
Research Article
Optimization-Based Ensemble Feature Selection Algorithm and
Deep Learning Classifier for Parkinson’s Disease

B. Sabeena ,1 S. Sivakumari,1 and Dawit Mamru Teressa 2

1Department of Computer Science and Engineering, Avinashilingam Institute for Home Science and Education for Women,
School of Engineering, Coimbatore, India
2Department of Chemical Engineering, College of Biological and Chemical Engineering,
Addis Ababa Science and Technology University, Addis Ababa, Ethiopia

Correspondence should be addressed to B. Sabeena; sabeena.bheeman@gmail.com and Dawit Mamru Teressa; dawit.mamiru@
aastustudent.edu.et

Received 5 January 2022; Revised 4 February 2022; Accepted 22 February 2022; Published 13 April 2022

Academic Editor: Enas Abdulhay

Copyright © 2022 B. Sabeena et al. )is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

PD (Parkinson’s Disease) is a severe malady that is painful and incurable, affecting older human beings. Identifying PD early in a
precise manner is critical for the lengthened survival of patients, where DMTs (data mining techniques) and MLTs (machine
learning techniques) can be advantageous. Studies have examined DMTs for their accuracy using Parkinson’s dataset and
analyzing feature relevance. Recent studies have used FMBOAs for feature selections and relevance analyses, where the selection of
features aims to find the optimal subset of features for classification tasks and combine the learning of FMBOAs. EFSs (ensemble
feature selections) are viable solutions for combining the benefits of multiple algorithms while balancing their drawbacks. )is
work uses OBEFSs (optimization-based ensemble feature selections) to select appropriate features based on agreements. En-
sembles have the ability to combine results from multiple feature selection approaches, including FMBOAs, LFCSAs (Lévy flight
cuckoo search algorithms), and AFAs (adaptive firefly algorithms).)ese approaches select optimized feature subsets, resulting in
three feature subsets, which are subsequently matched for correlations by ensembles. )e optimum features are generated by
OBEFSs the trained on FCBi-LSTMs (fuzzy convolution bi-directional long short-term memories) for classifications. )is work’s
suggested model uses the UCI (University of California-Irvine) learning repository, and the methods are evaluated using LOPO-
CVs (Leave-One-Person-Out-Cross Validations) in terms of accuracies, F-measure values, and MCCs (Matthews
correlation coefficients).

1. Introduction

Parkinson’s is a neurologic problem that involves tremors,
rigidity, and problems moving, balancing, and coordinating.
)e signs of the disease normally appear slowly and continue
to worsen. PD is a neurological malady classified as a motor
system dysfunction. )e patient’s activities deteriorate with
PD as it progresses. Patients are affected in their funda-
mental bodily systems, including breathing, balance,
movements, and heart functioning [1], where, at initial
stages, their speech flow gets hindered.)e early diagnosis of
PD leads to a longer life of patients, and the diagnostics
require high precision and robust health informatics tools.
Such solutions aim at assisting clinicians [2–4] who detect

PD’s severity using a range of sensors. )is research work
uses different speech signal processing methodologies to
obtain PD’s clinically relevant characteristics, which are then
processed using learning algorithms to provide reliable
detections of PDs.

)e performances of computational algorithms are in-
extricably linked to the quality of input data. )e manual
identification of speeches or voices in a complex and in-
tricate task can be executed efficiently by MLTs. Important
features from voice signals can be identified by computer-
based techniques, which may be one of the three categories,
namely supervised, unsupervised, or semisupervised, based
on the labeling of data. Filtering, wrapping, and embedding
are the examples of supervised feature selection approaches.
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Filtering strategies choose features that are unrelated to
categorizations, while wrappers use the projected accuracies
of previously determined values by algorithms for feature
estimations. Embedded approaches like the filter models
begin by selecting multiple potential feature subsets with
specific cardinalities using statistical criteria, where sub-
groups with highest classification accuracies are finally se-
lected. Unsupervised feature selections work on unlabeled
data, however, evaluating the relevance of features is difficult
for them. Using the labeled and unlabeled data and semi-
supervised feature selections can evaluate feature relevance.

Computational methods based on biological evolutions
provide a stronger basis for solving problems or taking
decisions [5, 6]. EFSs boost the stability of feature selections
as they take advantage of single approaches while over-
coming their flaws.)e analysis of features from datasets can
be based on individual assessments or by the evaluation of
subsets [7, 8]. Individual assessments create a rank of
characteristics based on relevance, while alternative ap-
proaches employ search strategies to generate a series of
feature subsets. )ese subsets are assessed iteratively using
optimality criteria until they arrive at a final subset of se-
lected characteristics [9]. )is work’s OBEFS framework
guides the construction of EFSs that combine the benefits of
several feature selection methods, avoid biases, and cover up
their drawbacks.

