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Abstract 17 

Establishing consensus around the transcriptional interface between coronavirus (CoV) 18 

infection and human cellular signaling pathways can catalyze the development of novel 19 

anti-CoV therapeutics. Here, we used publicly archived transcriptomic datasets to 20 

compute consensus regulatory signatures, or consensomes, that rank human genes 21 

based on their rates of differential expression in MERS-CoV (MERS), SARS-CoV-1 22 

(SARS1) and SARS-CoV-2 (SARS2)-infected cells. Validating the CoV consensomes, 23 

we show that high confidence transcriptional targets (HCTs) of CoV infection intersect 24 

with HCTs of signaling pathway nodes with known roles in CoV infection. Among a 25 

series of novel use cases, we gather evidence for hypotheses that SARS2 infection 26 

efficiently represses E2F family target genes encoding key drivers of DNA replication 27 

and the cell cycle; that progesterone receptor signaling antagonizes SARS2-induced 28 

inflammatory signaling in the airway epithelium; and that SARS2 HCTs are enriched for 29 

genes involved in epithelial to mesenchymal transition. The CoV infection consensomes 30 

and HCT intersection analyses are freely accessible through the Signaling Pathways 31 

Project knowledgebase, and as Cytoscape-style networks in the Network Data 32 

Exchange repository.  33 

 34 

  35 

.CC-BY 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted July 15, 2020. . https://doi.org/10.1101/2020.04.24.059527doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.24.059527
http://creativecommons.org/licenses/by/4.0/


 

3 
 

Introduction 36 

Infection of humans by coronaviruses (CoV) represents a major current global public 37 

health concern. Signaling within and between airway epithelial and immune cells in 38 

response to infections by CoV and other viruses is coordinated by a complex network of 39 

signaling pathway nodes. These include chemokine and cytokine-activated receptors, 40 

signaling enzymes and transcription factors, and the genomic targets encoding their 41 

downstream effectors1–3. Placing the transcriptional events resulting from CoV infection 42 

in context with those associated with host signaling paradigms has the potential to 43 

catalyze the development of novel therapeutic approaches. The CoV research 44 

community has been active in generating and archiving transcriptomic datasets 45 

documenting the transcriptional response of human cells to infection by the three major 46 

CoV strains, namely, Middle East respiratory syndrome coronavirus (MERS-CoV, or 47 

MERS) and severe acute respiratory syndrome coronaviruses 1 (SARS-CoV-1, or 48 

SARS1) and 2 (SARS-CoV-2, or SARS2)4–9. To date however the field has lacked a 49 

resource that fully capitalizes on these datasets by, firstly, using them to identify human 50 

genes that are most consistently transcriptionally responsive to CoV infection and 51 

secondly, contextualizing these transcriptional responses by integrating them with 52 

‘omics data points relevant to host cellular signaling pathways.  53 

We recently described the Signaling Pathways Project (SPP)10, an integrated ‘omics 54 

knowledgebase designed to assist bench researchers in leveraging publically archived 55 

transcriptomic and ChIP-Seq datasets to generate research hypotheses. A unique 56 

aspect of SPP is its collection of consensus regulatory signatures, or consensomes, 57 

which rank genes based on the frequency of their significant differential expression 58 
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across transcriptomic experiments mapped to a specific signaling pathway node or 59 

node family. By surveying across multiple independent datasets, we have shown that 60 

consensomes recapitulate pathway node-genomic target regulatory relationships to a 61 

high confidence level10. Here, as a service to the research community to catalyze the 62 

development of novel CoV therapeutics, we generated consensomes for infection of 63 

human cells by MERS, SARS1 and SARS2 CoVs. Computing the CoV consensomes 64 

against those for a broad range of cellular signaling pathway nodes, we discovered 65 

robust intersections between genes with high rankings in the CoV consensomes and 66 

those of nodes with known roles in the response to CoV infection. Integration of the CoV 67 

consensomes with the existing universes of SPP transcriptomic and ChIP-Seq data 68 

points in a series of use cases illuminates previously uncharacterized interfaces 69 

between CoV infection and human cellular signaling pathways. Moreover, while this 70 

paper was under review and revision, numerous contemporaneous and independent 71 

wet bench-based studies came to light that corroborate in silico predictions made using 72 

our analysis pipeline. To reach the broadest possible audience of experimentalists, the 73 

results of our analysis were made available in the SPP website, as well as in the 74 

Network Data Exchange (NDEx) repository. Collectively, these networks constitute a 75 

unique and freely accessible framework within which to generate mechanistic 76 

hypotheses around the transcriptional interface between human signaling pathways and 77 

CoV infection. 78 

 79 
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Results 81 

Generation of the CoV consensomes 82 

We first set out to generate a set of consensomes10 ranking human genes based on 83 

statistical measures of the frequency of their significant differential expression in 84 

response to infection by MERS, SARS1 and SARS2 CoVs. To do this we searched the 85 

Gene Expression Omnibus (GEO) and ArrayExpress databases to identify datasets 86 

involving infection of human cells by these strains. Many of these datasets emerged 87 

from a broad-scale systematic multi-omics Pacific Northwest National Library analysis of 88 

the host cellular response to infection across a broad range of pathogens11. Since an 89 

important question in the development of CoV therapeutics is the extent to which CoVs 90 

have common transcriptional impacts on human cell signaling that are distinct from 91 

those of other viruses, we also searched for transcriptomic datasets involving infection 92 

by human influenza A virus (IAV). From this initial collection of datasets, we next carried 93 

out a three step quality control check as previously described10, yielding a total of 3.3 94 

million data points in 156 experiments from 38 independent viral infection transcriptomic 95 

datasets (figshare File F1, section 1). Using these curated datasets, we next used 96 

consensome analysis (see Methods and previous SPP publication10) to generate 97 

consensomes for each CoV strain. figshare File F1 contains the full human SARS1 98 

