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Abstract: A new dietherpyrene-cored diamine monomer, namely, 4,5-bis(4-aminophenoxy)pyrene,
was successful synthesized and formed a series of electroactive polyamides with an aryloxy linkage in
a polymer main chain and bearing pyrene chromophore as a pendent group using conventional one-
pot polycondensation reactions with commercial aromatic/aliphatic dicarboxylic acids. The resulting
polyamides exhibited good solubility in polar organic solvents and, further, can be made into trans-
parent films. They had appropriate levels of thermal stability with moderately high glass-transition
values. The dilute NMP solutions of these polyamides exhibited pyrene characteristic fluorescence
and also showed a remarkable additional excimer emission peak centered at 475 nm. Electrochemical
studies of these polymer films showed that these polyamides have both p- and n-dopable states as a
result of the formation of radical cations and anions of the electroactive pyrene moieties.

Keywords: high performance polymers; polyamides; electroactive polymers; pyrene; excimer emission

1. Introduction

Since the 1930s, the development of polyamide technology established many of the
principles and practices for polymerization in general, laying the deeply impact ground-
work for the great array of materials that have followed. Traditional aromatic polyamides
are well-known as high-performance polymer materials; they have outstanding thermal,
mechanical and electrical properties as well as excellent chemical resistance [1–3]. However,
most of them are insoluble in most organic solvents due to the rigidity of the molecular
backbone, together with strong intermolecular interactions and lead to a high melting point
or softening temperature. These characteristics usually make them difficult to process;
therefore, their applications are limited in certain areas [4,5]. In order to overcome these
limitations, many studies have been carried out to improve the processing characteristics
of these polymers, while retaining the original excellent properties [6–10]. For overcoming
the related drawbacks, it is basically necessary to design and develop a new monomer
via structure modification. For example, the facile strategies of adding a flexible ether
linkage connection (-O-) to the polymer backbone, or introducing a large aromatic ring,
non-coplanar or asymmetric unit has been proven to increase organic solubility without
sacrificing its original excellent performance method [11–16].

Pyrene is a polycyclic aromatic hydrocarbon molecule formed by four fused ben-
zene rings. Its attractive features include its functionalization, delaying the appearance of
fluorescence, obvious solvent discoloration and a high tendency to form active excimer
formations [17–20]. Pyrene and its derived compounds have been proverbially studied and
applied as a fluorescent detection sensor [21–24]. In recent years, due to the outstanding
light-emitting properties associated with the high charge carrier mobility of pyrene deriva-
tives, the application for organic electronic materials in the context of organic light-emitting
diode devices (OLED), such as pyrene derivatives [25,26], polymers [27], starburst [28] and
dendrimers [29,30], have been widely reported. Resulting in red shift emission and accom-
panied by a significant reduction in fluorescence efficiency, 1, 3, 6, 8-tetraphenylpyrene
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(TPPy) has a fluorescence efficiency of up to 90% in solution [31], but the components made
of TPPy solid film only have an external fluorescence efficiency of 0.5% in the electrolu-
minescence devices [32]; therefore, the use of pyrene as a luminescent material in OLED
applications is significantly restricted. Fortunately, through molecular structure design,
the tight packing/fluorescence quenching phenomenon in pyrene-based materials can be
reduced or controlled. For example, 1, 3, 6, 8- or 1, 3, 5, 9-tetra substituted pyrene can
successfully prevent π-stacking in small molecules, which can produce blue light with
high efficiency both in solution and solid states [33,34]. Therefore, many studies have
introduced aromatic groups with π-stacking steric barriers into the molecular structure
of pyrene, which can effectively improve the luminous efficiency of such compounds in
the solid state [35,36]. However, there is not much research and literature on 4, 5, 9, 10-
tetra-substituted pyrene [37–42]. The main obstacle to the synthesis is that the electrophilic
substitution of pyrene preferentially takes place at the 1, 3, 6, 8 positions (non-K-region),
as accessing the 4, 5, 9, 10 positions (K-region) is much more difficult. Indeed, function-
alization at the K region of pyrene often requires multi-step syntheses with low overall
yields. In the past 20 years, there has been no research focus on attaching phenoxy groups
to pyrene’s K region and further via functionalization into reactive groups.

