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Abstract: Gliclazide (GCZ), an antidiabetic medication, has poor solubility and limited oral bioavail-
ability due to substantial first-pass metabolism. Thus, the purpose of the current study was to
optimize and formulate a GCZ nanosuspension (NS) employing the antisolvent precipitation tech-
nique. A three-factor, three-level Box–Behnken design (BBD) was used to examine the impact of the
primary formulation factors (drug concentration, stabilizer, and surfactant %) on particle size. The
optimized NS contains 29.6 mg/mL drug, 0.739% lecithin, and 0.216% sodium dodecyl sulfate (SDS).
Under scanning microscopy, the topography of NS revealed spherical particles. Furthermore, NS had
a much better saturation solubility than the pure material, which resulted in a rapid dissolving rate,
which was attributed to the amorphous structure and smaller particle size of the NS particles. Studies
on intestinal permeability using the in vitro noneverted intestinal sac gut method (duodenum, je-
junum, and ileum) and single-pass intestinal permeability (SPIP) techniques showed that the effective
permeability was also increased by more than 3 fold. In the pharmacokinetic study, the Cmax and
AUC0–t values of NS were approximately 3.35- and 1.9-fold higher than those of the raw medication
and marketed formulation (MF). When compared to plain drug and commercial formulations, the
antidiabetic efficacy of NS demonstrated that it had a significant impact on lowering glucose levels.

Keywords: Box–Behnken design; solubility; antisolvent precipitation; nanosuspension; quality by
design; diabetes formulation

1. Introduction

The rate of dissolution of any active compound with poor water solubility ultimately
determines the rate of absorption and, as a result, oral bioavailability [1]. As per the
Biopharmaceutics Classification System (BCS), the dissolution of drugs belonging to Class II
(low solubility and high permeability) is considered the rate-limiting phase, affecting the
onset of action and intensity of pharmacological effects in vivo [2,3]. A second-generation
sulfonylureas, Gliclazide (GCZ), [1-(3-azabicyclo (3, 3,0) oct-3-yl)-3-(p-tolylsulfonyl) urea]
has transformed the treatment of type 2 diabetes/noninsulin dependent diabetes mellitus
(NIDDM) [4]. It is a potential medication that has significant free-radical-scavenging
activity in vitro and reduces the progression of diabetic retinopathy. GCZ has an uncertain
and delayed absorption rate since it is a Class II medication with poor water solubility
(0.19 mg/mL), along with poor wetting ability by water [5–7], resulting in considerable
intra- and intersubject variability [8]. Because of the poor solubility of the drug from the
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standard formulation across the GIT membrane and substantial first-pass metabolism, the
molecule has a slow absorption rate, making oral delivery difficult [2,9].

Several attempts have been undertaken to augment the solubility and dissolution rate
of GCZ. These include solid dispersions prepared by various methods [10–13], complexa-
tion [14,15], ordered mixtures using water-soluble carriers such as mannitol and lactose [7],
and micelles using cationic and anionic surfactants [5]. It was also reported that GCZ oral
absorption is enhanced when it is suspended in polyethylene glycol 400 filled in soft gelatin
capsules [16]. On the other hand, nanoparticles with chitosan, Eudragits for sustained
release [17,18], floating alginate beads [19], and lipid-based nanoformulations [20] have
been reported. Nanomedicine offers significant benefits in addressing bioavailability and
targeting abilities [21–25]. Modified release tablets were reported to have an absolute
bioavailability of 97% [26]. In situ micronization of GCZ using different stabilizers leads
to quicker and thermodynamically stable dissolving crystals [6,27]. Nanocrystals and
nanosuspensions (NS) were also reported [28,29]. Various studies have reported that GCZ
solubility increases by various mechanisms, resulting in increased wettability with less
particle size and converting the drug to an amorphous state. However, while all these
techniques have certain advantages in terms of solubility, dissolution, drug loading, and
bioavailability, many of them have significant drawbacks, such as the usage of costly spe-
cialist excipients, leakage of drugs, and scalability challenges that make them unsuitable.
Furthermore, no previous research has examined the influence of formulation on drug
absorption and intestinal permeability.

Preparing NS is another well-accepted method for enhancing drug solubility and
dissolving rate in low-water-solubility medicines [30]. Furthermore, NS is effective in
increasing medication bioavailability and decreasing interindividual variability, as well as
fast-fed variability [31,32]. NS is a simple, scalable, and economical method of production.
As a result, due to the significant advantages, converting the medication into NS (also
known as nanocrystals) could be a promising option [33,34].

The present study aims to develop NS by a solvent–antisolvent precipitation method
for improved bioavailability through enhanced drug dissolution. Herein, different stabi-
lizers alone and in combination at different concentrations were explored by the design
of experiments. To produce a stable system, the influence of drug and stabilizer concen-
trations, as well as sonication parameters, were investigated. Infrared spectrophotometry
(FT-IR), Field emission scanning electron microscopy (FESEM), and the Differential Scan-
ning Calorimetry (DSC) were used to examine the optimized formulation. In vitro dissolu-
tion, intestinal permeability, and pharmacokinetic studies were performed. Furthermore,
antidiabetic activity was evaluated in male Wistar rats with normoglycemia.

2. Materials

GCZ was obtained from Yarrow Pharma Pvt. Ltd., Hyderabad, India. Sigma–Aldrich®,
Mumbai, India, provided D-α-tocopherol polyethylene glycol 1000 succinate (TPGS),
poloxamer-188 (pluronic F-68), solutol HS, and lecithin. BASF (Shanghai, China) sup-
plied polyvinyl alcohol (PVA) and hydroxypropyl methylcellulose (HPMC E5). The SR life
sciences of India provided sodium dodecyl sulfate (SDS) and povidone K-30 (PVP K-30).
SD Fine Chem. Ltd. in Mumbai, India provided sucrose and polysorbate (Tween®80).
Acetonitrile (ACN), trifluoroacetic acid (TFAA), and acetone were obtained from Merck,
India. Trehalose and mannitol were purchased from TCI Chemicals in India. Egluna 40
(GCZ) marketed formulation, manufactured by Trinveni, Hyderabad, India. All additional
reagents employed were of pharmaceutical quality, including methanol, ethanol, acetone,
and mannitol.