(Section 2), SARS2 (Section 3), MERS (Section 4) and IAV (Section 5) infection 99 

transcriptomic consensomes. To assist researchers in inferring CoV infection-100 

associated signaling networks, the consensomes are annotated using the previously 101 

described SPP convention10 to indicate the identity of a gene as encoding a receptor, 102 
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protein ligand, enzyme, transcription factor, ion channel or co-node (figshare File F1, 103 

sections 2-5, columns A-C).  104 

Ranking of interferon-stimulated genes (ISGs) in the CoV consensomes 105 

As an initial benchmark for our CoV consensome analysis, we assembled a list of 20 106 

canonical interferon-stimulated genes (ISGs), whose role in the anti-viral response is 107 

best characterized in the context of IAV infection12. As shown in Figure 1, many ISGs 108 

were assigned elevated rankings across the four viral consensomes. The mean 109 

percentile of the ISGs was however appreciably higher in the IAV (98.7th percentile) and 110 

SARS1 (98.5th percentile; p = 6e-1, t-test IAV vs SARS1) consensomes than in the 111 

SARS2 (92nd percentile, p = 5e-2, t-test IAV v SARS2) and MERS (82nd percentile; p = 112 

7e-5, t-test IAV v MERS) consensomes. This is consistent with previous reports of an 113 

appreciable divergence between the IAV and SARS2 transcriptional responses with 114 

respect to the interferon response8. Other genes with known critical roles in the 115 

response to viral infection have high rankings in the CoV consensomes, including 116 

NCOA713 (percentiles: SARS1, 98th; SARS2, 97th; MERS, 89th; IAV, 99th), STAT114 117 

(percentiles: SARS1, 99th; SARS2, 98th; MERS, 89th; IAV, 99th) and TAP115 (percentiles: 118 

SARS1, 99th; SARS2, 94th; MERS, 83rd; IAV, 99th). In addition to the appropriate 119 

elevated rankings for these known viral response effectors, the CoV consensomes 120 

assign similarly elevated rankings to transcripts that are largely or completely 121 

uncharacterized in the context of viral infection. Examples of such genes include 122 

PSMB9, encoding a proteasome 20S subunit (percentiles: SARS1, 98th; SARS2, 97th; 123 

MERS, 98th; IAV, 98th); CSRNP1, encoding a cysteine and serine rich nuclear protein 124 

(percentiles: SARS1, 99th; SARS2, 94th; MERS, 98th; IAV, 94th); and CCNL1, encoding a 125 
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member of the cell cycle-regulatory cyclin family (percentiles: SARS1, 99th; SARS2, 126 

94th; MERS, 99th; IAV, 97th). Finally, a CRISPR/Cas9 study posted as a preprint while 127 

this manuscript was under review validated 27 human genes as critical modulators of 128 

the host response to SARS2 infection of human cells16. Corroborating our analysis, 16 129 

of these genes have significant (q < 0.05) rankings in the SARS2 consensome, 130 

including ACE2 and DYRK1A (both 97th percentile), CTSL (96th percentile), KDM6A, 131 

ATRX, PIAS1 (all 94th percentile), RAD54L2 and SMAD3 (90th percentile). 132 

To illuminate human signaling pathways orchestrating the transcriptional response to 133 

CoV infection, we next compared transcripts with elevated rankings in the CoV 134 

consensomes with those that have predicted high confidence regulatory relationships 135 

with cellular signaling pathway nodes. We generated four lists of genes corresponding 136 

to the MERS, SARS1, SARS2 and IAV transcriptomic consensome 95th percentiles. We 137 

then retrieved genes in the 95th percentiles of available SPP human transcriptomic (n = 138 

25) consensomes and ChIP-Seq (n = 864) pathway node consensomes10. For 139 

convenience we will refer from hereon to genes in the 95th percentile of a viral infection, 140 

node (ChIP-Seq) or node family (transcriptomic) consensome as high confidence 141 

transcriptional targets (HCTs). We then used the R GeneOverlap package17 to compute 142 

the extent and significance of intersections between CoV HCTs and those of the 143 

pathway nodes or node families. We interpreted the extent and significance of 144 

intersections between HCTs for CoVs and pathway node or node families as evidence 145 

for a biological relationship between loss or gain of function of that node (or node family) 146 

and the transcriptional response to infection by a specific virus. 147 
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Results of viral infection and signaling node HCT intersection analyses are shown in 148 

Figure 2 (based on receptor and enzyme family transcriptomic consensomes), Figures 3 149 

and 4 (based on ChIP-Seq consensomes for transcription factors and enzymes, 150 

respectively) and figshare File F2 (based on ChIP-Seq consensomes for selected co-151 

nodes). figshare File F1, sections 6 (node family transcriptomic HCT intersection 152 

analysis) and 7 (node ChIP-Seq HCT intersection analysis) contain the full underlying 153 

numerical data. We surveyed q < 0.05 HCT intersections to identify (i) canonical 154 

inflammatory signaling pathway nodes with characterized roles in the response to CoV 155 

infection, thereby validating the consensome approach in this context; and (ii) evidence 156 

for nodes whose role in the transcriptional biology of CoV infection is previously 157 

uncharacterized, but consistent with their roles in the response to other viral infections. 158 