For the continuous development of traditional high-performance polymers such as
polyamides and endowing them with new optoelectronic functionality, we tried to in-
troduce opto-and redox active pyrene into its polymer backbone. Due to the attractive
fluorescent and redox active properties of pyrene, we incorporated the phenoxy linkage to
the K region of pyrene, further subjoined reactive diamine as a functional group, and finally,
used polycondensation via one-stepwise with commercially available dicarboxylic acids
to produce pyrenyl-bearing polyamides with optoelectronic activity. The built-in proper-
ties, such as solubility, film-forming capability and thermally behaviors, of the prepared
dietherpyrene-based polyamide will be investigated. Their optical and electrochemical
properties will also be widely studied, and according to optoelectronic properties to find the
suitable applications in the light-emitting, hole-transporting and redox flow batteries fields.

2. Materials and Methods
2.1. Materials

Pyrene (Acros Organics, Geel, Belgium), ruthenium(III) chloride hydrate (RuCl3·xH2O)
(Alfa Aesar, Stoughton, MA, USA), sodium metaperiodate (NaIO4) (Alfa Aesar, Stoughton,
MA, USA), sodium sulfate (Na2SO4) (Showa Chemical, Minato-ku, Tokyo, Japan), anhy-
drous magnesium sulfate (MgSO4) (Showa Chemical, Minato-ku, Tokyo, Japan), sodium
dithionite (Na2S2O4) (Aencore, Box Hill, Australia), tetra-N-butylammonium bromide (Alfa
Aesar, Stoughton, MA, USA), sodium hydroxide (Thermo Fisher Scientific, Waltham, MA,
USA), 4-fluoronitrobenzene (Alfa Aesar, Stoughton, MA, USA), 10% palladium on carbon
(Pd/C) (Alfa Aesar, Stoughton, MA, USA), calcium chloride (CaCl2) (Showa Chemical,
Minato-ku, Tokyo, Japan) and triphenyl phosphite (TPP) (Alfa Aesar, Stoughton, MA,
USA) were used without further purification. Dichloromethane (CH2C12) (ECHO chemical,
Miaoli, Taiwan), acetonitrile (CH3CN) (Aencore, Box Hill, Australia), tetrahydrofuran (THF)
(ECHO chemical, Miaoli, Taiwan), acetic acid glacial (ECHO chemical, Miaoli, Taiwan),
N,N-dimethylacetamide (DMAc) (TEDIA, Fairfield, OH, USA), pyridine (Py) (Thermo
Fisher Scientific, Waltham, MA, USA) and N-methyl-2-pyrrolidone (NMP) (TEDIA, Fair-
field, OH, USA) were used as received from the local supplier. All other ingredients
were used as received from suppliers/producers. The commercially available aromatic
dicarboxylic acids, such as 1,4-cyclohexanedicarboxylic acid (4a) (TCI chemical, Saitama,
Japan), terephthalic acid (4b) (TCI chemical, Saitama, Japan), 4,4′-dicarboxydiphenyl
ether (4c) (TCI chemical, Saitama, Japan), 4,4’-dicarboxydiphenyl sulfone (4d) (TCI chemi-
cal, Saitama, Japan) and 2,2-bis(4-carboxyphenyl)hexafluoropropane (4e) (TCI chemical,
Saitama, Japan), were used as received from the local supplier, ECHO chemical, Taiwan.
The synthetic details and analysis of pyrene-4,5-dione (1), 4,5-bis(4-nitrophenoxy)pyrene
(2), 4,5-bis(4-aminophenoxy)pyrene (3), 4,5-di(4-benzamidophenoxy)pyrene (M1), 4,5-di(4-
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cyclohexanecarboxamidophenoxy)pyrene (M2) and polyamides were summarized in the
Supplementary Materials.

