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ABSTRACT Suppressor screens are an invaluable method for identifying novel genetic interactions
between genes in the model organism Caenorhabditis elegans. However, traditionally this approach has
suffered from the laborious and protracted process of mapping mutations at the molecular level. Using
a mutagen known to generate small deletions, coupled with oligoarray comparative genomic hybridization
(aCGH), we have identified mutations in two genes that suppress the lethality associated with a mutation of
the essential receptor tyrosine kinase rol-3. First, we find that deletion of the Bicaudal-C ortholog, bcc-1,
suppresses rol-3–associated lethality. Second, we identify several duplications that also suppress rol-3–
associated lethality. We establish that overexpression of srap-1, a single gene present in these duplications,
mediates the suppression. This study demonstrates the suitability of deletion-biased mutagenesis screening
in combination with aCGH characterization for the rapid identification of novel suppressor mutations. In
addition to detecting small deletions, this approach is suitable for identifying copy number suppressor
mutations, a class of suppressor not easily characterized using alternative approaches.

KEYWORDS

Caenorhabditis
elegans

oligoarray
comparative
genomic
hybridization

ROL-3
BCC-1
SRAP-1
duplication
suppressors

Suppressor screening is an efficient way to generate mutations in
developmentally associated genes. In the model organism Caenorhab-
ditis elegans, suppressor mutations have given insight into a number
of gene functions, facilitating the elucidation of complex developmen-
tal mechanisms and pathways (Dorfman et al. 2009; Galvin et al.
2011; Rohlfing et al. 2011; Schumacher et al. 2005; Singh and Han
1995). The time and expense required to identify mutations generated
in such screens are, however, a major limiting factor in the value
of these approaches (Barbazuk et al. 1994; Fay and Johnson 2006;
Jorgensen and Mango 2002). Alternative strategies to generate and
rapidly map suppressor mutations are therefore required.

The advent of high-resolution molecular methods for mapping
mutations has, to a certain extent, replaced the need for slower traditional
approaches. A number of such methods are available. Principal among
these are whole-genome sequencing (WGS) and oligoarray compar-
ative hybridization (aCGH). WGS has been applied to mutant
identification in C. elegans and shown to be suitable for detecting
a variety of DNA lesions (Chu et al. 2012; Flibotte et al. 2010; Hillier
et al. 2008; Hobert 2010; Sarin et al. 2008; Shen et al. 2008), although
methods to reliably identify small insertion/deletions (indels) and
duplications are still being refined (Smith 2011). Additionally, al-
though WGS is becoming more cost-effective, intensive and special-
ized bioinformatic analysis is required for mutation identification
and validation. However, aCGH analysis, a technique for querying
genome alterations to a high resolution (Dhami et al. 2005; Selzer
et al. 2005), is a viable alternative approach that does not require
specialized bioinformatic analysis. Several C. elegans–specific aCGH
platforms have been developed and have been shown to be effective
for rapidly identifying novel single-gene deletions (Maydan et al.
2007; O’meara et al. 2009), as well as large duplications and defi-
ciencies (Jones et al. 2007; Lipinski et al. 2011; Maydan et al. 2010).
The use of aCGH circumvents the need for time-consuming genetic

Copyright © 2012 Jones et al.
doi: 10.1534/g3.112.002238
Manuscript received February 16, 2012; accepted for publication March 26, 2012
This is an open-access article distributed under the terms of the Creative
Commons Attribution Unported License (http://creativecommons.org/licenses/
by/3.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.
Arrays have been submitted to the GEO database at NCBI as series GSE15224.
1Corresponding author: University of British Columbia, Department of Medical
Genetics, Room 419 NCE Building, 2125 East Mall, Vancouver, BC V6T 1Z4,
Canada. E-mail: marvolauk@gmail.com