In the following sections all q-values refer to those obtained using the GeneOverlap 159 

analysis package in R17. 160 

Receptors Reflecting their well-documented roles in the response to CoV infection18–21, 161 

we observed appreciable significant intersections between CoV HCTs and those of the 162 

toll-like (TLRs; q-values: SARS1, 3e-85; SARS2, 5e-49; MERS, 2e-33), interferon 163 

(IFNR; q-values: SARS1, 1e-109; SARS2, 6e-53; MERS, 1e-24) and tumor necrosis 164 

factor (TNFR; q-values: SARS1, 1e-48; SARS2, 1e-35; MERS, 5e-32) receptor families 165 

(Fig. 2). HCT intersections between CoV infection and receptor systems with previously 166 

uncharacterized connections to CoV infection, including epidermal growth factor 167 

receptors (EGFR; q-values: SARS1, 4e-21; SARS2, 3e-48; MERS, 1e-35), and Notch 168 

receptor signaling (q-values: SARS1, 6e-24; SARS2, 2e-33; MERS, 2e-29; Fig. 2), are 169 

consistent with their known role in the context of other viral infections22–26. The Notch 170 
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receptor HCT intersection points to a possible mechanistic basis for the potential of 171 

Notch pathway modulation in the treatment of SARS227. The strong HCT intersection 172 

between CoV infection and xenobiotic receptors (q-values: SARS1, 1e-30; SARS2, 1e-173 

44; MERS, 5e-32; Fig. 2) reflects work describing a role for pregnane X receptor in 174 

innate immunity28 and points to a potential role for members of this family in the 175 

response to CoV infection. In addition, the robust intersection between HCTs for SARS2 176 

infection and vitamin D receptor (q = 2e-35) is interesting in light of epidemiological 177 

studies suggesting a link between risk of SARS2 infection and vitamin D deficiency29,30. 178 

Consistent with a robust signature for the glucocorticoid receptor across all CoVs (GR; 179 

q-values: SARS1, 3e-35; SARS2, 1e-35; MERS, 7e-32), while this paper was under 180 

review, studies were published showing the GR agonist dexamethasone was a 181 

successful therapeutic for SARS2 infection31. Finally, and also while this paper was 182 

under review, in vitro analyses confirmed our predictions of the modulation by SARS2 183 

infection of ErbB/EGFR20,32 and TGFBR16,32 signaling systems (Fig. 2). 184 

Transcription factors Not unexpectedly – and speaking again to validation of the 185 

consensomes - the strongest and most significant CoV HCT intersections were 186 

observed for HCTs for known transcription factor mediators of the transcriptional 187 

response to CoV infection, including members of the NFκB (q-value ranges: SARS1, 188 

1e-7-1e-9; SARS2, 9e-3-2e-3; MERS, 1e-3-1e-4)33–35, IRF (q-value ranges: SARS1, 2e-189 

2-1e-31; SARS2, 2e-4-1e-17; MERS, 9e-4-7e-5)36 and STAT (q-value ranges: SARS1, 190 

1e-7-1e-55; SARS2, 2e-3-3e-29; MERS, 5e-2-3e-5)37–39 transcription factor families 191 

(Fig. 3). Consistent with the similarity between SARS1 and IAV consensomes with 192 

respect to elevated rankings of ISGs (Fig. 2a & d), the IRF1 HCT intersection was 193 
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strongest with the SARS1 (q = 2e-34) and IAV (q = 3e-49) HCTs. Corroborating our 194 

finding of a strong intersection between STAT2 and SARS2 infection HCTs (q = 3e-29), 195 

a study that appeared while this manuscript was under review showed that STAT2 plays 196 

a prominent role in the response to SARS2 infection of Syrian hamsters40.  HCT 197 

intersections for nodes originally characterized as having a general role in RNA Pol II 198 

transcription, including TBP (q-values: SARS1, 2e-10; SARS2, 6e-23; MERS, 3e-16), 199 

GTF2B/TFIIB (q-values: SARS1, 7e-10; SARS2, 3e-23; MERS, 9e-14) and GTF2F1 (q-200 

values: SARS1, 2e-4; SARS2, 2e-13; MERS, 5e-5) were strong across all CoVs, and 201 

particularly noteworthy in the case of SARS2. In the case of GTF2B, these data are 202 

consistent with previous evidence identifying it as a specific target for orthomyxovirus41, 203 

and the herpes simplex42 and hepatitis B43 viruses. Moreover, a proteomic analysis that 204 

appeared in BioRXiv while this paper was under review identified a high confidence 205 

interaction between GTF2F2 and the SARS2 NSP9 replicase32. 206 

In general, intersections between viral infection and ChIP-Seq enrichments for 207 

transcription factors and other nodes were more specific for individual CoV infection 208 

HCTs (compare Fig. 2 with Figs. 3 & 4 and figshare File F1, sections 6 and 7). This is 209 

likely due to the fact that ChIP-Seq consensomes are based on direct promoter binding 210 

by a specific node antigen, whereas transcriptomic consensomes encompass both 211 

direct and indirect targets of specific receptor and enzyme node families. 212 

Enzymes Compared to the roles of receptors and transcription factors in the response 213 

to viral infection, the roles of signaling enzymes are less well illuminated – indeed, in the 214 

context of CoV infection, they are entirely unstudied. Through their regulation of cell 215 

cycle transitions, cyclin-dependent kinases (CDKs) play important roles in the 216 
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orchestration of DNA replication and cell division, processes that are critical in the viral 217 

life cycle. CDK6, which has been suggested to be a critical G1 phase kinase44,45, has 218 

been shown to be targeted by a number of viral infections, including Kaposi's sarcoma-219 

associated herpesvirus46 and HIV-147. Consistent with this common role across distinct 220 

viral infections, we observed robust intersection between the CDK family HCTs (q-221 

values: SARS1, 8e-23; SARS2, 2e-31; MERS, 1e-30; Fig. 2) and the CDK6 HCTs (q-222 

values: SARS1, 1e-7; SARS2, 8e-8; MERS, 3e-4; Fig. 4) and those of all viral HCTs. As 223 

with the TLRs, IFNRs and TNFRs, which are known to signal through CDK648–50, 224 

intersection with the CDK6 HCTs was particularly strong in the case of the SARS2 225 