2.2. Methods

Infrared (IR) spectra were conducted on the spectrum GX FTIR system (PerkinElmer,
Waltham, MA, USA). The proton and carbon NMR spectra were gauged on a Avance III
HD-600 MHz NMR (Bruker, Fremont, CA, USA) with tetramethylsilane (TMS) as standard.
The inherent viscosities were measured with a Cannon–Fenske viscometer at 30 ◦C for an
average of five times. Molecular weights (Mw/Mn) were obtained from gel permeation
chromatography (GPC) via PU-2080 Plus HPLC Pump and RI-2031 detector system (JASCO,
Hachioji, Tokyo, Japan) on the basis of a polystyrene calibrated baseline using dried THF as
the fresh eluent. Wide-angle X-ray diffraction (WAXD) data were performed at ca. 25 ◦C on
a XRD-6000 X-ray diffractometer (Shimadzu, Nakagyo-ku, Kyoto, Japan), using graphite-
monochromatized and nickel-filtered Cu-Kα radiation (λ = 1.5418 Å) with the operating
factor at 40 kV and 30 mA, and the scanning rate was carried out with 2 degree/min
in a range of 2θ = 10~40 ◦. Single crystal crystallography data of a synthesized target
monomer were conducted with D8 Venture Dual X-ray Single Crystal Diffractometer
(Bruker, Fremont, CA, USA). Ultraviolet–visible (UV–Vis) spectra both in solutions and
films were recorded on a V-530 UV/VIS Spectrophotometer (JASCO, Hachioji, Tokyo, Japan)
and an 8453 UV–Visible spectrophotometer (Agilent, Santa Clara, CA, USA), respectively.
Thermogravimetric analysis (TGA) was performed with a Pyris 1 TGA (PerkinElmer,
Waltham, MA, USA). Measurements were carried out on approximately 3–5 mg of samples
heated in flowing nitrogen or air (flow rate = 20 cm3/min) at a heating rate of 20 ◦C/min.
DSC analyses were performed on a Pyris 1 DSC (PerkinElmer, Waltham, MA, USA) at
a scan rate of 20 ◦C/min in flowing nitrogen. Electrochemistry was performed with a
6116E electrochemical analyzer (CH Instruments, Austin, TX, USA). Cyclic voltammetry
was measured with the use of a three-electrode system in which ITO-coated glass (sample
area about 2.0 cm2) was used as a working electrode and together with platinum wire as
an auxiliary electrode. All potentials of samples were taken with the use of a self-made
Ag/AgCl, with KCl (sat.) as a reference electrode. Ferrocene (Fc) was used as an external
standard for calibration (+0.48 V vs. Ag/AgCl).

3. Results and Discussion
3.1. Synthesis of Intermediates and Monomer

The dietherpyrene-based diamine 3 was successfully synthesized by the synthetic
route outlined in Scheme 1. Pyrene-4,5-dione (1) was prepared by using a modified
procedure from the selective K-region oxidation of pyrene that presented the stoichiometric
quantities of ruthenium tetraoxide (RuO4) from the RuCl3/NaIO4 catalytic system in
previous studies [43–45]. The postulated oxidation mechanism pathways from starting
pyrene to pyrene-4,5-dione intermediates are shown in Scheme 2.

Due to high tendency oxidation from 4,5-dihydroxypyrene to pyrene-4,5-dione in atmo-
sphere, dinitro compound (2) was synthesized by a one-pot direct reduction of a carbonyl
group of pyrene-4,5-dione with sodium dithionite to be converted to a diol intermediate and
then this was followed by the diarylation of 4,5-dihydroxypyrene with 4-fluoronitrobenzene
in the presence of sodium hydroxide as the base and tetra-n-butylammonium bromide
salt as the phase transfer catalyst [46]. The final target diamine monomer 4,5-bis(4-
aminophenoxy)pyrene (3) was prepared by a hydrazine Pd/C-catalyzed reduction of
4,5-bis(4-nitrophenoxy)pyrene (2) in a high yield. The structures of pyrene-4,5-dione (1),
the dinitro intermediate (2) and the target diamine monomer (3) were confirmed with
IR, NMR and single crystal X-ray diffraction analysis. The FT-IR spectra of compounds 1
to 3 can be seen in Figure 1. Pyrene-4,5-dione (1) shows the characteristic absorption at
1666 cm−1 (ketone C = O stretch). After the reduction of the carbonyl group of (1) and then
the following diarylation to form a bis(nitrophenoxy)pyrene unit, the ketone characteristic
band disappeared and the nitro groups show the pair characteristic absorption bands at
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1340 and 1589 cm−1 (-NO2 symmetric and asymmetric stretching), and a strong aryl ether
band located at 1220 cm−1 (C-O stretching). After reduction to diamine 3, the nitro group
absorptions were eliminated, and the primary amino unit showed the typical absorption
pair located at 3450–3300 cm−1 as a result of N-H stretching.
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The 1H NMR, 13C NMR and 2D NMR spectra of the intermediate compounds 1–2 and
the target diamine monomer 3 are illustrated systematically with fully peak assignments
in Figures S1–S4 and 2, respectively. The accomplished conversion of nitro units to the
primary amino units was confirmed by the high-field shift of the phenylene protons and by
the resonance signals at around 4.71 ppm corresponding to the amino protons. Although
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the symmetric substitution at the 4,5 positions of the pyrene unit, the spectra of diamine 3
are a bit complicated in one dimensional NMR. In order to fully assign all the peaks, we
took two-dimensional (2D) COSY and HSQC NMR spectra, as demonstrated in Figure 3.
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Thus, the results of all the spectroscopic and single crystal X-ray diffraction analysis
suggest the expected structure of diamine 3 was successfully synthesized. The authentic
structure of diamine 3 was further comprehended using single-crystal X-ray diffraction
analysis. The molecular structure of pyrene-cored diamine 3 (Figure 4) shows that the
pyrene and phenyl rings were not in the same plane due to a flexible ether unit as linkage.
As shown in Figure 4b,c, the crystal lattice also showed the high tendency to form dimer-like
planar with ca. 3.50 Å between two pyrene structures. The bulky pyrene and non-planar
ether conformation was prospected to reduce the packing efficiency of polymer chains and
to improve the solubility of its derived polymers. The model compounds M1 and M2 were
also prepared from the one-pot synthesis of diamine 3 with two equivalent amounts of
benzoic acid and cyclohexanecarboxylic acid, as illustrated in Scheme S1. Their IR and
NMR spectroscopic data of absorption, proton and carbon signals were fully assigned, as
shown in Figures S5–S10.