Volume 2 | June 2012 | 657

http://www.wormbase.org/resources/person/WBPerson2126#01--10
http://www.wormbase.org/resources/person/WBPerson2126#01--10
http://www.wormbase.org/resources/person/WBPerson533#01--10
http://www.wormbase.org/resources/person/WBPerson533#01--10
http://www.wormbase.org/resources/person/WBPerson36?query=baillie#01--10
http://www.wormbase.org/resources/person/WBPerson36?query=baillie#01--10
http://www.wormbase.org/db/get?name=rol-3;class=Gene
http://www.wormbase.org/db/get?name=bcc-1;class=Gene
http://www.wormbase.org/db/get?name=rol-3;class=Gene
http://www.wormbase.org/db/get?name=rol-3;class=Gene
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
mailto:marvolauk@gmail.com


mapping methods and is therefore a suitable method for identifying
novel mutations generated in suppressor screens.

The creation of genomic lesions suitable for high-resolution map-
ping with aCGH requires the use of a mutagen capable of creating small
deletions. The generation of single-gene deletion mutations (also known
as knockout mutations) is routinely performed in C. elegans (Barstead
and Moerman 2006; Flibotte et al. 2010; Gengyo-Ando and Mitani
2000; Moerman and Barstead 2008). UV-TMP is the mutagen of choice
for generating knockout mutations as it has been shown to generate
a high frequency of deletions with an average detectable size of 10 kb,
in addition to a significant number of small indels (Flibotte et al. 2010;
Gengyo-Ando and Mitani 2000; Kage-Nakadai et al. 2012; Liu et al.
1999; Yandell et al. 1994).

Here we describe the use of a UV-TMP mutagenesis screen for the
generation of suppressors of a mutation in the essential receptor
tyrosine kinase (RTK), rol-3. We then use aCGH to rapidly map the
lesions. In all cases, we detect the suppressive lesion, defining two
novel loci that suppress rol-3–associated lethality.

MATERIALS AND METHODS

Strains and genetics
Maintenance and handling of C. elegans were performed as previously
described (Brenner 1974). Worms were cultured at 20�, unless other-
wise stated. All strains are derivatives from Bristol N2 wild-type ani-
mals. Strains used were Bristol N2 wild-type, rol-3(s1040), sDp31(s3067),
sDp32(s3068), sDp33(s3069), sDp34(s3071), sDp35(s3074), sDf149(s3072),
rol-3(s1040); sEx2693, bcc-1(tm3821).

Transgenic arrays
sEx2693 is a transgenic array comprising the fosmid WRM0262cC02,
which contains the genomic region of T06D8.1/srap-1.

UV-TMP mutagenesis and suppressor screening
The suppressor screen strategy was modified from that previously
reported (Barbazuk et al. 1994). The mutagenesis method used for this
rol-3 suppressor screen was modified from (Flibotte et al. 2010). A
mixed stage population of BC3129, rol-3(s1040), was harvested at the
permissive temperature of 15�, and the worm suspension was incubated
in 2 mg/ml TMP in the dark for 1 hr. Worms were then exposed to
90 sec of UV irradiation at 340 microwatts per square centimeter. After
treatment, 50 gravid adults were transferred to 10 cm plates seeded with
OP50 and cultured at the permissive temperature (15�) for one gener-
ation (7–10 days) before being shifted to the restrictive temperature of
20�. Animals were grown for a further 7–10 days. A single animal was
isolated from each plate and maintained at the restrictive temperature
(20�) to ensure that the suppressor mutation was retained. We estimate
that at least 500,000 chromosomes were screened in this analysis.

aCGH data analysis of UV-TMP suppressors
aCGH was performed using a whole-genome C. elegans array de-
signed with overlapping 50-mer probes targeting annotated exons
and micro-RNAs (Maydan et al. 2007). aCGH sample preparation,
hybridization, and analysis were done as previously described
(Maydanet al. 2007). Copy number aberrations were detected by
visual inspection using the SignalMap browser software (Roche
Nimblegen Inc., Madison, WI).

Molecular identification of deficiency breakpoints
in s3071

PCR amplification across the region of the breakpoint in the strain
rol-3(s1040), sDf149(s3072) was performed using the appropriate
nested primers (available upon request), and purified products
were sent for sequencing at Macrogen (Macrogen, Seoul, Korea).