HCTs (Fig. 4). Again, the subsequent proteomic analysis we alluded to earlier32 226 

independently corroborated our prediction of a role for CDK6 in the response to SARS2 227 

infection. 228 

CCNT2 is another member of the cyclin family that, along with CDK9, is a component of 229 

the viral-targeted p-TEFB complex51. Reflecting a potential general role in viral infection, 230 

appreciable intersections were observed between the CCNT2 HCTs and all viral HCTs 231 

(q-values: SARS1, 4e-4; SARS2, 6e-3; MERS, 7e-5; Fig. 4). Finally in the context of 232 

enzymes, the DNA topoisomerases have been shown to be required for efficient 233 

replication of simian virus 4052 and Ebola53 viruses. The prominent intersections 234 

between DNA topoisomerase-dependent HCTs and the CoV HCTs (q-values: SARS1, 235 

3e-15; SARS2, 6e-21; MERS, 1e-26; Fig. 4) suggest that it may play a similar role in 236 

facilitating the replication of these CoVs. 237 

Hypothesis generation use cases 238 
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We next wished to show how the CoV consensomes and HCT intersection networks, 239 

supported by existing canonical literature knowledge, enable the user to generate novel 240 

hypotheses around the transcriptional interface between CoV infection and human 241 

cellular signaling pathways. Given the current interest in SARS2, we have focused our 242 

use cases on that virus. In addition to these use cases, figshare File F2 contains a 243 

number of additional use cases omitted from the main text due to space constraints. 244 

Unless otherwise stated, all q-values below were obtained using the GeneOverlap 245 

analysis package in R17. We stress that all use cases represent preliminary in silico 246 

evidence only, and require rigorous pressure-testing at the bench for full validation.  247 

Hypothesis generation use case 1: transcriptional regulation of the SARS2 248 

receptor gene, ACE2 249 

ACE2, encoding membrane-bound angiotensin converting enzyme 2, has gained 250 

prominence as the target for cellular entry by SARS154 and SARS255. An important 251 

component in the development of ACE2-centric therapeutic responses is an 252 

understanding of its transcriptional responsiveness to CoV infection. Interestingly, 253 

based on our CoV consensome analysis, ACE2 is more consistently transcriptionally 254 

responsive to infection by SARS CoVs (SARS1: 98th percentile, consensome q value 255 

(CQV)10 = 1e-25; SARS2: 97th percentile, CQV = 4e-7) than by IAV (78th percentile, 256 

CQV = 3e-8) or MERS (49th percentile, CQV = 2e-16; figshare File F1, sections 2-5). 257 

The data points underlying the CoV consensomes indicate evidence for tissue-specific 258 

differences in the nature of the regulatory relationship between ACE2 and viral infection. 259 

In response to SARS1 infection, for example, ACE2 is induced in pulmonary cells but 260 

repressed in kidney cells (Fig. 5). On the other hand, in response to SARS2 infection, 261 
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ACE2 is repressed in pulmonary cells - a finding corroborated by other studies 56,57 - but 262 

inducible in gastrointestinal cells (Fig. 5). These data may relate to the selective 263 

transcriptional response of ACE2 to signaling by IFNRs (92nd percentile; figshare File 264 

F1, section 8) rather than TLRs (48th percentile; figshare File F1, section 9) or TNFRs 265 

(13th percentile, figshare File F1, section 10). While this manuscript was under review, 266 

another study appeared confirming repression of induction of ACE2 by interferon 267 

stimulation and by IAV infection58. Our data reflect a complex transcriptional relationship 268 

between ACE2 and viral infection that may be illuminated in part by future single cell 269 

RNA-Seq analysis in the context of clinical or animal models of SARS2 infection. 270 

Hypothesis generation use case 2: evidence for antagonistic cross-talk between 271 

progesterone receptor and interferon receptor signaling in the airway epithelium 272 

A lack of clinical data has so far prevented a definitive evaluation of the connection 273 

between pregnancy and susceptibility to SARS2 infection in CoVID-19. That said, 274 

SARS2 infection is associated with an increased incidence of pre-term deliveries59, and 275 

pregnancy has been previously associated with the incidence of viral infectious 276 

diseases, particularly respiratory infections60,61. We were therefore interested to observe 277 

consistent intersections between the progesterone receptor (PGR) HCTs and CoV 278 

infection HCTs (q-values: SARS1, 3e-35; SARS2, 5e-41; MERS 5e-28), with the 279 

intersection being particularly evident in the case of the SARS2 HCTs (Fig. 2; figshare 280 

File F1, section 6). To investigate the specific nature of the crosstalk implied by this 281 

transcriptional intersection in the context of the airway epithelium, we first identified a 282 

set of 12 genes that were HCTs for both SARS2 infection and PGR. Interestingly, many 283 

of these genes encode members of the classic interferon-stimulated gene (ISG) 284 
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response pathway12. We then retrieved two SPP experiments involving treatment of 285 