3.2. Polyamides Synthesis

On the basis of the well-established method depicted by the Yamazaki phosphorylation
reaction, it is common knowledge that the triphenyl phosphite (TPP) and pyridine as
an inorganic complex medium played an important role in obtaining homogenous high
molecular weight polymers in the polymerization of diamines and dicarboxylic acids [47,48].
A series of novel dietherpyrene-cored structural polyamides 5a–5e were synthesized from
diamine 3 with various aliphatic and aromatic dicarboxylic acids (4a–4e) using the direct
polycondensation reaction with Yamazaki condensing agents (Scheme 3). After the reaction,
all the polymerizations were carried out in a homogeneous phase and become a transparent
high-viscosity solution. When the obtaining polymer solution was poured into stirred
methanol, these polymers precipitated in a strong and fiber-like constitute. The typical
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as-prepared sample and the foldable film of polyamide 5a displayed a strong blue emission
upon laboratory UV lamp irradiation also as shown in Scheme 3. The structures of the
polyamides could be confirmed using IR and NMR spectroscopy. The collected IR spectrum
for a typical polyamide 5e in Figure S11, which indicates the featured absorption bands
of the amide group at around 3295 cm−1 (amide N-H stretching) and 1627 cm−1 (amide
C = O stretching). The 1H NMR spectra, as illustrated in Figure S11, for polyamide 5e
shows that the resonance peak emerging at 10.3 ppm clearly represents the formation of an
amide linkage.
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3.3. Basic Characterization

All the dietherpyrene-based polyamides could be casted into transparent, rollable and
tough films. The WAXD studies of these film samples revealed that all the polyamides were
essentially a non-crystalline domain, as shown in Figure S12. These quantitative obtained
polyamides had inherent viscosities with ηinh values in the range of 0.41–0.70 dL/g (Table 1).
All the fiber-like polymer samples could afford transparent and foldable films, as shown
in Scheme 3, via common casting, demonstrating high molecular weights. THF-soluble
polyamide 5e showed a weight-average molecular weight (Mw) of 66,000 and a number-
average molecular weight (Mn) of 53,500 with a polydispersity index (PDI) of 1.23 by
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GPC measurements. The solubility behavior of polyamides was tested in common organic
solvents such as amide-type, sulfone-bearing, phenol-like and furan-containing solvents,
as shown in Table 1, especially with fluorine-containing polyamide 5e, which displayed
excellent solubility in common organic solvents and even in less polar solvents such as
THF. As a result, there was an extra offering of the hexafluoroisopropylidene (-C(CF3)2-)
segment in the polymer backbone. Apart from the more rigid backbone of polyamide 5b
derived from terephthalic acid, the excellent solubility of all polyamides can be apparently
attributed to the incorporation of a flexible phenoxy linkage in the polymer main chain
together with the bulky pyrene pendant group in the polymer backbone.

Table 1. Inherent Viscosity a and Solubility Properties b of Polyamides.

Polymer
Code

ηinh
(dL/g)

Various Solvent c

NMP DMAc DMF DMSO m-Cresol THF

5a 0.61 ++ (++) ++ (++) ++ (++) ++ (++) ++ (++) +− (−)
5b 0.44 ++ (++) +− (++) +− (++) +− (++) − (−) − (−)
5c 0.70 ++ (++) ++ (++) ++ (++) + (++) ++ (++) +− (−)
5d 0.41 ++ (++) ++ (++) ++ (++) + (++) ++ (++) +− (−)
5e 0.64 ++ (++) ++ (++) ++ (++) + (++) ++ (++) ++ (++)
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3.4. Thermal Properties