RNAi analysis

Generation of dsRNA: RNA interference (RNAi) experiments were
performed by injection as previously described (Sonnichsen et al. 2005).

RNAi injection against deletion and duplication suppressor gene
candidates: Annealed dsRNA targeting M7.7, bcc-1, T06D8.1,
T06D8.5, and F37H8.5 was injected directly into the syncytial gonad
of mutant strains to be tested. Injected animals were recovered for
16 hr at 20� in order to lay any eggs present in utero prior to injection
and were then transferred individually onto fresh NGM agar plates
maintained at restrictive temperature (20�). Evidence of suppression
or disruption of suppression was assessed after 7–10 days of growth.

Suppression of rol-3(s1040) lethality with transgenic
arrays containing srap-1

DNA prepared from the fosmid clonesWRM0626cC02, WRM0625bF10,
and WRM0635dC04 was injected directly into young adult rol-3
(s1040) animals raised at permissive temperature of 15�. Fosmid
DNA was injected at a concentration of 10 ng/ml with 80 ng/ml
dpy-5 carrier DNA. Injected animals were maintained at the restric-
tive temperature of 20� to select for suppression. Suppression was
assayed by screening for viable progeny after 7–10 days of growth.

Microscopy and image processing
Analysis of mutant and GFP transgenic animals was performed using
a ZEISS Stemi SVC11 dissecting microscope with GFP filters and
a Zeiss Axioskop with 10·/0.25, 40·/0.65 and 60·/0.85 objective
lenses. All pictures were taken using QCapture software (QImaging)
with a QImaging digital camera mounted on the Zeiss Axioskop.
Images were processed using Photoshop CS4 (Adobe).

n Table 1 aCGH mapping data for duplications and deletions in the UV-TMP–derived suppressor strains

Designation Allele Chr Left (bp) Right (bp) Size (kb) Type % Suppression

sDp31 s3067 II 10054547 15242654 5188 dup ND
V 22351 607014 585 dup ND

sDp32 s3068 II 10905657 11229193 324 dup ND
sDp33 s3069 II 10905657 11229193 324 dup 95.6 (n = 168)
- s3070 ND ND ND ND ND ND
sDp34 s3071 II 10643051 11289830 647 dup ND
sDf149 s3072 IV 11087657 11092473 5 del 41.5 (n = 260)
– s3073 ND ND ND ND ND ND
sDp35 s3074 II 11187892 11983055 795 dup 90.1 (n = 177)

bp, base pair coordinate; Chr, chromosome, del, deletion; dup, duplication; ND, not determined.