)e hierarchical layers of DNNs (deep neural networks),
which are DLTs, manage to generate deep abstract repre-
sentations of input features in applications. DLTs have been
exploited in many applications, including speech recogni-
tion, image categorization, medication development, and
genetic research [10]. Researchers have used DNNs for PD
categorizations mainly because of their effectiveness [11, 12].
DNNs are very helpful classifiers in the case of PDs as they
simulate complex and nonlinear data linkages. Previous
research on PD classifications used single features like EEG
data [11] and sensor activities [12] as inputs for CNNs
(convolution neural networks), where the usage of unique
parallel layers for classifications has not been tried.)e study
in [13] proliferated voices using more voice recordings of
individuals in training and testing procedures with CVs
(cross-validations), resulting in biased performance evalu-
ations. Since the data had voice recordings of healthy per-
sons and PD patients, LOPO-CVs were used to assess the
performances of the proposed framework. LOPO-CVs re-
moved examples from individuals in iterations in test sets
while using other instances in training.

)e suggested OBEFSs framework of this work selects
features based on agreements. Instead of employing single
feature selection approaches, the ensembles of feature se-
lection methods aim to integrate numerous feature selection
methods, such as FMBOAs, LFCSAs, and AFAs, whereas in
OBEFSs, optimum features are utilized to train FCBi-LSTM
classifiers. )e proposed technique was trained using
datasets from the UCI machine learning repositories, while
its performance was validated using LOPO-CVs.)is work’s
suggested model uses UCI learning repositories, and the
methods are evaluated using LOPO-CVs in terms of ac-
curacies, F-measure values, and MCCs.

2. Literature Review

In this part, we will outline some current works on PD
classification that make use of machine learning techniques
and discuss contemporary deep learning methods in PD
classification. To evaluate speech recordings for PD classi-
fication, Alqahtani et al. [14] proposed classifications based
on NNges (non-nested generalized exemplars), which, in
spite of their capabilities, were not examined thoroughly.
)e study’s experiments categorized healthy and PD using
NNges and the algorithm’s optimized parameters. Fur-
thermore, the data was balanced using the synthetic mi-
nority oversampling technique (SMOTE) method. Finally,
using the balanced data, NNge and ensemble algorithms,
notably AdaBoostM1, were developed.

Using the sets of vocal data, Gunduz [15] used the dual
frameworks of CNNs for identifying PDs, where different
feature sets were generated but merged together. )eir first
architecture combined several feature sets before feeding
them as inputs to 9-layered CNNs, while the second part fed
feature set information directly to convolution layers in
parallel. Hence, each parallel branch’s deep features were
obtained before their merger into layers. )eir second
showed highly promising results in tests as they learned deep
features utilizing parallel convolutions. )e extracted deep
features were efficient in increasing the discriminative
powers of classifiers in addition to differentiating patients
with PDs from healthy people.

PDs were classified by Li et al. [16] by combining CART
and ensemble learning. )e study used CART to iteratively
identify optimal training speech samples with high levels of
differentiation. )e study used ensembles, including RFs
(random forests), SVMs (support vector machines), and
ELMs (extreme learning machines) for learning optimal
training data. )e study classified test data using trained
ensemble-learning systems. )e study found that CARTand
RF combinations were stable when compared to other
strategies and also improved PD predictions with speech
data categorizations. Caliskan et al. [17] projected the di-
agnosis of PDs using speech impairments, the first indica-
tion of the disease. )ey used DNNs with stacked
autoencoders and the softmax function for classifications.
)eir simulation results across two databases demonstrated
the efficiency of DNN classifiers in comparison with other
classification techniques.

For quickly detecting PDs, Cai et al. [18] proposed the
usage of enhanced FKNNs (fuzzy K-nearest neighbors)
combined with CBFOs (chaotic bacterial foraging optimi-
zations) with Gauss mutations on voices data. )eir CBFO-
FKNN was an evolutionary instance-based learning meth-
odology, where FKNN’s parameters were tuned effectively
by CBFOs. )e study evaluated their suggested approach
exhaustively on PD datasets in terms of classification ac-
curacies, sensitivities, specificities, and AUCs (area under
the receiver operating characteristic curves).)e study aided
physicians in making better clinical diagnostic judgments.

Castro et al. [19] classified PDs on UCI machine learning
repository datasets with ANNs using MLPs (multilayer
perceptrons). )eir collections included voice recordings of
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patients with PDs along with control groups. )e study used
several networks and trained 10 to 6000 neurons, which were
increased ten folds in the hidden layers. )eir analyses of
speech-related characteristics by ANNs could be used to
assess patients’ impacts of PDs. MLTs can identify other
neurological disorders when biological data is made avail-
able. Disorders were classified by Abdurrahman and Sin-
tawati, [20] where well-known speech characteristics were
used in PD research, including jitters, shimmers, basic
frequency parameters, and harmonicity parameters, and
they assessed PDs using RPDEs (recurrence period density
entropies), DFAs (detrended fluctuation analyses), and PPEs
(pitch period entropies). PDs were classified using the
XGBoost algorithm, which used identified baseline features,
followed by feature selections executed from feature im-
portance plots to enhance the model’s performance. )e
resulting locShimmer features were eliminated from the
model, and the efficacy of features was improved by
XGBoost’s assessments of feature importance to increase
classification accuracies.