A549 airway epithelial cells with the PGR full antagonist RU486 (RU), alone or in 286 

combination with the GR agonist dexamethasone (DEX). As shown in Figure 6, there 287 

was unanimous correlation in the direction of regulation of all 12 genes in response to 288 

CoV infection and PGR loss of function. These data are consistent with the reported 289 

pro-inflammatory effects of RU486 in a mouse model of allergic pulmonary 290 

inflammation62. Interestingly, SARS2-infected pregnant women are often 291 

asymptomatic63,64. Based on our data, it can be reasonably hypothesized that 292 

suppression of the interferon response to SARS2 infection by elevated circulating 293 

progesterone during pregnancy may contribute to the asymptomatic clinical course. 294 

Indeed, crosstalk between progesterone and inflammatory signaling is well 295 

characterized in the reproductive system, most notably in the establishment of uterine 296 

receptivity65 as well as in ovulation66. Consistent with our hypothesis, while this paper 297 

was under review, a clinical trial was launched to evaluate the potential of progesterone 298 

for treatment of COVID-19 in hospitalized men67. Interestingly, and also while this paper 299 

was under review, a paper appeared showing that progesterone inhibited SARS2 300 

replication in African green monkey kidney Vero 6 cells68. These results indicate an 301 

additional mechanism, distinct from its potential crosstalk with the interferon response, 302 

by which progesterone signaling may impact SARS2 infection. 303 

Hypothesis generation use case 3: association of an epithelial to mesenchymal 304 

transition transcriptional signature with SARS2 infection 305 

Epithelial to mesenchymal transition (EMT) is the process by which epithelial cells lose 306 

their polarity and adhesive properties and acquire the migratory and invasive 307 
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characteristics of mesenchymal stem cells69. EMT is known to contribute to pulmonary 308 

fibrosis70, acute interstitial pneumonia71 and acute respiratory distress syndrome 309 

(ARDs)72, all of which have been reported in connection with SARS2 infection in 310 

COVID-1973–75. We were interested to note therefore that significant HCT intersections 311 

for three well characterized EMT-promoting transcription factors were specific to SARS2 312 

infection (q-values: SNAI2/Slug76, 2e-2; EPAS1/HIF2α77, 9e-9; LEF178, 1e-3; Fig. 3, bold 313 

symbols; figshare File F1, section 7). Consistent with this, intersections between HCTs 314 

for TGFBRs, SMAD2 and SMAD3, known regulators of EMT transcriptional programs79 315 

– were stronger with HCTs for SARS2 (q-values: TGFBRs, 2e-31; SMAD2, 2e-7; 316 

SMAD3, 5e-17) than with those of SARS1 (q-values: TGFBRs, 6e-29; SMAD2, 2e-2; 317 

SMAD3, 3e-9) and MERS (q-values: TGFBRs, 1e-16; SMAD2, 3e-3; SMAD3, 2e-12) – 318 

see also Figs. 2 and 3 and figshare File F1, sections 6 and 7). Moreover, a recent 319 

CRISPR/Cas9 screen identified a requirement for both TGFBR signaling and SMAD3 in 320 

mediating SARS2 infection16.  321 

To investigate the connection between SARS2 infection and EMT implied by these HCT 322 

intersections, we then computed intersections between the individual viral HCTs and a 323 

list of 335 genes manually curated from the research literature as EMT markers80 324 

(figshare File F1, section 11). In agreement with the HCT intersection analysis, we 325 

observed significant enrichment of members of this gene set within the SARS2 HCTs (q 326 

= 4e-14), but not the SARS1 or MERS (both q = 2e-1) HCTs (Fig. 7a). Consistent with 327 

previous reports of a potential link between EMT and IAV infection81, we observed 328 

significant intersection between the EMT signature and the IAV HCTs (q = 1e-04). 329 
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One possible explanation for the selective intersection between the literature EMT 330 

signature and the SARS2 HCTs relative to SARS1 and MERS was the fact that the 331 

SARS2 consensome was exclusively comprised of epithelial cell lines, whereas the 332 

SARS1 and MERS consensomes included non-epithelial cell biosamples (figshare File 333 

F1, section 1). To exclude this possibility therefore, we next calculated airway epithelial 334 

cell-specific consensomes for SARS1, SARS2 and MERS and computed intersections 335 

between their HCTs and the EMT signature. We found that significant intersection of the 336 

EMT signature with the CoV HCTs remained specific to SARS2 (q-values: SARS1, 2e-337 

1; SARS2, 1e-8; MERS, 2e-1) in the lung epithelium-specific CoV consensomes.  338 

We next retrieved the canonical EMT genes in the SARS2 HCTs and compared their 339 

percentile rankings with the other CoV consensomes. Although some EMT genes, such 340 

as CXCL2 and IRF9, had elevated rankings across all four viral consensomes, the 341 

collective EMT gene signature had a significantly higher mean percentile value in the 342 

SARS2 consensome than in each of the other viral consensomes (Fig. 7b; SARS2 343 

mean percentile = 97.5; SARS1 mean percentile = 86, p = 1e-5, t-test; MERS mean 344 

percentile = 63, p = 1e-9, t-test; IAV mean percentile = 76, p = 2e-7, t-test). A column 345 

named “EMT” in figshare File F1, sections 2 (SARS1), 3 (SARS2), 4 (MERS) and 5 346 

(IAV) identifies the ranking of the EMT genes in each of the viral consensomes. 347 

Given that EMT has been linked to ARDs72, we speculated that the evidence connecting 348 

EMT and SARS2 acquired through our analysis might be reflected in the relatively 349 

strong intersection between ARDs markers in SARS2 HCTs compared to other viral 350 