3. Methods
3.1. Solvent–Antisolvent Precipitation Technique for GCZ NS

The NS was made using the solvent–antisolvent precipitation method, which was
slightly modified from the literature [35]. GCZ was dissolved in acetone (40 mg/mL) to
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form an organic phase (OP). The polymers (SDS 0.25% and lecithin 1% w/v) were added to
distilled water to prepare the anti-solvent phase (AP). In a nutshell, using a syringe, the
organic phase (1 mL) was injected quickly into 10 mL of anti-solvent. (22 needle gauze)
with magnetic stirring at 1000 RPM, and then the mixture was immediately ultrasonicated
(8 s on and 4 s off) with a 35 W amplitude (Sonics & Materials, Inc., Newtown, CT, USA,
Vibracell, 750) in a cold environment. Following ultrasonic treatment, the organic solvent
was completely evaporated for 4 h while stirring continuously at 1000 RPM. The prepared
NS was freeze-dried (Skadi-Europe; Model no: FD5508) for long-term storage. Trehalose
(1% w/v) was added as a cryoprotectant during lyophilization.

3.2. Formulation by Design (FbD) Approach

A systematic examination of the consequences of variables on the final preparation is
desirable. Henceforth, quality by design (QbD), a scientific method with predefined goals,
is used to formulate GCZ-loaded NS. Candidates are encouraged to employ QbD in product
development by drug regulatory agencies such as the US Food and Drug Administration
(USFDA), Therapeutic Goods Administration (TGA), Medical and Healthcare Products
Regulatory Agency, and others. From both industry and academia, this has generated much
attention [36]. The predefined objectives, according to ICH Q8, include prior knowledge of
risk, design of experiments (DoE), and handling of data across the entire product life cycle
(R2). In comparison to traditional methodologies, QbD allows for a greater understanding
of the process while also ensuring product quality at a lower cost [37].

The concept “formulation by design (FbD)” has replaced the word “quality by de-
sign (QbD)” regarding formulation development. Similar to QbD, FbD is similar, except
that instead of focusing on critical material characteristics or attributes (CMAs), critical
formulation attributes (CFAs) are considered.

The FbD process includes creating a quality targeted product profile (QTPP), cate-
gorizing critical process parameters (CPPs), key quality attributes (CQAs), and critical
success factors (CFAs), in addition to risk analysis. To generate a design space, the screening
factors are examined using an experimental design (optimization). The design space, a
multidimensional pattern and interplay of variables, defines the zones that are possible
and not feasible. Furthermore, operating within a design environment is not deemed a
shift by regulatory authorities [38,39].

3.2.1. Defining the QTPP

Setting up the QTPP, commonly referred to as the “goal or objective setting,” is the
first phase in FbD. The QTPP’s definition includes a list of goals and ideal characteristics
that, if attained, guarantee the product’s excellence, security, and efficiency.

3.2.2. CQA Identification

CQAs are traits or attributes that, when maintained within a predetermined range,
guarantee product quality. As a result, the next stage in the FbD-based method is to identify
CQAs.

3.2.3. CFAs and CPP Identification

This step includes identifying potential formulation and process parameters that could
affect the selected CQAs. CFAs are formulation-related factors that influence CQAs, while
CPPs are process-related factors.

3.2.4. Prescreening Studies

CQAs can be influenced by a variety of elements, and considering all of them through-
out the design process can be time-consuming. As a result, the one factor at a time (OFAT)
technique was initially utilized to screen the factors to lessen the impact of components
and enhance the ability of statistical design to predict outcomes.
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3.2.5. The Proportion of Organic Phase (OP) to Antisolvent Phase (AP) Optimization

The initial stage is to screen the organic-phase-to-antisolvent-phase ratio, because it
has the greatest influence on the size of the particle and its distribution. The organic phase
volume was held constant (1 mL) with the antisolvent phase volume varying from 10 to
40 mL. The effect of the ratio on particle size and Polydispersity index (PDI) was assessed.
The impact of the ratio on the PDI and particle size was evaluated.

3.2.6. Screening of Stabilizers

For a formulation to be stable at the nanoscale, stabilizers play a crucial role, and
since there is no easy way to choose, a method based on a trial-and-error procedure
using individual/combinations of different stabilizers was used [40]. Utilizing the OFAT
approach, stabilizers were assessed at different concentrations for particle size, PDI, and
stability (as determined by ocular inspection) [34].

3.2.7. Experimental Design

The methodical approach to determining the impact of input elements (CFAs and
CPPs) on the CQA is known as the design of the experiment. The pertinent parameters
were optimized using response surface approaches, specifically the Box–Behnken design
(BBD). The BBD is a type of incomplete block and factorial design that minimizes the
sample size needed for coefficient estimation. It is thought to be more cost-effective than
central composite designs [39].

To assess the influence of the independent variables (A) concentration of drug (mg/mL),
(B) amount of stabilizer (%), and (C) level of surfactant (%) on the dependent variable (X)
particle size, a three-level, three-element BBD design was used, as indicated in Table 1.
Employing Design Expert® software, response surface assessment was performed using
contour (2D) and response surface plots (Version 13, Stat-Ease Inc., Minneapolis, MN, USA).

Table 1. Factors for the design of the experiment.

Independent
Variables

Levels

Low (−1) Medium (0) High (+1)

A Concentration of
drug (mg/mL) 20 30 40

B Amount of
stabilizer (%) 0.5 0.75 1

C Level of
surfactant (%) 0.05 0.15 0.25

Responses Constraints

X Particle size Minimize

3.2.8. Search for Optimized Preparation

A desirability function was used to optimize the search for the best possible formu-
lation. The attractiveness value, which ranges from 0 to 1, is calculated based on the
target values specified. The higher the value is, the more certain the desired results are. In
addition, the design space was used to perform graphical optimization [41].

3.2.9. Design Validation

Checkpoint analysis was used to validate the design. The results were compared to
the projected values following the completion of three confirmatory trials.
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3.3. Physicochemical Characterization of NS
3.3.1. Particle Size, Polydispersity Index (PDI) and Zeta Potential (ZP)

Dynamic light scattering (DLS) analysis in a Malvern zeta sizer (Nano ZS, Malvern
Instruments, UK) was used to determine the particle size, PDI, and ZP of NSs. Triple-
distilled water was used as a dispersion medium, and the samples were diluted ten times
before being analyzed on a Malvern Zeta sizer at 25 ◦C. All measurements were performed
in triplicate, and the Z-average (d.nm) and PDI values were calculated. The ZP of the
formulation was determined by dipping a palladium electrode in the diluted samples using
a Malvern Zetasizer ZS (Nano series ZS 90, UK) [42].