For universal applications of these polymers in optoelectronics, the thermal stability
and phase transition temperatures of polyamides were recorded using thermogravimetric
analysis (TGA) and differential scanning calorimetry (DSC), and all the thermal behavior
data of the polymers are summarized in Table 2. A representative set of TGA and DSC
curves of polyamide 5c are presented in Figure 5. Except for the semi-aromatic polyamide
5a with aliphatic cyclohexane moiety, all the polymers possess excellent thermal stability
and did not show significant weight loss up to temperatures of approximately 450 ◦C
in both a nitrogen and air atmosphere. The decomposition temperatures (Td) at a 10%
weight-loss of the aromatic polyamides (5b to 5e) in nitrogen and air were recorded in
the ranges of 544–562 ◦C and 519–549 ◦C, respectively. Except for aliphatic-aromatic
polyamide 5a, the amount of carbonized residue (char yield) of the other polyamides was
more than 69% and as high as 74% at 800 ◦C in nitrogen. The high char yields of these
fully aromatic polyamides can be ascribed to their high rigid aromatic composition. Due
to the incorporation of thermally stable and the highly aromatic content of pyrene unit,
all the polymers exhibited higher Td values compared to their corresponding 5′ series
analogue derived from 2,3-bis(4-aminophenoxy)naphthalene [49]. These thermal stable
polyamides also have high glass-transition temperatures (Tg) with a range from 276 to
310 ◦C. As expected, the lowest Tg of polymer 5a can be illustrated in terms of the bendable
polycyclohexane segments in its backbone. As compared to the naphthalene-based 5′

series analogs, the present polyamides 5 series demonstrates a remarkably increased Tg
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owing to the presence of rigid pyrene segments. Notably, among the substituent effects of
these polyamides, it was found that the factors of the increased Tg values were dependent
on the rigidity of the diacid counterpart structures. Thus, the thermal analysis reports
above disclosed that these polyamides, especially the aromatic ones, exhibited excellent
thermal stability, which, in turn, is beneficial to increase the manufacturing process in
as optoelectronic device application and improve the morphological stability to both the
spin-coated and slot-die coated film.

Table 2. Thermal behaviors of polyamides.

Polymer
Code a

Tg
b

(◦C)

Td 10 wt% Loss c (◦C) Char Yield d

(%)In N2 In Air

5a 276 (214) e 485 (481) e 482 (478) e 55 (37) e

5b 310 (255) 560 (517) 519 (504) 74 (69)
5c 287 (232) 562 (541) 549 (529) 73 (66)
5d 304 (267) 544 (505) 535 (497) 69 (63)
5e 294 (264) 555 (506) 547 (503) 69 (62)

a The samples were heated at 300 ◦C for 1 h prior to the thermal analyses. b The film was heated from 50 to
400 ◦C at a scan rate of 20 ◦C/min followed by rapid cooling to 50 ◦C at −200 ◦C/min in nitrogen flow. The
midpoint temperature of baseline shift on the follow-up DSC trace (from 50 to 400 ◦C at heating rate 20 ◦C/min)
was defined as Tg. c Decomposition temperature at which a 10% weight loss was recorded using TGA at a heating
rate of 20 ◦C/min. d Residual weight percentages at 800 ◦C under nitrogen flow. e Values in parentheses are data
of analogous polyamide 5′ having the same diacid residue as in 5 series.
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3.5. Photophysical Properties

Due to the unique photophysical behaviors of polycyclic aromatic hydrocarbons
with pyrene unit, all the dietherpyrene-based polyamides were detected using UV–Vis
absorption and fluorescence spectroscopy in both solution and the solid film. Figure 6
shows the dilute polyamides 5a–5e and pyrene in NMP solutions with absorptions and
emission profiles together with their emission photograph images on exposure to an UV
irradiation in solution and thin film on quartz plates. All of the UV–Vis absorption and
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fluorescence data are summarized in Table 3. All the polyamides displayed three obviously
characteristic bands with an unsymmetrical shape and adjoining shoulders, the same as the
pyrene’s absorption in the UV–visible region. The distinct high-energy absorption bands
located at 344 nm are dominated to those emerging from the pyrene-based characteristic
π-π* transition.

Polymers 2022, 13, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 6. (a) Absorption and emission spectra of selected polyamides and pyrene in NMP solution 
(10 μM). (b) Photograph images were taken under illumination both of the dilute solutions and 
polymer films of a 365-nanometer UV light. 