Karabayir et al. [21] examined PD data with multiple
MLTs, including LGBs (light gradient boosts), EGBs (ex-
treme gradient boosts), RFs, SVMs, KNNs, least absolute
shrinkages, selection operator regressions, and LRs (logistic
regressions). )e study also conducted variable significance
analyses to find important factors in people diagnosed with
PDs. )e study found that LGBs outperformed other MLTs
in benchmarks and could be utilized to screen huge patient
groups for PDs at low costs. Patra et al. [22] employed MLTs
to assess the voices of patient datasets and identify PDs. )e
study’s base classifiers were DTs (decision trees), LRs, and
KNNs, which had their performances compared to en-
sembles like bagging, RFs, and boosts. Furthermore, the
most important traits associated with classifications for PDs
were discovered and prioritized, depending on feature im-
portance with the aim of differentiating PD-affected patients
by detecting dysphonia.

Parisi et al. [23] proposed the use of hybrid AIs (artificial
intelligence) for examining the cases of PDs. )e study used
UCI’s databases, where the dysphonic values of 68 patients’
clinical ratings were considered for processing. )e study’s
feature selections were based on MLP weights while ranking
input features, where physiological and pathological pat-
terns were given different weight values. )is strategy re-
duced examinable features from 27 to 20, thus effectively
reducing the dimensions for the learning of LSVMs (La-
grangian support vector machines). )e proposed hybrid
MLP-LSVMs performed well in benchmarks against the
existing and previously proposed schemes and could be used
in clinical environments for the detection of PDs.

Datasets with rich features were examined by Hasan and
Hasan [24] using ANOVA (Analysis of Variance) F-score
values to extract the top 50 features. Several MLTs were
applied, and their results were compared to prior studies.
)eir experiments found that feeding select characteristics to
RFs resulted in the greatest accuracy scores. )eir use of
ANOVA for feature extraction successfully retrieved im-
portant characteristics that distinguish PD patients from
healthy persons while improving classification accuracy

scores. Qasim et al. [25] suggested hybrid feature selection
approaches for processing unbalanced PD datasets. SOMTE
approach was used in the study to balance the dataset.
Subsequently, RFEs (recursive feature eliminations) and
PCAs (principal component analyses) were used to remove
contradictions found in the dataset’s features and reduce the
processing times of PCAs.)eir classifiers included bagging,
KNNs, MLPs, and SVMs that worked on the acoustic re-
cordings of PDs along with the patient’s individual char-
acteristics. )eir idea of using SMOLTE with RFEs and
PCAs in preprocessing datasets was also compared with
other identifiers for PDs and general medical disorders
found in people. )e study was an asset to healthcare
organizations.

Even though the first system integrates distinct selected
features [15] prior to feeding them to a 9-layered CNN, the
second model feeds feature sets to concurrent input layers
that are directly connected to convolution layers. Before
integrating deep features from each parallel connection in
the merge layer, deep features from each parallel branch are
extracted simultaneously. )e suggested models are trained
using information from UCI machine learning, and their
results are verified using Leave-One-Person-Out Cross
Validation (LOPO CV). )e F-measure and Matthews
correlation coefficient measure, as well as correctness, are
employed to examine our data because of the imbalanced
class distribution. )is second model appears to be quite
promising, as it is capable of learning feature representations
from each set of features via concurrent convolution layers,
according to experimental data.

3. Proposed Methodology

)is research work proposes a new feature selection and
classification framework for identifying PDs. )is work uses
five major steps, namely, the extraction of features based on
voices, dimensionality reductions using KPCAs (kernel-
based principal component analyses), the usage of proposed
OBEFSs, LFCSAs, AFAs, and FCBi-LSTMs. Subsequently,
the assessments are evaluated using LOPO-CVs. Figure 1
depicts the general flowchart of the proposed system.

3.1. PD Dataset. )e PD dataset encompassed speech
samples used by prior studies to diagnose PDs from UCI’s
machine learning repositories [13]. )e data gathered at
Istanbul University’s Cerrahpasa Faculty of Medicine’s
Department of Neurology comprised 188 PD patients (107
men and 81 women) in the age range of [33, 87] and 64
healthy persons (23 men and 41 women) in [41, 82] age
ranges. )e voices were collected on 44.1 kHz (microphone’s
frequency), and three copies of the vowels of individuals
were collected after doctor’s examinations.

3.2. Feature Extractions. )e dataset had baseline and
temporal frequency features, MFCCs (Mel frequency
cepstral coefficients), WTs (wavelet transforms), TQWTs
(tunable Q-factor wavelet transforms), and vocal fold
features:
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(i) Baseline features: since PDs impede the speech of
patients even in the early stages, speech charac-
teristics were successfully used to evaluate PDs and
track the disease’s developments following me-
dicinal therapies. )e fundamental frequency pa-
rameters (#5), harmonicity parameters (#2), RTDEs
(recurrence time density entropies) (#1), DFAs

(detrended fluctuation analyses) (#1), and PPEs
(#1) have been extensively utilized in characterizing
speech-based PD researches [24, 26] and form the
baseline features [13].

(ii) Time frequency features: intensity parameters (#3),
formant frequencies (#4), and bandwidth (#4) are
the examples of features.