3.3.2. Lyophilization and Redispersibility Index (RDI)

For better stability and convenience of handling, the produced NS was subjected
to lyophilization using a lab lyophilizer (Model no: Lab India FD5508). Cryo-chilled
flasks were filled with samples to be lyophilized, along with the requisite amount of cryo-
protectant. To obtain freeze-dried NS (FDNS), prefreezing with dry ice was used, followed
by freeze-drying as per the reported procedure (−70 ◦C and 0.055 mbar pressure) [43].
The particle size of the FDNS was measured after they were thoroughly mixed with triple-
distilled water. The redispersibility index (RDI) equation determines the NS redispersion
potential [44–46].

RDI (%) =

[
D0

D

]
× 100 (1)

D0 and D are the typical particle sizes before and after lyophilization, respectively.

3.3.3. Scanning Electron Microscopy (SEM)

The surface morphology of pure drug and NS was imaged by SEM (QUANTA FESEM
250). SEM images were taken by mounting the sample over a double-sided adhesive
carbon tape that was, in turn, mounted over aluminum pin stubs and sputter-coated
with gold using an ion sputter before analysis. The samples were examined at a working
distance of 10 mm with a 30 kV accelerating voltage and a magnification range of 500 to
120,000 times [47].

3.3.4. Saturation Solubility

To screw vials holding 3 mL of different media, an excess of GCZ and freeze-dried
NS were added individually (triple-distilled water, acetate buffer, phosphate buffer, and
0.1 N hydrochloric acid) and sonicated for 2 to 3 min to disperse the drug. The vials
were maintained at 37 ◦C for 48 h on an incubator shaker (SI 300 UK) and centrifuged at
7500 rpm for 10 min. A Millipore 0.22 filter was used to separate and purify the clear liquid,
and the GCZ concentration was evaluated using a UV–visible spectrophotometer set to
226 nm [48,49].

3.3.5. In Vitro Release of GCZ NS

In USP type II equipment (LABINDIA, model no: DS 8000; Mumbai, India), a dissolu-
tion test of plain drug and NS of GCZ (equivalent amount of 40 mg) was performed. The
samples were placed in a phosphate-buffered medium (pH 7.4; 900 mL). Throughout the
experiment, a stirring rate of 100 rpm was used, and the temperature was held constant at
37 ◦C. Aliquots of 5 mL were removed and replaced with the same volume of fresh medium
at predefined intervals. Filtrations of the samples were performed using nylon membrane
syringe filters of 0.1 µm (Sigma–Aldrich), and drug concentration was evaluated using an
established RP-HPLC method (Supplementary Method S1) [20]. The percentage of released
drugs from bulk and NS was compared. The studies were carried out in triplicate, with the
findings expressed as a percentage of the drug dissolved in pure drug and NS. The percent-
age release of the free drug and the formulation were compared, and the experiments were
repeated three times.
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3.3.6. Stability Studies

The optimized freeze-dried GCZ-NS were stored at three different temperature condi-
tions (5 ± 3 ◦C, 40 ± 2 ◦C and 25 ± 2 ◦C) for 6 months. At regular time intervals (0, 0.5, 1,
3, and 6 months), using a Malvern zeta-sizer, the samples were analyzed for particle size,
PDI, and ZP.

3.4. Noneverted Intestinal Sac Study

With minor modifications, an in vitro noneverted intestinal sac investigation was
carried out using previously reported procedures [50]. The Institutional Animal Ethical
Committee (IAEC) certified the protocol (NIP/01/2018/PE/264). In summary, in the two
groups, the male Wistar rats were separated at random (PD and GCZ NS), with three rats
in each group. Following euthanasia, both groups of animals were treated with anesthetic
ether. Surgical removal of the intestines followed by ice-cold saline washing was performed
(50 mL). After separating the small intestine, a 5 cm ileum was separated in its place. The
normal sacs (mucosal side) were filled with one mL of each sample containing PD and GCZ
NS (1.3 mg), and both ends of the sac were ligated securely. For the entire study period, the
PD dispersion and NS formulation-filled sacs were immersed into a beaker that contained
40 mL of PBS. (pH 7.4) with continual aeration and stirring at 100 rpm at 37 ◦C. The amount
of drug that passed from the mucosal to the serosal side was measured by taking samples
(3 mL) at specified time intervals (up to 120 min). The amount of medicament transferred
from the mucosal to the serosal direction was determined using a designed RP-HPLC under
identical column conditions at a wavelength of 228 nm.

The apparent permeability coefficient (Papp) was calculated using the equation below.

Papp = dQ/dt + 1/(A + C0) (2)

where A is the surface area of the intestinal sacs, C0 is the initial concentration inside the
sacs, and dQ/dt is the drug transport rate in the serosal medium.

3.5. In Situ Single-Pass Intestinal Perfusion (SPIP) Method

The invasive technique and SPIP study were completed as previously reported [50].
In short, the animals were split into 2 sets (PD and GCZ NS formulation), each with three
animals. Thiopental sodium (50 mg/kg, intraperitoneal) was used to anesthetize the rats.
The rats’ abdomens were incised 3–4.5 cm midline, and an ileal segment of approximately
10 cm length was separated using the ileocaecal intersection as a distal marker. At each
end of the ileum, mid incisions were made, the lumen was washed with normal saline
(37 ◦C), and both ends were cannulated with polyethylene tubing and ligated with silk
suture. Then, using a syringe pump (Olives India), blank perfusion media (PBS pH 7.4)
was pumped at a flow rate of 1 mL/min for 5 min. Later, the PD (dispersed in 0.5% w/v
CMC) and NS formulation were infused at a continuous flow rate (0.2 mL/min) for 120 min.
The ileal segment was covered with wet gauze soaked in isotonic saline throughout the
experiment. The perfusate was collected every ten minutes at predefined periods and stored
at −80 ◦C until analysis. The concentrations of drugs in perfusion samples were determined
using RP-HPLC with a PDA detector set at a max of 228 nm (Supplementary Method S1).
The computations were based on the outflow perfusate steady-state concentrations at the
specified time points. A parallel tube model was used to calculate the steady-state intestinal
effective permeability (Peff).