658 | M. R. Jones, A. M. Rose, and D. L. Baillie

http://www.wormbase.org/db/get?name=rol-3;class=Gene
http://www.wormbase.org/db/get?name=rol-3;class=Gene
http://www.wormbase.org/db/get?name=N2;class=Strain
http://www.wormbase.org/db/get?name=N2;class=Strain
http://www.wormbase.org/db/get?name=rol-3;class=Gene
http://www.wormbase.org/db/get?name=s1040;class=Variation
http://www.wormbase.org/db/get?name=sDp31;class=Rearrangement
http://www.wormbase.org/db/get?name=s3067;class=Variation
http://www.wormbase.org/db/get?name=sDp32;class=Rearrangement
http://www.wormbase.org/db/get?name=s3068;class=Variation
http://www.wormbase.org/db/get?name=sDp33;class=Rearrangement
http://www.wormbase.org/db/get?name=s3069;class=Variation
http://www.wormbase.org/db/get?name=sDp34;class=Rearrangement
http://www.wormbase.org/db/get?name=s3071;class=Variation
http://www.wormbase.org/db/get?name=sDp35;class=Rearrangement
http://www.wormbase.org/db/get?name=s3074;class=Variation
http://www.wormbase.org/db/get?name=sDf149;class=Rearrangement
http://www.wormbase.org/db/get?name=s3072;class=Variation
http://www.wormbase.org/db/get?name=rol-3;class=Gene
http://www.wormbase.org/db/get?name=s1040;class=Variation
http://www.wormbase.org/db/get?name=bcc-1;class=Gene
http://www.wormbase.org/db/get?name=tm3821;class=Variation
http://www.wormbase.org/db/get?name=T06D8.1;class=Gene
http://www.wormbase.org/db/get?name=rol-3;class=Gene
http://www.wormbase.org/db/get?name=rol-3;class=Gene
http://www.wormbase.org/db/get?name=s1040;class=Variation
http://www.wormbase.org/db/get?name=OP50;class=Strain
http://www.wormbase.org/db/get?name=rol-3;class=Gene
http://www.wormbase.org/db/get?name=s1040;class=Variation
http://www.wormbase.org/db/get?name=sDf149;class=Rearrangement
http://www.wormbase.org/db/get?name=s3072;class=Variation
http://www.wormbase.org/db/get?name=M7.7;class=Gene
http://www.wormbase.org/db/get?name=bcc-1;class=Gene
http://www.wormbase.org/db/get?name=T06D8.1;class=Gene
http://www.wormbase.org/db/get?name=T06D8.5;class=Gene
http://www.wormbase.org/db/get?name=F37H8.5;class=Gene
http://www.wormbase.org/db/get?name=WRM0626cC02;class=Sequence
http://www.wormbase.org/db/get?name=WRM0625bF10;class=Sequence
http://www.wormbase.org/db/get?name=WRM0635dC04;class=Sequence
http://www.wormbase.org/db/get?name=rol-3;class=Gene
http://www.wormbase.org/db/get?name=s1040;class=Variation
http://www.wormbase.org/db/get?name=dpy-5;class=Gene


RESULTS AND DISCUSSION

Suppressors of rol-3 generated by UV-TMP harbor
deletions and duplications that can be detected
using aCGH
The fully penetrant, temperature-sensitive lethality of a hypomorphic
mutation in rol-3(s1040) animals (Johnsen and Baillie 1991) lends
itself to the isolation of extragenic suppressors. Previously, eight sup-
pressor mutations defining the two loci srl-1 and srl-2 (suppressor of

rol-3 lethality) were generated (Barbazuk et al. 1994). Using traditional
genetic methods, these suppressors were mapped to chromosomes II
and III, respectively. However, further mapping was complicated by
the lack of obvious phenotypes in the single mutant animals and
a complex inter se complementation between specific alleles of srl-1
and srl-2 (Barbazuk et al. 1994).

Given the relative ease of screening for suppressors of rol-3, we
undertook to generate de novo suppressor mutations that might be
suitable for detection by aCGH. Approximately 500,000 UV-TMP–

Figure 1 bcc-1 is a suppressor of rol-3. (A) Log2-normalized aCGH data for chromosome IV in the strain s3072. (B) An expansion of the region
containing a potential deletion. Gene models are shown below the CGH data. (C) Schematic showing the confirmed structure of sDf149. The
position of the deletion allele tm3821 is indicated. (D) Protein structure of BCC-1 and the predicted structure of the BCC-1 truncation in tm3821.
KH, K homology domain; S-rich, serine-rich region; SAM, sterile alpha motif.
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treated genomes were screened, yielding eight suppressors that we
have designated s3067–s3074 (Table 1). Although the temperature-
dependent larval lethality associated with the s1040 allele is suppressed
in these strains, animals still exhibit the characteristic adult left-
handed rolling (LRol) phenotype (data not shown).

We analyzed six of the eight suppressor strains using aCGH. Of
these, only s3072 contains an obvious deletion, located on chromo-
some IV (Figure 1, A and B). PCR and sequencing of the deleted
region in s3072 animals confirmed the presence of a 6266 bp deletion
and 1064 bp insertion from an intergenic region located on chromo-
some II (Figure 1C). This indel, which we have designated sDf149, is
a deficiency that disrupts two predicted genes. sDf149 deletes the
complete coding region of the predicted ORF M7.7 and the majority
of the gene bcc-1, including the ATG start site. M7.7 is an uncharac-

terized and poorly conserved putative protein kinase. bcc-1 is an
ortholog of the mRNA stabilizing protein Bicaudal-C (Eckmann
et al. 2002).