These absorption bands of polyamides were similar to pyrene with a very slight red-
shift of ca. 7 nm, which, as a result of close packing from the polymer segment, intertwined 
with another. All the polyamides demonstrated similar absorption in NMP solutions the 
same as the pyrene’s spectra. Focusing on the absorption bands of polyamide both in NMP 
solutions and their solid film, as shown in Figure 7, the semi-aromatic polyamide 5a and 
fully aromatic 5b films were similar to their NMP solutions but their absorption intensities 
were a little bit different between 375 and 425 nm with a small shoulder centered at 380 
nm with reasonable results from the efficient packing of the polymer chain. It is notable 
that the most bathochromically shifted transitions, located at a longer wavelength, which 

Figure 6. (a) Absorption and emission spectra of selected polyamides and pyrene in NMP solution
(10 µM). (b) Photograph images were taken under illumination both of the dilute solutions and
polymer films of a 365-nanometer UV light.



Polymers 2022, 14, 261 11 of 19

Table 3. Photophysical behaviors of polyamides.

Polymer

In Solution a As Solid Film

λmax
abs

(nm)
λmax

PL

(nm) b φF(%) c IPyr/Exc
d λmax

abs

(nm)
λonset

abs

(nm)
λmax

PL

(nm) b

5a 328, 345 381, 400, 487 0.41 0.13 334, 351 367 446
5b 327, 344 381, 400, 473 0.10 0.46 334, 351 370 465
5c 327, 344 380, 400, 478 0.50 0.21 334, 352 367 455
5d 328, 345 382, 399, 476 0.10 0.45 334, 351 370 473
5e 327, 344 380, 400, 475 0.23 0.78 332, 350 365 458

Notes: a The polymer concentration was 10 µM in NMP. b Excited at the absorption for both solution and solid
film states. c Fluorescent quantum yield estimated by using 9,10-diphenylanthracene in cyclohexane (10 µM) as
standard (φF = 90%). d Fluorescent emission integration area ratio (I) of characteristic pyrene (Pyr) and pyrene
excimer (Exc). abs: absorption. PL: emission

These absorption bands of polyamides were similar to pyrene with a very slight red-
shift of ca. 7 nm, which, as a result of close packing from the polymer segment, intertwined
with another. All the polyamides demonstrated similar absorption in NMP solutions the
same as the pyrene’s spectra. Focusing on the absorption bands of polyamide both in NMP
solutions and their solid film, as shown in Figure 7, the semi-aromatic polyamide 5a and
fully aromatic 5b films were similar to their NMP solutions but their absorption intensities
were a little bit different between 375 and 425 nm with a small shoulder centered at 380 nm
with reasonable results from the efficient packing of the polymer chain. It is notable that
the most bathochromically shifted transitions, located at a longer wavelength, which was
centered at 490 nm, may be attributed to that coming from the phenoxy to pyrene and/or
amide intramolecular charge-transfer (ICT) states as a mechanism similar to phenoxy-
labeled perylenediimide derivatives [50]. Interestingly, the fluorescence emission profiles
of these polyamides were dramatically different with pyrene. The polyamides 5 series
revealed cognate emission contours in NMP solutions bearing particular pair sharp and
single broaden peaks with emission maxima in the range 380~490 nm. This phenomenon
clearly indicates that the emission in this system of polymers originates from different
excited states due to the origin of the pyrene excimer formation compared with a single
pyrene component. Whether an excimer formation arising in a given pyrene-containing
system is readily determined by their broad emission featuring a center at ca. 480–500 nm
is remarkably easy to identify, even when numerous pyrene monomer emissions take place,
since the characteristic fluorescence pair emissions occurs in the 380–400 nm wavelength
range [17]. As illustrated in Figure 6, the emission color of the polymer NMP solutions is
sky blue, whereas that of non-substituted bare pyrene is deep blue.

As well-organized in Table 3, the fluorescence quantum yield (φF) of these polymers
in NMP solution were found from 0.10 to 0.50% relative to the 9,10-diphenylanthracene
standard in cyclohexane. All the polyamides with a relatively low fluorescence quantum
yield (φF) may be attributed to the low energy excimer formation of pyrene rising from intra-
and interchain charge transfer (CT) complexing between the high energy pyrene donor
and the aryl amide (or aroyl) acceptor. Polyamides derived from aromatic dicarboxylic
acid segments with the diphenyl ether and 2,2-isohexafluoropropane fragments seemed to
have inhibited CT interactions and revealed a higher φF, relative to as low as polyamide 5b
and 5d. The CT-inhibited semi-aromatic polyamide 5a derived from aliphatic dicarboxylic
acid also showed a high φF of ca. 0.41%, similar to 5c (0.5%). In addition to this, a strong
interaction between the polyamide chain and amide-type NMP solvent may enhance the
relaxation of the pyrene molecule in its excited state and lead to a reduced fluorescence
quantum yield. The notable characteristic fluorescence features of pyrene and its excimer
emission integration area ratio are listed in Table 3; we found that the chain length and
polarity of the diacid segment strongly leads to a direct correlation with the extent of
pyrene–pyrene intra- and interactions (with an order of 5a > 5c > 5e), which, as a result of
the emission properties, are finely dependent on the different diacid substituent patterns in
the polymer backbone.
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coated on quartz glass.