Parkinson’s disease 
Dataset

Dimensionality Reduction

Kernel based Principal Component Analysis (KPCA)

Vocal (Speech) Features extraction 

Baseline features, Time frequency Features, Mel-
Frequency Cepstral Coefficients (MFCC), Wavelet 
Transform, Tunable Q-factor Wavelet Transform 

(TQWT), and Vocal fold features

Experimental results

Parkinson Disease Classification

Fuzzy Convolution Bi-Directional Long Short-Term 
Memory(FCBi-LSTM)

Optimization Based Ensemble Feature Selection (OBEFS)

Fuzzy Monarch Butterfly 
Optimization Algorithm

Levy Flight Cuckoo Search 
Algorithm (LFCSA)

Adaptive Firefly 
Algorithm (AFA)

Correlation based 
Aggregation function

Figure 1: Overall flow of the proposed system.
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(iii) MFCCs: MFCC-based extractions use triangular
overlapped filter banks to combine cepstral analyses
with spectral domain partitions. MFCCs can detect
rapid deterioration in the movements of articula-
tors in PDs like the tongues and lips, which are
directly affected by the disease. )e dataset had 84
characteristics related to MFCCs to identify the PD
effects in the vocal tract (#84), and they were
generated using the mean and standard deviation of
initial 13 MFCCs along with the signal’s log en-
ergies and 1st/2nd order derivatives [13], in addition
to vocal folds.

(iv) WTs: generally, WTs are used to make decisions
about signals and specifically on signals with minor
fluctuations on regional scales. Several studies have
utilized WT features obtained from a speech
sample’s raw fundamental frequencies (F0) to di-
agnose PD. )is work produced 182 WTs charac-
teristics from both approximations and detailed
coefficients, including energies, Shannon’s and log
energy entropies, and Teager-Kaiser energies.

(v) TQWTs: the extraction of features using TQWTs
improves signal qualities by adjusting three pa-
rameters, namely Q-factors (Q), redundancies (r),
and a number of levels (J) based on the signal’s
behaviors. )e oscillations in the time domain
signals are proportional to Q-factors, while J
stands for decomposed layer counts. On decom-
positions, J high-pass filters output J+ 1 sub-bands
and one final low-pass filtered output. Ringing,
controlled by r allows wavelet’s localizations with
respect to time [27]. )is study’s tests yielded 432
TQWT-related characteristics from the dataset
[13].

(vi) Vocal fold features: the effects of noises on vocal
folds were also investigated in this work using
features based on vocal fold vibrations. )e study
extracted the following from the data [13]: glottis
quotients (GQs) (#3), glottal-to-noise excitations
(GNEs) (#6), vocal fold excitation ratios (VFERs)
(#7), and empirical mode decompositions (EMDs).

(vii) Concat features: concat features are the combina-
tion of baseline, vocal fold, and time frequency
features.

3.3. Dimensionality Reduction Using KPCAs. Approaches
based on KPCAs are prominent for dimensionality reduc-
tions. KPCAs consider linear subspaces with reduced di-
mensionalities in the original sound’s feature spaces, where
new sound recordings of PDs show the greatest variance in
features [28]. Assuming ai􏼈 􏼉, i � 1, . . . N is the PD dataset,
where ai represents D-dimensional sound recorded feature
vectors, they have to be projected intoM-dimensional sound
reordered feature subspaces that are lesser than D, and
reduced feature vectors of sound recordings are identified.
)ese reduced dimensional feature sets are used by OBEFSs
for selecting relevant features.

3.4. Feature Selections UsingOBEFSs. )e proposed OBEFSs
integrate the normalized results of multiple feature selec-
tions to arrive at quantitative feature sets with ensemble
significances. In the initial phase, the series of feature se-
lectors are created for different outputs, followed by the
aggregations of a single model’s results. )e aggregations of
feature selections are accomplished using correlations or
consensus on feature ranks or counting most selected fea-
tures for determining consensus-based feature subsets. )e
proposed OBEFSs generate final consensus ranks by com-
bining feature ranks supplied by single feature selectors:
FMBOAs, LFCSAs, and AFAs.

3.4.1. FMBOAs. )is work uses FMBOAs for the selection of
feature subsets, where the characteristics for samples are
considered based on the effects of feature existences in PDs.
Classifiers then use these selected attributes from samples (m
denotes the number of voice samples). Classifiers forecast
their own class labels, and evaluations are made for ultimate
selections. )e original characteristics are given feature
weights that indicate their significance to classifications, and
features with the highest weights are chosen. MBOs are
migration-based that are built on migration trends, where
fitness and importance of selections are rated. When used
without modifications, FMBOAs show good classification
accuracy results, indicating that they balance their global and
local searches. )e global search components of MBOAs
were tweaked in this study to provide more precise results
and boost effectiveness in locating the right characteristics
before resorting to local searches. Individual butterflies
analyze attributes that interact with one another on local
levels, disseminating information across swarms and
resulting in the system’s growing capabilities [29–31]. )ey
are carried out with the help of two operations, namely
migration operators and adjustments to butterfly operators.