Disruption of bcc-1 is responsible for suppression of
rol-3 lethality
To determine which of the two genes disrupted by sDf149 is respon-
sible for the suppression of rol-3, we attempted to phenocopy the
suppression using RNAi. rol-3(s1040) animals are 100% inviable when
raised at the restrictive temperature of 20�, arresting at an early larval
stage of development (Table 2) (Johnsen and Baillie 1991). To assess
suppression by RNAi, rol-3(s1040) animals raised at the permissive
temperature of 15� were injected with dsRNA targeting either M7.7 or
bcc-1. These animals were then cultured at the restrictive temperature
of 20�, and suppression was assayed by the presence of adults in the
progeny of the injected animals. Injection of rol-3(s1040) adults with
dsRNA targeting M7.7 or a mock injection buffer containing no
dsRNA did not produce any viable progeny. Injection of dsRNA
targeting bcc-1, however, resulted in approximately 10% of the prog-
eny developing to the adult stage (Table 2). This result demonstrates
that the suppression is due specifically to disruption of bcc-1. To
provide further support for this result, we obtained a mutant allele
of bcc-1, tm3821, in which a 517 bp region comprising exon 6 is
deleted (Figure 1B). This deletion should lead to truncation of the
predicted protein by creating a premature stop codon (Figure 1D).

n Table 2 RNAi of suppressor gene candidates in rol-3(s1040)
animals maintained at 20�

RNAi Target

Phenotype Mocka bcc-1 M7.7 Phenotype
Lvl .500 87 .300 Lvl
Adult 0 8 0 adult
% Suppression 0 9 0 % Suppression

The progeny of 3–10 injected worms was scored.
a
A placebo of injection buffer containing no dsRNA was injected as a negative
control.

Figure 2 Duplications detected by aCGH in rol-3(s1040) suppressor strains. (A) Log2-normalized aCGH data for chromosomes II and V in the
strain s3069. This strain contains a complex arrangement of duplications covering Chr. II and a single 0.6 Mb duplication of Chr. V. Solid lines
above the array data highlight the extent of the duplicated regions. A region containing potential multiple duplications is indicated (asterisk). (B)
Log2-normalized aCGH data for chromosome II in the remaining four suppressor strains found to contain duplications.
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rol-3(s1040) animals that are also mutant for bcc-1(tm3821) are viable
when grown at the restrictive temperature of 20� (41.5%) (Table 1).
Together, these data establish that disruption of bcc-1 alone is suffi-
cient to suppress rol-3 associated lethality.

Five of the suppressors characterized by aCGH contain
duplications of chromosome II
The genomes of the five remaining suppressors analyzed with aCGH
(s3067, s3068, s3069, s3071, and s3074) do not contain any obvious
deletions. However, all genomes contain relatively large duplications
of chromosome II. We have designated these duplications sDp31–
sDp35 (Figure 2 and Table 1). In addition to several duplicated regions
of chromosome II, the suppressor strain s3067 contains a duplication
of 0.6 Mb of DNA from the left end of chromosome V (Figure 2A and
Table 1). The duplications sDp32 and sDp33 appear to be identical in

size; however, based on the probe data, the duplication is present at
a higher copy number in sDp32 (Figure 2B).