HCTs. To test this hypothesis we carried out a PubMed search to identify a set of 88 351 

expression biomarkers of ARDs or its associated pathology, acute lung injury (ALI). A 352 
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column named “ALI/ARDs” in figshare File F1, sections 2 (SARS1), 3 (SARS2) 4 353 

(MERS) and 5 (IAV) identifies the expression biomarker genes using the PubMed 354 

identifiers for the original studies in which they were identified. Consistent with our 355 

hypothesis, we observed appreciable intersections between this gene set and the HCTs 356 

of all four viruses (SARS1 odds ratio (OR) = 7, q = 5e-9; SARS2 OR = 10.4, q = 1e-9; 357 

MERS, OR = 4.2, q = 2e-5; IAV OR = 6.8; q = 9e-8) with a particularly strong 358 

intersection evident in the SARS2 HCTs.  359 

Although EMT has been associated with infection by transmissible gastroenteritis virus82 360 

and IAV81, this is to our knowledge the first evidence connecting CoV infection, and 361 

specifically SARS2 infection, to an EMT signature. Interestingly, lipotoxin A4 has been 362 

shown to attenuate lipopolysaccharide-induced lung injury by reducing EMT83. 363 

Moreover, several members of the group of SARS2-induced EMT genes have been 364 

associated with signature pulmonary comorbidities of CoV infection, including ADAR84, 365 

CLDN185 and SOD286. Of note in the context of these data is the fact that signaling 366 

through two SARS2 cellular receptors, ACE2/AT2 and CD147/basigin, has been linked 367 

to EMT in the context of organ fibrosis87–89. Finally, while this manuscript was under 368 

review, a preprint was posted that described EMT-like transcriptional and metabolic 369 

changes in response to SARS2 infection90. Collectively, our data indicate that EMT 370 

warrants further investigation as a SARS2-specific pathological mechanism.  371 

Hypothesis generation use case 4: SARS2 repression of E2F family HCTs 372 

encoding cell cycle regulators 373 
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Aside from EPAS1 and SNAI2, the only other transcription factors with significant HCT 374 

intersections that were specific to the SARS2 HCTs were the E2F/FOX class members 375 

E2F1 (q-values: SARS1, 5e-1; SARS2, 1e-2; MERS, 4e-1), E2F3 (q-values: SARS1, 376 

6e-1; SARS2, 5e-2; MERS, 7e-1), E2F4 (q-values: SARS1, 1; SARS2, 9e-3; MERS, 1) 377 

and TFDP1/Dp-1 (q-values: SARS1, 1; SARS2, 3e-4; MERS, 1; Fig. 3, bold symbols; 378 

figshare File F1, section 7). These factors play well-documented interdependent roles in 379 

the promotion (E2F1, E2F3, TFDP1) and repression (E2F4) of cell cycle genes91,92. 380 

Moreover, E2F family members are targets of signaling through EGFRs93 and CDK694, 381 

both of whose HCTs had SARS2 HCT intersections that were stronger those of the 382 

other CoVs (EGFRs: q-values: SARS1, 4e-21; SARS2, 3e-48; MERS, 1e-35; CDK6: q-383 

values: SARS1, 1e-7; SARS2, 8e-8; MERS, 2e-4); Figs. 2 & 4). Based on these data, 384 

we speculated that SARS2 infection might impact the expression of E2F-regulated cell 385 

cycle genes more efficiently than other CoVs. To investigate this we retrieved a set of 386 

SARS2 HCTs that were also HCTs for at least three of E2F1, E2F3, E2F4 and TFDP1 387 

(figshare File F1, section 3, columns P-T). Consistent with the role of E2F/Dp-1 nodes in 388 

the regulation of the cell cycle, many of these genes – notably CDK1, PCNA, CDC6, 389 

CENPF and NUSAP1 – are critical positive regulators of DNA replication and cell cycle 390 

progression95–99 and are known to be transcriptionally induced by E2Fs100–103. Strikingly, 391 

with the exception of E2F3, all were consistently repressed in response to SARS2 392 

infection (Fig. 8a). To gain insight into the relative efficiency with which the four viruses 393 

impacted expression of the E2F/Dp-1 HCT signature, we compared their mean 394 

percentile values across the viral consensomes. Consistent with efficient repression of 395 

the E2F/Dp-1 HCTs by SARS2 infection relative to other viruses, their mean percentile 396 
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ranking was appreciably higher in the SARS2 consensome (97th percentile) than in the 397 

SARS1 (76th percentile; p = 6e-12, t-test), MERS (71.2 percentile; p = 9e-6, t-test) and 398 

IAV (71.2 percentile; p = 2e-5, t-test) consensomes (Fig. 8b). Although manipulation of 399 

the host cell cycle and evasion of detection through deregulation of cell cycle 400 

checkpoints has been described for other viruses104–106, this represents the first 401 

evidence for the profound impact of SARS2 infection on host cell cycle regulatory 402 

genes, potentially through disruption of E2F mediated signaling pathways. The SARS2 403 

infection-mediated induction of E2F3 (Fig. 8a) may represent a compensatory response 404 

to transcriptional repression of other E2F family members, as has been previously 405 

observed for this family in other contexts107,108. Consistent with our prediction in this use 406 

case, while this paper was in revision, a study appeared showing that infection by 407 

SARS2 results in cell cycle arrest109. Our results represent evidence that efficient 408 

modulation by SARS2 of E2F signaling, resulting in repression of cell cycle regulatory 409 

genes, may contribute to its unique pathological impact.  410 

Visualization of the CoV transcriptional regulatory networks in the Signaling 411 