3.4.2. LFCSAs. CSAs (cuckoo search algorithms) are mo-
tivated by the unusual habit of cuckoo species, known as
obligatory interspecific brood parasitism [32].)ese behavioral
patterns are based on the fact that certain animals use suitable
hosts to optimize the selections of characteristics from datasets
to grow their progenies. CSAs avoid parental commitments in
rearing their offspring while limiting the dangers of egg loss
(irrelevant traits) to other species. )e final characteristics are
chosen by placing eggs (features) in a variety of nests. )e
method’s purpose is to replace the present solutions with eggs
(irrelevant features) previously placed in the nest with these
new solutions connected with cuckoo eggs (features). )is
iterative replacement may undoubtedly increase the quality of
the solution over iterations, finally leading to a very good
solution of the feature. In particular, CSA is based on three
idealized rules [33, 34], which are as follows:

(1) Cuckoos lay the eggs (features) in nests randomly
(accuracies).

(2) Nests with the best eggs (quality of features) are
considered for subsequent generations for producing
better solutions (features).
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(3 )e host nest counts are set with probability
prba ∈ [0, 1]. Hosts can find alien eggs (feature), a
rule approximated by new nest replacements prba of
the n available host nests. LFCSA algorithm initially
begins with the N host. (1) gives the initial values of
the kth component of the jth nest.

f
k
j(0) � μ. upk

j − lowk
j􏼐 􏼑 + lowk

j , (1)

where upk
j is the kth feature’s upper bound, lowk

j is the kth
feature’s lower bound, and µ is the uniform random variable
in the range (0, 1). )ese parameters are adjusted for en-
suring the feature values that exist with their feature spaces.
)e feature (egg), say i, randomly selected in the iteration,
results in the solutionft+1

i .)e algorithm uses Lévy flights in
place of random walks for efficient random searches. )ese
flights, similar to random walks, are characterized by step
sizes, following probability distributions with isotropic and
random orientations. Lévy flights are depicted by

f
t+1
i � f

t
i + α⊕ levy(λ). (2)

)e superscript t denotes the current generation, the
symbol ⊕ denotes entry-wise multiplication, and α> 0 de-
notes the step size. )is step size specifies how far a particle
(feature) may move in a certain number of iterations using a
random walk. )e Lévy distribution modulates the transi-
tion probability of the Lévy flights in

levy(λ)∼g
− λ

, (1< λ≤ 3), (3)

)eproduction of random numbers with Lévy flights has
two basic phases from a computational standpoint, which
are as follows:

To begin, a random direction based on a uniform dis-
tribution is selected.

)en, based on the chosen Lévy distribution, a series of
steps is constructed.

For symmetric distributions, Mantegna’s approach is
employed [34].)ismethod uses an equation to calculate the
factor,

􏽢ϕ �
Γ(1 + 􏽢β).Sin(π.􏽢β/2)

Γ (1 + 􏽢β/2).􏽢β.2􏽢β−1/2􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/β

, (4)

where the Gamma function is denoted by Γ, and since 􏽢β �

3/2 was utilized in a recent study [34], this work used the
same ranges here. By (5), this factor is utilized in Mantegna’s
procedure to compute the step lengths:

ς �
u

|v|
1/β, (5)

where u and v are the zero mean and deviation normal distri-
butions σ2u and σ2v , respectively. σv � 1 and σu follow the Lévy
distribution given by (4). )e step size ζ is then computed using

ς � 0.01ς f − fbest( 􏼁. (6)

)e obtained ς changes the value of dimension x to:
f←f + ζ.Ψ, where Ψ stands for the solution’s random

vector, and the x value lies in the normal distribution in the
range (0, 1). LFCSA approaches identify new solutions
(feature selections) that are fit (accurate) with existing so-
lutions, where new solutions replace older ones on im-
provements. Nests with the worst values are discarded for
further iterations and replaced with randomized new so-
lutions, where replacement rates are based on probabilities
prba, which are tuned for optimality. )us, in iterations,
existing solutions (feature selections) are rated based on
their fitness values (accuracies), and the best solutions
(features) are attained and stored as feature vectors fbest.
Iterations are continued until the defined stopping criteria
are met. LFCSA’s pseudocode is depicted as Algorithm 1.

3.4.3. AFAs. )e firefly algorithm is based on the idealized
behavior of firefly flashing [35]. For the core formulation of
FA, the three rules idealized are as follows:

(i) Because all fireflies are unisex, they will attract each
other regardless of their gender for the best feature
selection from the dataset

(ii) )e brightness (accuracy) of a firefly is related to its
attractiveness, which decreases as the distance be-
tween two fireflies grows

(iii) )e brightness of a firefly is controlled by the ob-
jective function (accuracy)

)e light intensity (In) varies exponentially and
monotonically with distance. Equation (7) is used to explain
it.

In � In0e
− cr

, (7)

where In0 is the initial light intensity and c is the light
absorption coefficient. As a firefly’s attractiveness is pro-
portional to the light intensity seen by neighbor fireflies
(features), define the attractiveness β of a firefly by

β � β0e
− cr2

, (8)

where β0 � 1 is the attractiveness at r� 0.)emovement of a
firefly (feature) “i” is attracted to another more attractive
firefly(feature) “j”, which is determined by

xi � xi + β0e
− cr2

ij xi − xj􏼐 􏼑 + αε. (9)

)e third term is the randomization with the step α,
being drawn from a Gaussian distribution.