Peff, rat = −Q·ln (Cout/Cin)/60·2πrl (3)

where Q represents the perfusion rate (0.2 mL/min), r represents the radius of the intestinal
segment (0.18 cm), and l represents the length of the intestinal segment (10 cm). Cin and
Cout are the solute concentrations in the inlet and exit, corrected for fluid transfer.
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3.6. Pharmacokinetic Studies

Male Wistar rats weighing 200 ± 20 g (4–5 weeks old) were used for the study and
were supplied by the National Institute of Nutrition (NIN), Telangana, India. All animal
studies were conducted according to “Guidelines for Care and Use of Laboratory Animals”,
and the protocol was approved by the Institutional Animal Ethics Committee (IAEC) under
protocol no NIP/01/2018/PE/264. The animals were acclimatized at a temperature of
20 ± 2 ◦C and relative humidity of 40–60% under natural light/dark conditions for one
week before experiments. The animals were randomly distributed into 3 groups, each
containing 6 animals. The plain drug (PD; dispersed in 0.5% w/v CMC), the GCZ NS
formulation (6 mg/kg BW), and the marketed formulation (MF; 6 mg/kg BW) were all
administered orally. Blood samples (250 µL) were collected from the retroorbital plexus
into EDTA-coated tubes at definite time intervals (0, 15, 30, 60, 90, 120, 150, 180, 240, 300,
360, 420, 480, 540, and 600 min). Using an Eppendorf centrifuge, blood samples were
centrifuged for 10 min at 7000 RPM. HPLC analysis (Supplementary Method S1) was used
to process and analyze the separated plasma [51]. The Phoenix program Winnonlin version
6.3 (Pharsight, Certara company, USA) was used to compute pharmacokinetic parameters
such as peak plasma concentration (Cmax), time to reach Cmax (Tmax), and area under the
curve (AUC) [52]. The data are presented as the mean and standard deviation.

3.7. In Vivo Antidiabetic Study

Rats with normoglycemia were separated into five groups (n = 6) and fasted overnight
to test the antidiabetic activity of the formulations. Blank vehicles were provided to the
control group (1 mL of 0.5% w/v CMC; p.o.), while the other groups were given 1 mL
of a plain drug (PD; 6 mg/kg; p.o.), optimized NS (NS; 6 mg/kg; p.o.), and marketed
formulation (MF; 6 mg/kg; p.o.). After 30 min of drug administration, each animal was
administered a glucose overload (2 g/kg, p.o.). Blood samples were taken from the tail
vein before drug delivery and at 30 min intervals for the next 12 h. Fasting blood glucose
levels were checked using glucose-oxidase-peroxidase active strips (Accu-check kit strips;
Roche Diagnostics, GmbH, Mannheim, Germany).

4. Results and Discussion
4.1. Formulation of GCZ NS

The method of solvent–antisolvent precipitation was used to make NS in this inves-
tigation. This approach entails dissolving a drug in an organic phase in an antisolvent
phase containing a stabilizer, which causes rapid drug precipitation because of desolvation,
resulting in nanosized drug particles. We used acetone as the solvent and water as the
antisolvent phase.

According to the Ostwald–Mier theory, crystallization begins when the system achieves
supersaturation, accompanied by nucleation and crystal development. When a saturated
drug solution is added to an antisolvent, a supersaturated solution is formed; the solvent is
evaporated, resulting in the production of many nuclei; and crystal development continues.
Furthermore, the ice-cold condition is chosen because the drug’s solubility in the solvent
combination is reduced at lower temperatures, resulting in higher supersaturation and
slower diffusion. The Damkohler number (Da = Tmix/Tppt), a ratio of mixing time to
precipitation time, can be used to understand the process. If Da is greater than 1, the
process is considered mixing-controlled, and the mixing time (Tmax) is larger than the
precipitation time (Tppt). Because the time required to reach supersaturation is slow in this
situation, larger particles are produced because of increased particle growth over nucle-
ation. If Da < 1, then supersaturation occurs quickly, and nucleation takes precedence over
crystallization if Tmax is less than Tppt., resulting in a large number of nuclei with smaller
particle sizes [53]. As a result, achieving Da < 1 is recommended to obtain smaller particle
sizes. The use of ultrasonic waves may generally lessen the Tmix; nonetheless, stabilizers
are employed to increase Tppt [54,55].
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4.2. FbD-Based Approach
4.2.1. Defining the QTPP

Enhancing the solubility and bioavailability was the goal of the GCZ-loaded NSs.
Therefore, regarding the formulation, the QTPP was well defined and is presented in
Table 2.

Table 2. QTPP and CQA selection and justification.

QTPP Target Justification

Formulation Nanosuspension (NS) The solubility and bioavailability can be
improved by NS formulation

Route of administration Oral The commercial formulation is oral, and we are
working to increase oral bioavailability

Dissolution Higher compared to plain drug Increased solubility could result in accelerated
dissolution

Pharmacokinetics Should be better than the already
available form For increased bioavailability

Stability No visible signs of aggregation/cake formation
up to 120 days after formulation

The efficiency of the formulation depends on
particle size. It is vital to maintain the

same stability

CQAs

CQA Target Justification

Particle size nm

The solubility and dissolution are both
increased when size is reduced to the

nanoscale because it increases surface area.
Bioavailability is improved via higher

solubility and dissolution

4.2.2. Identification of CQAs

The FbD approach’s fundamental step is recognizing the CQA [56]. QTPP is accom-
plished once the CQAs are recognized and accurately regulated within the limit. In the
current experiment, particle size was selected as the CQA. The medication’s poor water
solubility is improved by particle size reduction to the nanoscale [57]. Table 2 shows the
CQAs that were chosen with explanations.

4.2.3. Identification of CFAs and CPPs

CQAs can be affected by many factors, and an Ishikawa fish-bone diagram was
used to show the cause-and-effect relationship in Supplementary Figure S1. Studies for
prescreening were conducted to examine the connection between the variables and the
response from a functional standpoint.