It is well known that solvatochromic dyes such as pyrene derivatives exhibited sur-
rounding sensitive solvatochromic behavior in which the relative intensity of emission
bands is dependent on solvent polarity [51]. Therefore, to further inquire into the solva-
tochromic properties of diphenoxypyrene-based polyamides, we evaluated the absorption
and fluorescence emission of two amide-type model compounds, M1 and M2, in the dif-
ferent polarity solvents. The model compound was selected for investigation because it
exhibits better solubility than high molecular weight polymers; it can easy dissolve well in
less polar solvents, such as toluene, chloroform and dichloromethane. Figure 8 shows the
PL spectra of M1 and M2 in dilute solution in various solvents and is accompanying with
the fluorescence images of its solutions.

Tables S1 and S2 were detailed descriptions of the absorption and fluorescent emission
data of M1 and M2, respectively. The solution absorption spectra of compound M1 have
two similar absorption bands (absorption λmax: 325~330 and 341~346 nm). However, the
emission profile of compound M1 in different solvents has the same emission bands located
at ca. 380, 400 and 420 nm with different fluorescence intensities. Compared with the
polyamides, the PL profile of model compound M1 does not show the excimer formation
around the 480-nanometer region; we attributed this phenomenon to the polymer chain
self-intertwined leads that lock excimer formations. Interestingly, in the emission profile of
the model compound in some solvents containing functional groups such as -O- for THF,
-NHCO- for NMP and -SO2- for DMSO, their emission spectra show deep blue fluorescence
emission with relative low intensity as compared with less polar solvents such as toluene,
dichloromethane and chloroform. This phenomenon can be attributed to the fact that
higher polar solvents are more likely to interact strongly with the amide functional groups
on the polymer segment, resulting in a lower fluorescence intensity with a low fluorescence
quantum yield. The absorption and emission data of model compound M2 were similar to
those of M1 but had a higher fluorescence quantum yield and emission intensity due to the
intramolecular CT inhibited from the aliphatic carboxylic acid group also listed in Table S2.

3.6. Electrochemical Data of Polyamides

The electrochemical properties of the dietherpyrene-cored polyamides were traced us-
ing cyclic voltammetry (CV) with a commercial available three-electrode system. The redox
cycles of the polyamide-coated ITO glass samples were measured in 0.1 M Bu4NClO4/dichl-
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oromethane or acetonitrile and DMF, for the oxidation and reduction process, respectively.
Figure 9 represented the typical CV curves of polyamide 5a at a scan rate of 50 and 100 mV/s
in its redox cycles. Polyamides 5 series exhibited an irreversible oxidation and a reversible
reduction process at their first cycle, as shown in Figures 9 and S13. The irreversible and
reversible waves represented the formation of an unstable radical cation and a stable radi-
cal anion for pyrene originating from redox reactions of the dioxypyrene, as seen in the
Scheme 4.
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The onset potential (Eonset) and the half-wave potentials (Eox
1/2) of polyamides 5a–5e

under the oxidation process were recorded in the ranges from 1.20 to 1.25 V and 1.21 to
1.27 V, respectively (Table 4). The oxidation potentials are comparatively insensitive to the
structure of the dicarboxylic acid unit in these polyamides. Variations of less than 0.06 V
were observed in the 5a–5e series, and this represents that the diacid part does not seriously
affect the electronic nature of the oxidizable dietherpyrene core. The onset potential of the
reduction process and half-wave potentials (Ered

1/2) of polyamides 5a–5e were recorded
in the range from −1.34 to −1.72 V and −1.47 to −1.99 V, respectively. In particular, the
polyamide 5d had two half-wave potentials (Ered

1/2) −1.47 and −1.93 V due to the sulfone
(-SO2-) reduction to the sulfide (-S-) group of the diacid segment.