FAs generically use (9) for iterative randomizations,
resulting in uniform distributions in the interval [0, 1] range.
)eir step determinations are static/linear and are defined for
unchangeable maximum generations. FAs begin with the
same steps, and their values keep decreasing in iterations. As a
result, it is possible that it will get stuck at the local optimum,
causing premature convergence. Secondly, taking such a large
stride may lead the firefly to miss the best option while it is
still in the area of the firefly during the early phases of the
search. As a result, search performance might be harmed.

)us, (9) implies the benefits of explorations in FAs,
where larger steps result in global optimum convergences.
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For steps with low values, considerable influence occurs on
explorations and convergences of algorithms. )e values
keep declining slowly on more iterations, however, they are
faster in reduced iterations.)ese issues have been overcome
in this study by the usage of self-adaptive steps, where the
firefly’s unique experiences help in selecting the best features
from the data.

Step settings should be used to remedy the difficulties
listed above. )e firefly step should be set to be far away
from the ideal solution. Fireflies between the two are uti-
lized to balance the global and local searches for the best
feature selection from the dataset. As a result, the firefly’s
stride must be concerned with both its previous data and
current circumstances. )is work introduces the firefly’s
history data, which contains the optimal value of the
previous two iterations. Based on the comments mentioned
above and many experiments, the step α of each firefly is
calculated by (10) and (11), respectively. It is discussed as
follows:

hi(t) �
1

������������������������

fpi(t − 1) − fpi(t − 2)􏼐 􏼑
2

+ 1
􏽱 , (10)

αi(t + 1) � 1 −
1

�������������������������

fbest(t) − fi(t)( 􏼁
2

+ hi(t)
2

+ 1
􏽱 , (11)

where hi(t) is the past two iterations’ history data of the ith

firefly. fpi is the fitness value of the best solution of the ith
firefly. fbest is the fitness value of the best solution of
population heretofore found, andfi is the fitness value of the
ith firefly, which reflects the current data. )e firefly’s next
iterations are self-adaptive and are decided by the gap be-
tween the current fitness values and the population’s best
fitness values. As a result, the firefly steps might change with
repetitions, and each firefly’s step is, likewise, changed at the
same time.

(1) Begin
(2) Objective function f(x), x � (x1, . . . .xd)T

(3) Generate initial population of n fireflies
xi(i � 1, . . . .n)

(4) Formulate light intensity In by objective function
f(x)

(5) While (t<MaxGeneration)
(6) Define absorption coefficient c

(7) Evaluate fitness Fi by accuracy of the classifier
(8) For i� 1 to n(n fireflies)
(9) For j� 1 to n(n fireflies)
(10) If (Ij > Ii)

(11) Move firefly i towards j
(12) End if
(13) Vary attractiveness with distance r via exp (−cr2)
(14) Evaluate new selected features solutions and update

light intensity
(15) Update the step of each firefly.)e step is calculated

by (10) and (11).
(16) End for j
(17) End for i
(18) Rank the best features and find the current best

features
(19) End while
(20) Postprocessing the results and visualization
(21) End

3.4.4. Correlation Function. Correlations between the fea-
tures are computed by ensemble feature selectors, where
high similarities between the features award their elimina-
tions. )e features selected using three procedures form
ensemble features, where only ideal feature sets are selected
by majority votes and based on the outputs of individual
feature sets. )e correlation coefficient matrices for the
features selected in the out-ensemble feature selection
outputs are computed using

(1) Begin
(2) Objective function f(f), f � (f1, . . . .fd)T with d � dim(Ω)

(3) Generate initial population of N host nests fi(i � 1, . . . .N)

(4) While (t<MaxGeneration)
(5) Get a cuckoo (say i) randomly by Lévy flights
(6) Evaluate fitness Fi by the accuracy of the classifier
(7) Choose a nest among N (say j) randomly
(8 ) If (Fi >Fj)

(9) Replace j with the new solution
(10) End
(11) A fraction (prba) of worse nest(features in the dataset) are abandoned and new features are built by
(12) Lévy Flights
(13) Keep the best solutions using the accuracy of the feature
(14) End while
(15) Postprocess the results and visualization
(16) End

ALGORITHM 1: Levy flights cuckoo search algorithm.
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correlation coefficient �
N􏽐xy − 􏽐 x( 􏼁 􏽐 y( 􏼁

�����������������������������

N􏽐x
2
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2

􏽨 􏽩 N􏽐y
2

− 􏽐 y( 􏼁
2

􏽨 􏽩

􏽱 ,

(12)

where x and y are the attribute values under consideration,
and N is the total number of instances. )e feature set se-
lected by the correlation-based ensemble feature selector is
given as an input to the classification.