4.2.4. Prescreening

Incorporating all elements into the design would result in a higher number of runs,
further complicating the design. To determine the OP to AP ratio and the best stabilizer,
prescreening experiments were conducted using the OFAT method. The process of nano-
precipitation involves critical variables; to explore the optimum conditions, we considered
different formulation and process variables, such as the selection of the solvent system,
solvent–antisolvent phase ratio, and type and concentration of stabilizer used. After adjust-
ing one parameter at a time while keeping the other parameters constant, the effect of the
aforementioned parameters on particle size and PDI was noticed.
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4.2.5. Selection of OP and Optimization of the OP-to-AP Ratio

Depending on the highest solubility of the drug, acetone, acetonitrile, and methanol
were used as the organic phase (OP) in the preliminary trials. As the drug has low solubility,
triple-distilled water was taken as the antisolvent phase (AP), and its miscibility with many
solvents makes it an appropriate AP. An incorrect OP/AP ratio may cause nonuniform
particle formation, resulting in unpredictable particle size distribution and aggregation.
The effect of varying the OP-to-AP ratio on particle size and PDI is shown in Figure 1.
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The NS prepared using a 1:30 ratio of OP:AP resulted in a lower particle size compared
to other ratios (particle size of 1218 nm with a PDI of 0.434) without aggregation, and
the system was uniform in terms of particle size and size distribution. The choice of
appropriate solvent plays a key role in stabilizing the NS by regulating the number of
crystal nuclei generated. Furthermore, GCZ exhibits a solubility of 49.6 mg/mL in acetone.
A greater percentage of antisolvent reduces the drug’s ability to dissolve in the solvent
at an optimal OP-to-AP ratio, which increases the nucleation rate and results in smaller
particles. Furthermore, the availability of more antisolvents lengthens the diffusion length,
slowing the expansion of produced nuclei [55].

4.2.6. Selection of Stabilizer

Trial batches with a 1:30 OP/AP ratio and 30 mg of GCZ were used to determine the
type of stabilizer. The particles in NS are very energetic and thermodynamically unstable
and agglomerate or undergo Ostwald ripening to stabilize the system. The use of an
appropriate stabilizer at a sufficient concentration lowers interfacial tension, inhibits crystal
formation, and acts as a steric or electrostatic barrier between particles [33,58]. Preliminary
studies with several stabilizers were conducted since it was important to optimize a suitable
stabilizer and its concentration. [43].

The average particle size and PDI attained with diverse stabilizers are shown in
Figure 2. Individual stabilizers were tested at varying concentrations (0.1, 0.25, 0.5, 0.75%,
1.0% w/v), and further combinations were explored based on the results. According to the
results, the particle size increased in the following order: TPGS > HPMC > PVA > PVP
K-30 > Solutol HS > Poloxamer 188 > Tween 80 > Lecithin > SDS. Using nonionic surfactant
stabilizers such as Tween 80 and Solutol HS produced a high particle size and PDI (>0.5) at
various concentrations compared to polymeric stabilizers (HPMC E15, PVP-K30, PVA and
Poloxamer 188), giving fewer particles but a high PDI (>0.5). HPMC E15 is a large molecule
nonionic stabilizer that provides stability via steric stabilization with a very low particle size.
The findings imply that the formation of large crystals is promoted by nonionic surfactants,
which is related to a low supersaturation state and a limited amount of crystal nuclei.
Similarly, the polymeric stabilizers resulted in low particle size compared to nonionic
surfactants, but the very high PDI suggests that there was nonuniformity/heterogeneity in
the prepared system.
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HPMC is a polymer made up of methoxy and hydroxypropyl assemblies with a
large hydrophobic part that attracts water and can establish hydrogen bonds with drugs.
Although HPMC formulations reduced particle size, they also caused more aggregation
and visible particle settling. The rationale given is that HPMC adds greater viscosity to
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the fluid, which may stifle the particle production process. The formulations made with
PVP K-30 and PVA were found to be more homogeneous and transparent than those
made with HPMC. However, after 4 h, the formulation was not stable, as indicated or
seen by the settling of particles. This may be due to insufficient polymer adsorption onto
the hydrophobic drug surfaces, and PVP is unable to provide sufficient surface energy
in the stabilization of drug surfaces [59]. The highest particle size was observed in SDS
at concentrations of 1.0% w/v and 2.0% w/v, giving particle sizes of 3243.86 ± 86.38 and
702.3 ± 26.99 with PDI values of 0.561 ± 0.11 and 1.000 ± 0.00, respectively. However,
SDS at 0.5% w/v and above did not precipitate the system; instead, it helped solubilize
the drug [60]. Even below the critical micelle concentration (CMC), oxyethylene blocks
of T80, a nonsurfactant and small molecule ionic surfactant such as SDS, resulted in a
considerable increase in drug solubility, resulting in a large particle size up to a definite
concentration. [30].

TPGS, a nonionic surfactant, resulted in particle sizes ranging from 71.81 ± 43.33 to
507.96 ± 63.27 nm but showed a high PDI (>0.5). Similarly, lecithin, a natural stabilizer, gave
a particle size ranging from 496.25 ± 36.96 nm to 954.23 ± 52.47 nm with low PDI (<0.4).
The more pronounced Ostwald ripening that occurs, the higher the PS levels. Meanwhile,
Ostwald ripening can be avoided by using the right stabilizer combination. [61,62]. From
earlier reports, it is understood that a single stabilizer will not help to form a homogenous
NS with low PDI [63].

Hence, we studied the effect of a combination of surfactants (HPMC, SDS, PLX 188,
lecithin, Tween 80, and PVA) in stabilizing the formulations to reduce Ostwald ripen-
ing. As an outcome, a variety of stabilizers were used to try to develop a stable for-
mulation with lower particle size and PDI. Various combinations of stabilizers yielded
different formulations (F1-F13), producing particle sizes in the range from 96.49 ± 15.00
to 4795.66 ± 26.84 nm and PDI values in the range from 0.326 ± 0.05 to 1.000 ± 0.00, as
shown in Table 3. For example, the F7 formulation consisting of HPMC (0.1% w/v) and
lecithin (0.1% w/v) displayed a particle size of 1399.66 ± 14.84 with a PDI of 0.920 ± 0.03,
and the F10 formulation consisting of Tween 80 (0.1% w/v) and PVA (0.1% w/v) showed a
particle size of 999.96 ± 281.36 with a PDI of 0.702 ± 0.16. From the findings, it was noted
that the F12 formulation consisting of SDS (0.25% w/v) with lecithin (1% w/v) surfactants
displayed a particle size of 96.49 ± 15.00 nm and PDI of 0.326 ± 0.05. SDS, a small molecule
that is an ionic surfactant that acts as an electrostatic stabilizer, helps stabilize the system,
as it has a zeta potential of −22 mV. Because it is adsorbed on the surface of the particles,
lecithin acts as a steric stabilizer, preventing aggregation and resulting in a stable system.
Lecithin is a common pharmaceutical excipient that has no known side effects [64,65].
Hence, a combination of stabilizers was selected for further study. Combining stabilizers
may provide appropriate surface-active electrostatic and steric stabilization for the systems
and is also favored for long-term stabilization [66].