Duplications of the predicted mucin T06D8.1 suppress
rol-3 lethality
The prevalence of duplications in the suppressed animals suggested
that their insertion into the genome might have disrupted the function
of a specific gene, giving rise to the suppression. Alternatively, extra
copies of a gene, or genes, present in the duplicated regions might be
responsible for the suppression. That the five duplications identified
by aCGH are not randomly distributed across the genome but overlap
the same region of chromosome II suggested that the latter hypothesis
was more likely. The genomic region common to the duplications is
around 40 kb in size and contains only three complete ORFs:
T06D8.1, a predicted mucin; T06D8.3, a predicted lipid phosphate

Figure 3 Overexpression of the predicted mucin SRAP-1 (T06D8.1) suppresses rol-3 lethality. (A) A schematic showing the region common to all
duplication-containing suppressor strains. (B) Fosmids used for transgenic suppression experiments are shown below the gene models. (C) The
predicted structure of SRAP-1. Duf (Mult), multiple copies of a domain of unknown function; PAN_AP, PAN Apple domain; PAN_1, PAN1 domain;
sp, signal sequence.

n Table 3 Fosmids used for transgenic suppression of rol-3(s1040) animals maintained at 20�

Fosmid Genomic Region Gene Target rol-3(s1040) Viability at 20�

WRM0613dF11 II: 11190820–11222798 T06D8.1 Yes
WRM0625bF10 II: 11169946–11207249 F37H8.5 No
WRM0635dC04 II: 11217009–11252193 T06D8.3 No
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phosphatase of the PAP2 family; and F37H8.5, the C. elegans homolog
of gamma-interferon–inducible lysosomal thiol reductase (Figure 3A).

To determine whether one of the three duplicated genes is
responsible for the suppression, we attempted to increase the copy
number of individual candidate genes by introducing gene-specific
fosmids as transgenic arrays (Figure 3B). We injected DNA directly
into rol-3(s1040) animals raised in the permissive temperature of 15�
and screened the progeny of these animals for viability at the restric-
tive temperature of 20�. Using this approach, we found that only
a fosmid that encompasses the complete coding region of T06D8.1
(WRM0626cC02) is capable of rescuing rol-3–associated lethality
(sEx2693). Transgenic arrays composed of fosmids containing either
of the adjacent genes, T06D8.3 or F37H8.5, were unable to confer
suppression (Figure 3B and Table 3).

It is likely that overexpression of T06D8.1 mediates the suppres-
sion of rol-3. To provide further support for this finding, we surmised
that knockdown of T06D8.1 by RNAi in suppressed rol-3 mutant
strains would abrogate suppression, leading to targeted lethality. In-
jection of dsRNA targeting T06D8.1 in wild-type animals does not
result in lethality (Table 4. However, RNAi targeting T06D8.1 in
suppressor strains containing the duplications sDp33 and sDp35 com-
pletely abolishes suppression (Table 4). This effect is specific to
T06D8.1, because introduction of dsRNA targeting the two other
candidate genes, T06D8.3 and F37H8.5, does not disrupt the suppres-
sion. Together, these data demonstrate that suppression of rol-3 in the
duplication-containing strains is due specifically to the presence of
extra copies of T06D8.1. Furthermore, abrogation of the suppression
by RNAi knockdown reveals that the suppression is due to overex-
pression of T06D8.1 (Table 4). T06D8.1 encodes a predicted mucin
similar to the serine-rich adhesion molecule SraP from Staphylococcus
aureus (McKay et al. 2003). We have renamed this gene srap-1 (for
serine rich adhesion protein-like).

CONCLUSIONS
This study describes a straightforward approach for the rapid
identification of de novo suppressor mutations. Using a deletion-bi-
ased mutagenesis screen combined with high-resolution aCGH map-
ping, we have identified two novel loci that suppress the lethality
associated with a temperature-sensitive mutation of the essential
RTK rol-3. These two loci represent the first suppressors of this gene
to be identified at the molecular level. The approach we have described
does not require complex sample preparation or specialized informat-
ics analysis beyond the scope of standard laboratory techniques.
Additionally, and perhaps most significantly, this approach can be
used to rapidly characterize copy number suppressors to a high res-
olution. This is something that is not easily achieved using alternative
approaches, such as WGS. The use of aCGH opens up the possibility
of tailoring suppressor screens for the isolation of dominant suppres-
sors that can be quickly assayed for the presence of duplications.
Investigations of this type will facilitate a better understanding of

the consequences of altering expression levels of genes that function
in important biological pathways.
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