3.5. Classification of PDsUsing FCBi-LSTMs. )is work used
FCBi-LSTMs for the classification of PDs. )e suggested
approach computes fuzzy weight with membership values
that are adjusted for extracting the most relevant features
with respect to PDs. FCBi-LSTMs and CNNs analyze the
selected characteristics from PD datasets [36]. CNNs made
of convolution and pooling layers convolute and pool where
outputs are fed to subsequent convolution layers. CNNs
offer significant advantages in terms of feature extractions as
they use partial filters for convolutions based on their un-
derstanding of biological vision cells’ local perception. )e
convolution layer is separated into many output matrices
using filters to offer a better representation of the selected
features from the PD dataset, with each output matrix
having a size of (Nm+ 1). )e pooling layer of CNN is a
technique for reducing the dimension of a matrix while
keeping the fundamental links between the features. Pooling
layers are average pooling layers with inputs from convo-
lution layers. In the Bi-LSTM data analysis technique, the
output of the last convolution layer is used as an interme-
diate variable [37]. As a result, LSTM does more than just
add a nonlinear element to the input and loop cell trans-
formation. Fuzzy weights are computed using Gaussian
membership functions, where Bi-LSTMs outperform uni-
directional LSTMs as they capture more structural infor-
mation. )e final outputs of Bi-LSTMs are processed by
CNN’s convolution layers for diagnosing PDs. To combine
features processed by CNN and features processed by Bi-
LSTM, multimodal factorized bilinear pooling (MFB) is
utilized.

4. Experimental Results

)is section describes the experimental findings achieved by the
proposed FCBi-LSTM classifier and compares them to ap-
proaches, such as FCLSTM-CNN (fuzzy convolution long
short-termmemory-based convolution neural networks), CNN,
and SVM. Since the samples in the test sets were fewer, LOPO-
CVs’ performance was evaluated using the training set’s
remaining individual instances, as each individual had three
recordings, and the class labels assigned to these recordingswere
used to establish the individual’s class label. )e MIT-BIH
arrhythmia database was used to conduct the investigations on
arrhythmia recognition and classification systems and MATrix
LABoratory R2016a (MATLAB R2016a). )e implementation
has been done using the following system specifications: Intel
(R) Core™i3-4160T CPU@3.10GHz 3.09GHz processor,
4.00GB RAM, Windows 8.1 Pro, 64-bit operating system, and
1TB hard disk.

4.1. Evaluation Metrics. To test the predictability of the
classifiers, evaluation metrics are required. Although accuracy
is a widely used statistic, it might produce deceptive findings
when data has an imbalanced class distribution. Even when
there is a class imbalance, evaluation measures like F-measure
and MCCs may be used to assess how effectively a classifier
can discriminate between distinct classes. Allow the confusion
matrix in Table 1 to represent the numbers of properly and
erroneously categorized occurrences per class for binary
classification. )e letters tp, fp, fn, and tn in the confusion
matrix mean true positive (tp), false positive (fp), false
negative (fn), and true negative (tn), respectively. Precision,
recall, F-measure, accuracy, and error were calculated using
the formulae based on these counts.

Precision �
tp

tp + fp
, (13)

recall �
tp

tp + fn
, (14)

F − measure �
2∗precision∗recall
precision + recall

, (15)

Accuracy �
tp + tn

tp + tn + fp + fn
, (16)

error � 100 − Accuracy. (17)

MCCs, which take into consideration the tp, fp, fn, and
tn counts and are frequently recognized as a balanced
measure that may be employed even if the class distribution
is uneven, are another statistic for evaluating the validity of
binary classifications. MCCs are simply correlation coeffi-
cients ranging from −1 to +1 between the actual and pre-
dicted occurrences. A score of +1 indicates a perfect
prediction, whereas a value of −1 indicates a discrepancy
between the forecast and the actual labeling.

4.2. Results Comparison. Experimental evaluations of clas-
sifiers were executed with three types of features in terms of
accuracy, error, F-measure, and MCC. )e combination of
MFCCs +Wavelets +Concated features with SVM resulted
in the accuracy rate of 88.1294%, although the accuracy rate
of MFCCs +Wavelets +Concated combination was
94.1752% for CNN. FCLSTM-CNN had the accuracy results
of 93.0470%, 93.0854%, 93.1261%, and 95.1557%, respec-
tively, for TQWT+MFCC+Wavelet, TQWT+Wavelet +
Concat, TQWT+MFCC+Concat, and MFCC+Wavelet +
Concat. )e suggested FCBi-WLSTM classifier with
MFCCs +Wavelets +Concated combinations achieved the
highest accuracy rates of 98.7720% (F-measure rate of
98.5010% and 71.400% for MCC) (See Table 2).

Figures 2–5 show the F-measures, accuracies, MCCs,
and errors of feature set combinations, where the
TQWT+MFCC+Wavelet combination of feature sets
yielded higher results of 98.3100 percent, 96.6381 percent,
74.300 percent, and 3.3619 percent for f-measures,
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accuracies, MCCs, and errors, respectively, when compared
to other combinations. Figure 2 compares the F-measure
outcomes of four distinct feature level combinations using
various classifiers. )e proposed FCBi-LSTM with the first
feature level combination achieved a higher F-measure value
of 98.3100%, which was better than SVM, CNN, and
FCLSTM-CNN, which achieved F-measures of 82.9150
percent, 85.8697 percent, and 94.2258 percent, respectively,
at the first feature level combination.

