brain age (before delta estimation) is to reduce the input data features
(from the brain imaging) via SVD. We have shown that there is likely
to be an optimal SVD dimensionality for the data reduction, and that
it is safer to slightly overestimate rather than underestimate this
dimensionality.

To apply the recommended approach for estimating brain age delta,
apply the following.

1. Your vector of ages is Y (subjects � 1).
2. Your matrix of brain imaging measures is X (subjects � features/

voxels).
3. Subtract the means from Y and all columns in X.
4. Use SVD to replace X with its top 10–25% vertical eigenvectors.
5. Compute Y2, demean it and orthogonalise it with respect to Y to give

Y2
o .

6. Create matrix Y2 ¼ ½Y Y2
o �.

7. The initial model is YB1 ¼ Xβ1 þ δ1. Do:
(a) Compute initial age prediction β1 ¼ XþY giving YB1 ¼ Xβ1

(where Xþ is the pseudo-inverse of X).
(b) Compute initial brain age delta δ1 ¼ YB1 � Y .

8. The corrected model is δ1 ¼ Y2β2 þ δ2q. Do:
(a) Compute corrected model fit β2 ¼ Yþ

2 δ1 (correcting for bias in the
initial fit and quadratic brain aging).

(b) Compute final brain age delta δ2q ¼ δ1 � Y2β2.

All associations of brain-age delta with UK Biobank non-imaging
variables are listed in a supplementary spreadsheet. Example Matlab
code for the delta computations and all simulations can be found at:
http://www.fmrib.ox.ac.uk/BrainAgeDelta.
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