Pathways Project knowledgebase and Network Data Exchange repository 412 

To enable researchers to routinely generate mechanistic hypotheses around the 413 

interface between CoV infection human cell signaling, we next made the consensomes 414 

and accompanying HCT intersection analyses freely available to the research 415 

community in the SPP knowledgebase and the Network Data Exchange (NDEx) 416 

repository. Table 1 contains digital object identifier (DOI)-driven links to the consensome 417 

networks in SPP and NDEx, and to the HCT intersection networks in NDEx. 418 
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We have previously described the SPP biocuration pipeline, database and web 419 

application interface10. Figure 9 shows the strategy for consensome data mining on the 420 

SPP website. The individual CoV consensomes can be accessed by configuring the 421 

SPP Ominer query form as shown, in this example for the SARS2 consensome (Fig. 422 

9a). Figure 9b shows the layout of the consensomes, showing gene symbol, name, 423 

percentile ranking and other essential information. Genes in the 90th percentile of each 424 

consensome are accessible via the user interface, with the full consensomes available 425 

for download in a tab delimited text file. Target gene symbols in the consensome link to 426 

the SPP Regulation Report, filtered to show only experimental data points that 427 

contributed to that specific consensome (Fig. 9c). This view gives insights into the 428 

influence of tissue and cell type context on the regulatory relationship. These filtered 429 

reports can be readily converted to default Reports that show evidence for regulation of 430 

a specific gene by other signaling pathway nodes. As previously described, pop-up 431 

windows in the Report provide experimental details, in addition to links to the parent 432 

dataset (Fig. 9d), curated accordingly to our previously described protocol10. Per FAIR 433 

data best practice, CoV infection datasets – like all SPP datasets – are associated with 434 

detailed descriptions, assigned a DOI, and linked to the associated article to place the 435 

dataset in its original experimental context (Fig. 9d). The full list of datasets is available 436 

for browsing in the SPP Dataset listing (https://www.signalingpathways.org/index.jsf).  437 

The NDEx repository facilitates collaborative publication of biological networks, as well 438 

as visualization of these networks in web or desktop versions of the popular and 439 

intuitive Cytoscape platform110–112. Figure 10 shows examples of consensome and HCT 440 

intersection network visualizations within the NDEx user interface. For ease of viewing, 441 
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the initial rendering of the full SARS2 (Fig. 10a) and other consensome networks shows 442 

a sample (Fig. 10a, red arrow 1) containing only the top 5% of regulated transcripts; the 443 

full data can be explored using the “Neighborhood Query” feature available at the 444 

bottom of the page (red arrow 2). The integration in NDEx of the popular Cytoscape 445 

desktop application enables any network to be seamlessly be imported in Cytoscape for 446 

additional analysis (red arrow 3). Zooming in on a subset of the SARS2 consensome 447 

(orange box) affords an appreciation of the diversity of molecular classes that are 448 

transcriptionally regulated in response to SARS2 infection (Fig. 10b). Transcript size is 449 

proportional to rank percentile, and edge weight is proportional to the transcript 450 

geometric mean fold change (GMFC) value. Selecting a transcript allows the associated 451 

consensome data, such as rank, GMFC and family, to be examined in detail using the 452 

information panel (Fig. 10b, right panel). Highlighted to exemplify this feature is IL6, an 453 

inflammatory ligand that has been previously linked to SARS2 pathology8,113. 454 

Consensome GMFCs are signless with respect to direction of regulation10. Researchers 455 

can therefore follow the SPP link in the side panel (Fig. 10b, red arrow 4) to view the 456 

individual underlying experimental data points on the SPP site (Fig. 9c shows the 457 

example for IFI27). A network of the top 20 ranked transcripts in the SARS2 458 

consensome (Fig. 10c) includes genes with known (OAS1, MX1114) and previously 459 

uncharacterized (PDZKIP1, SAT1, TM4SF4) transcriptional responses to SARS2 460 

infection. Finally, to afford insight into pathway nodes whose gain or loss of function 461 

contributes to SARS2 infection-induced signaling, Figure 10d shows the top 5% ranked 462 

nodes in the SARS2 node HCT ChIP-Seq intersection network (see figshare File F1, 463 

section 7; see also Figs. 2 & 3 and accompanying discussion above). In this, as with all 464 
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HCT intersection networks, node size is proportional to the q-value, such that the larger 465 

the circle, the lower the q-value, and the higher the confidence that a particular node or 466 

node family is involved in the transcriptional response to viral infection. 467 

The visual organization of the NDEx interface offers insights into the impact of CoV 468 

infection on human cell signaling that are not readily appreciated in the current SPP 469 

interface. For example, it is readily apparent from the NDEx SARS2 consensome 470 

network (Fig. 10c; Table 1) that the single largest class of SARS2 HCTs encodes 471 

immunomodulatory ligands (OR = 4.6, p = 3.8 e-24, hypergeometric test), many of 472 

which are members of the cytokine and chemokine superfamilies. In contrast, although 473 

still overabundant (OR = 1.58, p = 6.8e-4, hypergeometric test), inflammatory ligands 474 

comprise a considerably smaller proportion of the SARS1 HCTs (Table 1). These data 475 

represent evidence that SARS2 infection is relatively efficient in modulating a 476 

transcriptional inflammatory response in host cells. Consistent with this hypothesis, and 477 

while this manuscript was under review, a study appeared showing induction of 478 

interferon-stimulated genes in COVID-19 patients was more robust than in response to 479 

SARS1 infection115.  480 
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Discussion 481 