Figure 3 depicts accuracies in the x-axis assessed using
feature-level combinations on classifiers. FCBi-LSTM
achieved 98.772 percent accuracy when compared to SVM,
CNN, and FCLSTM-CNN, which achieved 88.1294 percent,
94.1752 percent, and 95.1557 percent accuracy, respectively,
at the final feature level combination.

Figure 4 depicts error result comparisons of classifiers
with four distinct feature level combinations. According to
Figure 4, FCBi-LSTM results on final feature level

Table 2: Results of classifiers with triple feature (KPCA+OBEFS).

Feature combination F-measure Accuracy Error MCC
SVM classifier (%)
TQWT+MFCC+Wavelet 82.9150 85.1035 14.8965 56.2000
TQWT+MFCC+Concat 80.7960 83.6640 16.3360 54.6000
TQWT+Wavelet +Concat 86.3590 87.4662 12.5338 58.8000
MFCC+Wavelet +Concat 87.4510 88.1294 11.8706 59.7000
CNN classifier (%)
TQWT+MFCC+Wavelet 85.8697 87.5696 12.4304 57.2007
TQWT+MFCC+Concat 90.2315 91.9315 8.0684 61.4600
TQWT+Wavelet +Concat 86.3695 88.0694 11.9306 63.3994
MFCC+Wavelet +Concat 92.4752 94.1752 5.8248 64.5384
FCLSTM-CNN classifier (%)
TQWT+MFCC+Wavelet 94.2258 93.0470 6.9530 67.6669
TQWT+MFCC+Concat 91.5250 93.0854 6.9146 67.7060
TQWT+Wavelet +Concat 93.4200 93.1261 6.8739 65.4457
MFCC+Wavelet +Concat 91.6921 95.1557 4.8443 67.2960
FCBi-LSTM classifier (%)
TQWT+MFCC+Wavelet 98.3100 96.6381 3.3619 74.300
TQWT+MFCC+Concat 96.5900 98.0244 1.9756 72.300
TQWT+Wavelet +Concat 97.5200 97.3457 2.6543 70.300
MFCC+Wavelet +Concat 98.5010 98.7720 1.2280 71.400
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Figure 2: F-measure results of feature level combination vs. classifiers.

Table 1: Confusion matrix for two-class classification.

Actual/predicted as Positive Negative
Positive tp fn
Negative fp tn
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combinations produced reduced error values of 1.2280
percent, whereas SVM, CNN, and FCLSTM-CNN had
higher error values of 11.8706 percent, 5.8248 percent, and
4.8443 percent, respectively, at the final feature level
combination.

Figure 5 compares MCC results of TQWT+MFCC+
Concat feature set, which yields a higher result of 74.30
percent for the proposedmethod, and 56.20 percent, 57.2007
percent, and 67.6669 percent for SVM, CNN, and FCLSTM-
CNN classifiers, respectively (1st feature level combination).
Because feature selection is accomplished using the pro-
posed approach achieves superior MCC outcomes for all
classifiers (OBEFSs).

5. Conclusion and Future Work

PD is the second most prevalent neurological ailment,
causing considerable impairment, lowering the quality of
life, and having no treatment. It is critical to diagnose PD
early to use neuroprotective and early treatment techniques.
In this research, a feature selection is used to present a
multiclass classification challenge for PD analysis. For PD
analysis, OBEFS and FCBi-LSTM are presented. )e pro-
posed OBEFS method is based on a number of algorithms,
including FMBOA, LFCSA, and AFA. To execute OBEFS,
the correlation function is utilized to choose optimum
features from the three feature subsets. )e FCBi-LSTM
classifier is then used for PD diagnosis. It is an effective and
accurate model for properly diagnosing the condition at an
early stage, which might help doctors aid in the cure and
recovery of PD patients. Classification algorithms were
tested with UCI’s machine learning libraries, and their
performance is measured using precision, recall, F-measure,
accuracy, and MCC. )e results were compared to other
existing techniques, and the findings show that the suggested
model’s accuracy is higher than the other current ap-
proaches. Deep learning has a bright future in engineering
and medicine. In terms of future work, the goal is to extend
existing research in novel ways. Different data types can be
sent into the network as inputs at the same time using the
proposed CNN’s parallel convolution layers. It gives us the
chance to utilize the multimodal data in PD classification.
Also, the authors plan to use different deep learning models
in the classification process.

Abbreviations

PD: Parkinson’s Disease
DMTs: Data mining techniques
MLTs: Machine learning techniques
EFSs: Ensemble feature selections
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Figure 4: Error results of feature level combination vs. classifiers.
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Figure 5: MCC results of feature level combination vs. classifiers.
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OBEFSs: Optimization-based ensemble feature
selections

LFCSAs: Lévy Flight Cuckoo Search Algorithms
AFAs: Adaptive firefly algorithms
FCBi-
LSTMs:

Fuzzy convolution bidirectional long short-
term memories

UCI: University of California-Irvine
LOPO-CVs: Leave-One-Person-Out-Cross Validations
MCCs: Matthews correlation coefficients.
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