Based on the oxidation and reduction onset potential of CV, the electrochemically
bandgaps (Eg

CV) for polyamides 5a–5e were determined in the range from 2.56 to 2.97 eV.
The optical bandgaps (Eg

opt) calculated from the absorption edge (λonset) of the polymer
films were recorded in the range from 3.35 to 3.40 eV. Compared to Eg

CV and Eg
opt, the

bandgaps calculated from CV measurements were much lower than those obtained from the
absorption spectra at about 0.33 to 0.74 eV. The highest occupied molecular orbital (HOMO)
levels for the polyamides 5a–5e were calculated and found to be between −5.56 and
−5.61 eV and the values for the lowest unoccupied molecular orbital (LUMO) levels
between −2.64 and −3.02 eV by using the oxidation and reduction onset potential. When
the calculations were based on the E1/2 values, the HOMO and LUMO energy levels were
estimated in the range of −5.53 to −5.59 eV and −2.37 to −2.89 eV, respectively. The CV
curves of model compounds of M1 and M2 were similar as the polyamides, as shown in
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Figure S14, but the model compound M1 did not find any anodic peak upon the oxidation
process. These CV curves of the polyamides 5a–5e with continuous ten cycles of a scan rate
of 50 mV/s were similar to the model compound M2 as shown in Figure 10. As shown in
the first CV scan, the dioxypyrene unit underwent oxidation at about 1.3 V, followed by
fully oxidation peak at 1.6 V. In the second scan, a new oxidation peak appeared at around
0.71 V and intensified the same peaks after ten cycles, which indicated the occurrence of the
coupling reactions between two pyrene cation radicals forming the dimer-like bispyrene
moiety in the 1- or 8-position of the electroactive site of the pyrene unit, as shown in
Scheme 5 of the proposed structures of the electro-generated dimers.
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In order to confirm whether the phenomenon of dimerization occurred during the
electrochemical process, we took continuous CV scans 50 times to monitor the change
of the absorption and transmittance spectra of the M2 containing electrolyte. As shown
in Figure 11, the absorption between 375 to 500 nm was intensified gradually and more
obviously to see the huge change of the transmittance in this region together with the color
change of M2 containing electrolytes from colorless to light yellow. Meanwhile, we attribute
this spectral change to the formation of the bispyrene moiety that leads to an increased
conjugated extension of high rigid aromatic content. According to these considerable and
tunable HOMO and LUMO energy values of the optoelectronic polyamides, it might have
potential use both as a luminescent and hole-transporting materials in OLEDs.
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Table 4. Redox potentials and energy levels of polyamides.

Polymer

Oxidation
Potential (V) a

Reduction
Potential (V) b Eg

CV (eV) c

Eg
opt

(eV) d

HOMO/LUMO (eV) e

Eox
onset Eox

1/2 Ered
onset

Ered
1/2

Eonset E1/2 Eonset E1/2
1st 2nd

5a 1.25 1.27 −1.72 −1.85 − 2.97 3.08 3.38 −5.61/−2.64 −5.59/−2.51
5b 1.20 1.21 −1.64 −1.99 − 2.84 3.16 3.35 −5.56/−2.72 −5.53/−2.37
5c 1.21 1.25 −1.68 −1.86 − 2.89 3.07 3.38 −5.57/−2.68 −5.57/−2.50
5d 1.22 1.24 −1.34 −1.47 −1.93 2.56 2.67 3.35 −5.58/−3.02 −5.56/−2.89
5e 1.21 1.24 −1.68 −1.97 − 2.89 3.17 3.40 −5.57/−2.68 −5.56/−2.39

Notes: a vs. Ag/AgCl in acetonitrile or CH2Cl2. E1/2 = average potential of the redox couple peaks. b vs. Ag/AgCl
in DMF. c Electrochemical bandgaps calculated from CV methods. d Optical bandgaps estimated from absorption
edge of the film: Eg

opt = 1240/λonset. e The HOMO and LUMO energy levels were determined from Eonset and E1/2

values of CV curve and were referenced to ferrocene (4.8 eV relative to the vacuum energy level; Eonset = 0.44 V;
E1/2 = 0.48 V). –EHOMO = Eonset + 4.8–0.44 (eV); –EHOMO = E1/2 + 4.8–0.48 (eV); –ELUMO = –EHOMO–Eg.
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4. Conclusions

In this research, a new dietherpyrene-cored diamine was successfully synthesized,
then followed with various dicarboxylic acids to obtain electroactive polyamides via poly-
condensation. The introduction of the bulky 4,5-diphenoxypyrene unit into the polyamide
backbone affords excellent solubility with high thermal stability. Due to the polymer chain
self-intertwined in diluted solution, these polyamides revealed remarkable excimer emis-
sion via locking excimer formations compared with corresponding model compounds.
Both p- and n-doping from the nature of pyrene, these polymers have suitable energy levels.
Thus, these prepared polyamides are considered to be promising candidates as luminescent
and hole-transporting materials for use in optoelectronic devices.
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