4.2.7. Design of Experiments

For the study, there were 15 runs (with three center points), as shown in Supplementary
Table S1. Using multiple linear regression, polynomial models such as linear, quadratic,
and two-factor interaction (2FI) were created. The predicted R2, adjusted R2, and coefficient
of variance were used to choose the models (CV).

Size plays a critical role in improving the solubility of poorly soluble drugs. Smaller
particles have a greater surface area, wherein the saturation solubility is increased. There-
fore, one of the CQAs was chosen to be particle size for producing a GCZ-loaded NS. The
particle size ranged from 90.22 to 146.12 nm after 15 well-prepared trials. This implied that
the quadratic model was substantial with a negligible lack of fit. The final model F value
was 39.40, indicating a 0.01% likelihood that it was caused by noise. The R2 and corrected
and anticipated R2 values were 0.9861, 0.9611, and 0.8288, respectively. The model’s suf-
ficient precision was 19.986, greater than the necessary number of 4, demonstrating the
ability to explore the design area [67].
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Table 3. Data of particle size and PDI with a combination of stabilizers.

Formulation Concentration of Stabilizers (% w/v)

HPMC SDS PLX 188 Lecithin Tween 80 PVA Avg. PS (nm) Avg. PDI

F1 0.1 0.1 - - - - 825.7 ± 89.38 0.831 ± 0.06
F2 0.25 0.25 - - - - 2038.66 ± 17.00 0.769 ± 0.39
F3 0.5 - 0.1 - - - 4777.66 ± 29.48 0.873 ± 0.21
F4 0.1 0.25 - - - - 4795.66 ± 26.84 1.000 ± 0.00
F5 0.1 - 0.1 - - - 475.30 ± 64.00 0.619 ± 0.12
F6 0.1 - 0.5 - - - 1018.83 ± 58.38 0.896 ± 0.08
F7 0.1 - - 0.1 - - 1399.66 ± 14.84 0.920 ± 0.03
F8 - 0.25 - 0.1 - - 939.33 ± 72.34 0.654 ± 0.32
F9 - - - - 1 1 247.3 ± 130.44 0.347 ± 0.09

F10 - - - - 0.1 0.1 999.96 ± 281.36 0.702 ± 0.16
F11 0.1 - - - 0.5 - 1134.1 ± 158.66 0.697 ± 0.08
F12 - 0.25 - 1.0 - - 96.49 ± 15.00 0.326 ± 0.05
F13 - 0.1 - 1.0 - - 146.70 ± 2.55 0.386 ± 0.01

The model terms A, C, AC, A2, B2, and C2 all had p values of less than 0.05, showing
that they had a major influence on the response. These terms were now regarded as
significant, and the resulting regression equation was

Particle size = 92.93 + 15.59A − 12.77C − 14.22AC + 7.24A2 + 10.02B2 + 6.18C2 (4)

At both lower and higher stabilizer-to-drug ratios, the particle size increased, as
shown in the response surface plot (Figure 3). For coating newly developed surfaces, low
stabilizer concentrations might not be sufficient to prevent nuclei diffusion, resulting in
larger particles.
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According to Alexandridis et al., below the threshold micellar temperature of 25 ◦C, a
larger stabilizer ratio produces multilayers, and as the layer thickness increases, so does
the particle size [68].
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4.2.8. Search for Optimized Formulation

The solutions offered by the design were assigned a desirability value by numerical
optimization using the desirability function. The solution with the greatest desirability of
1 was designated as the optimized formulation Fopt. A drug concentration of 29.6 mg, a
stabilizer amount of 0.735%, and a surfactant level of 0.216% were used for optimization.
For further graphical improvement, the target values of CQAs, such as reduced particle
size, were limited. A design space was developed, as shown in Figure 4.
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4.2.9. Validation of the Design

Validation by three checkpoint formulations was used to determine the model’s
correctness and resilience. The predicted mean value for size was 86.98 nm (Supplementary
Table S2), but the observed mean value for size was 87.12 nm. The outcomes of these
formulations matched the values that the software had predicted, proving the validity of
the model [69].

4.3. Physicochemical Characterization of NS
4.3.1. Particle Size, PDI and ZP

The particle size, PDI, and zeta potential of the optimized NS were assessed utilizing
a Malvern zeta sizer immediately after dilution (1:10) with Milli-Q water. The resulting
formulation displayed an average particle size of 96.49 ± 15 nm with a PDI of 0.326 ± 0.05.
Since the PDI of the developed formulation was less than 0.3, NS had a consistent particle
size distribution and homogeneity [70]. The physical stability of NS can be estimated using
the zeta potential, and the optimized formulation has a ZP of −22 ± 5.6 mV. The surface
charge on nanoparticles can result through ionization of the particle surface or surfactant
adsorption, both of which help to stabilize the NS [71].

4.3.2. Lyophilization and Redispersity Index (RDI)

Lyophilization was used to improve solid-state characterizations and make them easier
to handle. Furthermore, the cryoprotectant for freeze-drying is commonly utilized in NS
before solidification, which can be employed to protect NS against solidification damage.
Cryoprotectants are frequently employed to fill the spaces between the Nanocrystal (NC)
following the elimination of water during lyophilization to prevent irreversible aggregation
and maintain the redispersibility of NS [72].

At a concentration of 1% w/v, mannitol, trehalose, and sucrose are three different
types of cryoprotectants that were studied. The particle size and PDI of the lyophilized
powders were measured at room temperature for one month. Figure 5 shows the RDI of



Pharmaceutics 2022, 14, 1947 14 of 22

the lyophilized NS. The RDI did not change significantly after one month with and without
cryoprotectants [73].
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4.3.3. Scanning Electron Microscopy

The topography of the plain drug and formulation is shown in Supplementary
Figure S2. The morphology of unprocessed drugs showed an irregular shape with a
particle size in µm and a wide particle size distribution with discrete units, while NS
formulated with solvent–antisolvent precipitation transformed the drug into uniformly
sized nanoparticles (50–100 nm). The impact of nanosizing on particles upon antisolvent
precipitation to generate many nuclei while preventing crystal formation was revealed in
this work, in [74].

4.3.4. Saturation Solubility

Saturation solubility studies of GCZ and GCZ-NS were performed in different media
to determine the increase in solubility of the drug after preparing NS, and the information
is provided in Table 4. The NS of GCZ showed an increase in solubility compared to the
GCZ plain by 14-fold as NS in triple-distilled water and acetate buffer, 6-fold in 0.1 N
hydrochloric acid, and 4-fold in phosphate buffer. When comparing plain GCZ to NS
formulations, enhanced solubility was observed in all media. This could be due to the
large surface area of the nanosized particles, the drug’s decreased crystallinity, and the
surfactants’ improved wettability [75].

Table 4. Saturation solubility.

Different Medias Plain Drug (GCZ)
(µg/mL)

NS Formulation
(µg/mL)

Water 49.6 ± 6.37 681.87 ± 63.24

0.1 N Hydrochloric acid (pH 1.2) 29.61 ± 9.58 182.05 ± 10.36

Acetate buffer (pH 4.5) 24.88 ± 6.58 364.18 ± 89.31

Phosphate buffer (pH 7.4) 629.04 ± 163.05 2604.57 ± 321.68
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4.3.5. In Vitro Release of GCZ NS

A USP apparatus type II was used to determine the % cumulative drug release in
phosphate buffer (pH 7.4) medium under sink conditions. Figure 6 depicts the drug re-
lease characteristics of the plain drugs and NSs. The plain drug dispersion displayed
12.91 ± 1.22% and 36.36 ± 2.23% release within 30 and 240 min, respectively. Furthermore,
the formulation displayed 26.81 ± 2.46% and 82.67 ± 3.82% within 30 and 240 min, respec-
tively. As supported by other authors, the increased availability of dissolved GCZ and drug
nanoparticles may have resulted in increased drug release [6,7]. When compared to the
pure drug, the NSs had a faster rate of dissolution. The Noyes–Whitney/Nernst–Brunner
equation explains this, stating that a decrease in particle size results in an increase in surface
area to the nano range, favoring an increase in dissolution [76]. Particle size, shape, state
(amorphous or crystalline), and habit (cubic or spherical) are a few of the physical traits that
control a drug’s solubility and dissolution rate under physiological conditions. The current
research is focused on a micron-sized, cubic-shaped crystalline pure medication with poor
solubility that makes dissolving extremely slow. Dissolution augmentation by NS may
result from (a) an amorphous nature translation (shown by DSC, Figure S5, Supplementary
Method S3; XRD, Figure S6, Supplementary Method S4), (b) the drug and stabilizer forming
hydrogen bonds (confirmed by FTIR, Figure S4, Supplementary Method S2), (c) particle
size reduction from the micron to the nanometer range (size measurements), and (d) particle
shape (as observed by SEM, Figure S2). All of these elements contribute to the solubility
and dissolving properties of the drug under study [71].
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Figure 6. In vitro dissolution profiles in phosphate buffer (pH 7.4; mean ± SD; n = 3) of the plain
drug (PD) and formulation (F).

4.3.6. Stability Studies

For a total of 6 months, GCZ-NS stability experiments were conducted at three different
temperatures (0, 0.5, 1, 3, and 6 months). Particle size, PDI, and ZP were examined
concerning the influence of stability conditions, and the data are included in Table 5. Storage
under refrigerated conditions (5 ± 3 ◦C) increased the particle size from 87.12 ± 3.76
(0th day) to 102.14 ± 16.28 (6th month). At a high temperature of 40 ± 2 ◦C, an increase
in size was observed from 0.5 to 6 months from 119.42 ± 5.21 nm to 212.38 ± 8.04 nm.
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When the formulation was stored at 25 ± 2 ◦C, the particle size increased slightly from
96.92 ± 8.31 nm (0.5 months) to 153.92 ± 5.73 nm (6th month). The drastic increase in
particle size at high temperature may be because the stabilization with time data lost
its integrity. Because of Ostwald ripening, the lower surface coverage would lead to an
increase in particle size [77].

Table 5. Short-term stability study of the NS formulation under different conditions with respect to
particle size, PDI, and ZP.

Temperature Months PS (nm) PDI ZP (mV)

5 ± 3 ◦C

Initial 87.12 ± 3.76 0.172 ± 0.026 −22.19 ± 2.16

0.5 89.86 ± 5.56 0.265 ± 0.022 −19.17 ± 1.78

1 90.65 ± 5.48 0.271 ± 0.042 −21.42 ± 2.95

3 92.88 ± 8.13 0.289 ± 0.021 −19.86 ± 2.42

6 102.14 ± 16.28 0.308 ± 0.038 −21.84 ± 3.01

25 ± 2 ◦C

Initial 87.12 ± 3.76 0.172 ± 0.026 −21.56 ± 2.86

0.5 96.92 ± 8.31 0.297 ± 0.028 −22.19 ± 2.16

1 124.71 ± 6.18 0.263 ± 0.029 −22.99 ± 2.52

3 149.52 ± 6.98 0.304 ± 0.032 −22.66 ± 2.65

6 153.92 ± 5.73 0.322 ± 0.025 −23.12 ± 2.38

40 ± 2 ◦C

Initial 87.12 ± 3.76 0.172 ± 0.022 −22.19 ± 2.16

0.5 119.42 ± 5.21 0.297 ± 0.020 −21.02 ± 3.90

1 133.26 ± 7.39 0.303 ± 0.025 −20.04 ± 3.12

3 180.66 ± 6.98 0.327 ± 0.030 −20.38 ± 2.90

6 212.38 ± 8.04 0.322 ± 0.032 −20.65 ± 3.44

4.4. Noneverted Intestinal Sac Permeation Study

The drug permeability between various colonic sections (duodenum, ileum, and
jejunum (proximal region)) was calculated and displayed against time points. In different
segments, the mean apparent permeability (Papp) for PD in the duodenum, jejunum, and
ileum was 0.56 × 10−4 cm/s, 0.66 × 10−4 cm/s, and 0.28 × 10−4 cm/s, respectively. In the
case of the NS formulation, the mean apparent permeability in the duodenum, jejunum,
and ileum was found to be 0.87 × 10−4 cm/s, 0.91 × 10−4 cm/s in the jejunum, and
0.98 × 10−4 cm/s. The formulation demonstrated superior results to the PD with an
apparent permeability enhanced by 1.5-, 1.37-, and 3.53-fold in the duodenum, jejunum,
and ileum, respectively. Compared to the PD, drug absorption in NS was improved.
In comparison to the duodenum, maximum absorption occurs in the lower intestine.
The permeability of active substances across the rat stomach can be measured using the
noneverted sac model and can forecast in vivo human absorption, in addition to numerous
in vitro approaches [78]. The findings of this study imply that drug administration by
way of nanoparticles can improve mucosal permeability by reducing size, which leads to
greater drug particle penetration and, in turn, improved drug absorption throughout the
colon [79].

4.5. In Situ Single-Pass Intestinal Perfusion Method (SPIP)

Despite encouraging in vitro outcomes, most drugs do not act in vivo for a variety
of reasons, including low absorption, water-insoluble materials, and unstable physical
properties. The gut mucosa is the main obstruction controlling the absorption process. To
determine formulation efficiency in an intact rat model, we conducted the SPIP investiga-
tion. The permeability of PD and NS in the rat ileum was tested. Effective permeability
(Peff) was determined using the collected perfusate’s steady-state drug concentrations.
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The results revealed that the drug’s effective permeability improved from 0.072 ± 0.002
× 10−4 to 0.36 ± 0.04 × 10−4 cm/s. The foremost benefit of the in situ SPIP approach is
that it allows for complete physiological circumstances in the experimental animals. This
approach, which is based on the local absorption rate across the epithelial barrier, aids in
the prediction of intestinal absorption in humans. Our findings indicated that drug delivery
in NS forms increased intestinal permeability because of elements such as compact particle
size, larger surface area, more solubility, and improved dissolving. This approach aids
in human absorption prediction. Intestinal permeability refers to a compound’s capacity
to travel over the intestine’s epithelial barrier. It is an accurate reflection of the transport
velocity through the epithelial barrier and a direct measurement of the local absorption rate.
Due to characteristics such as smaller drug size, greater surface area, improved solubility,
and improved dissolution, our findings suggest that drug administration in NS increased
intestinal permeability [34].

4.6. Pharmacokinetic Studies

The plasma drug concentration versus time profile of PD, GCZ NS, and MF after oral
administration is shown in Figure 7. Table 6 lists the pharmacokinetic parameters. The
chromatogram is shown in Supplementary Figure S3. The GCZ NS concentration maximum
(Cmax) and area under the curve (AUC0–t) were approximately 3.35 and 1.9 times higher
than the PD. Since the drug belongs to BCS class II and has low solubility, a higher dissolving
rate via NS aids in reaching a higher Cmax than a PD. The increased bioavailability of the
drug was primarily due to two mechanisms. First, nanosizing reduced the particle size
while increasing the surface area. Second, the thickness of the diffusion layer was reduced,
and the adhesion surface area between nanoparticles and the intestinal epithelium of villi
was increased, resulting in direct contact between the surfaces. Third, the drug was released
immediately, making it more available at the absorption site [30]. This is in agreement with
the enhanced bioavailability of GCZ previously reported with lipid nanoparticles [80] and
cubosomes [81].
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Table 6. Pharmacokinetic parameters of the drug (6 mg/kg) in Wistar rats following oral adminis-
tration of plain drug suspension and NS formulation (mean ± SD; n = 6). * Frel calculated for the
average AUC values.

PK Parameter (Units) Plain Drug Suspension NS MF

AUC(0–t) (ng/mL·h) 8334.106 ± 102 16,766.277 ± 125 10,163.584 ± 132

AUC(0–α) (ng·h/mL) 10,238.84 ± 105 19,649.178 ± 128 12,627.599 ± 135

Cmax (ng/mL) 1290.813 ± 118 4234.691 ± 120 1346.013 ± 115

Tmax (h) 3.00 1.00 2.00

Kel (1/h) 5 ± 0.04 0.104 ± 0.06 0.209 ± 0.01

t1/2 (h) 3.744 ± 1.2 6.662 ± 0.15 3.316 ± 2.5

% Relative Bioavailability (Frel) * 100.00 201.175 121.951

4.7. In Vivo Antidiabetic Study

Following the delivery of pure GCZ and NS to Wistar rats, the mean blood glucose
levels (mg/dL) are reported in Figure 8. The results showed that rats given NS had
significantly improved biological activities compared to animals given PD. The decrease
in glucose levels can be connected to GCZ’s effective solubility in NS form, which allows
for faster and more complete absorption [30]. In a recent study, oral administration of
gliclazide-loaded mucilage microparticles showed a hypoglycemic effect in diabetic rabbits,
and the results of the present study are in good agreement with published reports [82].
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5. Conclusions

The antisolvent precipitation approach was used in this study to suggest a novel
formulation of weakly water-soluble gliclazide as NS. Particle size was greatly influenced
by process and formulation parameters. The BBD design was used to investigate the
impact of factors on responses, and then numerical and graphical optimization was used
to find the best formulation. The optimized formulation contains SDS and lecithin. The
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nanoparticles were found to be amorphous, as determined by DSC. As seen in the SEM
images, the uneven cubic micro-range form changed to nanosized particles. Because of the
amorphous nature and smaller particle size of GCZ NS, the drug release % was much higher
than that of pure drug. NS showed improved penetration across the intestinal mucosa in
in vitro and in vivo investigations compared to PD. The Cmax and AUC0–t values of NS
were approximately 3.35- and 1.9-fold higher than those of the plain drugs in an in vivo
study. The study found that using GCZ NS to improve solubility and thus bioavailability
in vivo is a faster, less expensive, and more effective method. The crystallinity of the drugs
plays an important role in establishing their solubility; however, we did not include it in
the CQAs or stability studies. Further studies are required to understand this observation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics14091947/s1, References [83,84] are cited in the
supplementary materials. Figure S1: Schematic Ishikawa fish-bone diagram for the formulation of
nanosuspension; Table S1: Design of experiments (DOE) for the preparation of GCZ NS; Table S2:
Validation data for the optimized NS formulation; Figure S2. SEM images of GCZ PD (A) and GCZ
NS (B); Figure S3: Chromatogram of gliclazide in serum; Figure S4: AT-FTIR overlay of GLZ-PD,
Lecithin, SDS, Physical mixture, GLZ + Lecithin, GLZ+ SDS and NS Formulation; Figure S5: Overlay
of DSC thermograms of (A) PD—blue line; (B) Physical mixture—red line; and (C) NS—black line.
Figure S6: XRD Pattern of the plain drug (GCZ) (A) and GCZ NS formulation (B). S1. HPLC analysis;
S2. ATR-FTIR spectroscopy; S3. Differential scanning calorimetry (DSC); S4. XRD.
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