An effective research community response to the impact of CoV infection on human 482 

health demands systematic exploration of the transcriptional interface between CoV 483 

infection and human cell signaling systems. It also demands routine access to 484 

computational analysis of existing datasets that is unhindered either by paywalls or by 485 

lack of the informatics training required to manipulate archived datasets in their 486 

unprocessed state. Moreover, the substantial logistical obstacles to high containment 487 

laboratory certification emphasize the need for fullest possible access to, and re-488 

usability of, existing CoV infection datasets to focus and refine hypotheses prior to 489 

carrying out in vivo CoV infection experiments. Meta-analysis of existing datasets 490 

represents a powerful approach to establishing consensus transcriptional signatures – 491 

consensomes – which identify those human genes whose expression is most 492 

consistently and reproducibly impacted by CoV infection. Moreover, integrating these 493 

consensus transcriptional signatures with existing consensomes for cellular signaling 494 

pathway nodes can illuminate transcriptional convergence between CoV infection and 495 

human cell signaling nodes. 496 

To this end, we generated a set of CoV infection consensomes that rank human genes 497 

by the reproducibility of their differential expression (p < 0.05) in response to infection of 498 

human cells by CoVs. Using HCT intersection analysis, we then computed the CoV 499 

consensomes against high confidence transcriptional signatures for a broad range of 500 

cellular signaling pathway nodes, affording investigators with a broad range of signaling 501 

interests an entrez into the study of CoV infection of human cells. Although other 502 

enrichment based pathway analysis tools exist116, HCT intersection analysis differs from 503 
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these by computing against only genes that have the closest predicted regulatory 504 

relationships with upstream pathway nodes (i.e. HCTs). The use cases described here 505 

represent illustrative examples of the types of analyses that users are empowered to 506 

carry out in the CoV infection knowledgebase.  507 

Previous network analyses across independent viral infection transcriptomic datasets, 508 

although valuable, have been limited to stand-alone studies117,118. Here, to enable 509 

access to the CoV consensomes and their >3,000,000 underlying data points by the 510 

broadest possible audience, we have integrated them into the SPP knowledgebase and 511 

NDEx repository to create a unique, federated environment for generating hypotheses 512 

around the impact of CoV infection on human cell signaling. NDEx provides users with 513 

the familiar look and feel of Cytoscape to reduce barriers of accessibility and provides 514 

for intuitive click-and-drag data mining strategies. Incorporation of the CoV data points 515 

into SPP places them in the context of millions more existing SPP data points 516 

documenting transcriptional regulatory relationships between human pathway nodes 517 

and their genomic targets. In doing so, we provide users with evidence for signaling 518 

nodes whose gain or loss of function in response to CoV infection gives rise to these 519 

transcriptional patterns. The transcriptional impact of viral infection is known to be an 520 

amalgam of host antiviral responses and co-option by viruses of the host signaling 521 

machinery in furtherance of its life cycle. It is hoped that dissection of these two distinct 522 

modalities in the context of CoV infection will be facilitated by the availability of the CoV 523 

consensomes in the SPP and NDEx knowledgebases. 524 

The CoV consensomes have a number of limitations. Primarily, since they are 525 

predicated specifically on transcriptional regulatory technologies, they will assign low 526 
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rankings to transcripts that may not be transcriptionally responsive to CoV infection, but 527 

whose encoded proteins nevertheless play a role in the cellular response. For example, 528 

MASP2, which encodes an important node in the response to CoV infection119, has 529 

either a very low consensome ranking (SARS1, MERS and IAV), or is absent entirely 530 

(SARS2), indicating that it is transcriptionally unresponsive to viral infection and likely 531 

activated at the protein level in response to upstream signals. This and similar instances 532 

therefore represent “false negatives” in the context of the impact of CoV infection on 533 

human cells. Another limitation of the transcriptional focus of the datasets is the 534 

absence of information on specific protein interactions and post-translational 535 

modifications, either viral-human or human-human, that give rise to the observed 536 

transcriptional responses. Although these can be inferred to some extent, the availability 537 

of existing32,68,109 and future proteomic and kinomic datasets will facilitate modeling of 538 

the specific signal transduction events giving rise to the downstream transcriptional 539 

responses. Finally, although detailed metadata are readily available on the underlying 540 

data points, the consensomes do not directly reflect the impact of variables such as 541 

tissue context or duration of infection on differential gene expression. As additional 542 

suitable archived datasets become available, we will be better positioned to generate 543 

more specific consensomes of this nature. 544 

The human CoV and IAV consensomes and their underlying datasets are intended as 545 

“living” resources in SPP and NDEx that will be updated and versioned with appropriate 546 

datasets as resources permit. This will be particularly important in the case of SARS2, 547 

given the expanded budget that worldwide funding agencies are likely to allocate to 548 

research into the impact of this virus on human health. Incorporation of future datasets 549 

.CC-BY 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted July 15, 2020. . https://doi.org/10.1101/2020.04.24.059527doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.24.059527
http://creativecommons.org/licenses/by/4.0/


 

26 
 

will allow for clarification of observations that are intriguing, but whose significance is 550 

currently unclear, such as the intersection between the CoV HCTs and those of the 551 

telomerase catalytic subunit (figshare File F2), as well as the enrichment of EMT genes 552 

among those with elevated rankings in the SARS2 consensome (Fig. 7). Although they 553 

are currently available on the SPP website, distribution of the CoV consensome data 554 

points via the SPP RESTful API10 will be essential for the research community to fully 555 

capitalize on this work. For example, several co-morbidities of SARS2 infection, 556 

including renal and gastrointestinal disorders, are within the mission of the National 557 

Institute of Diabetes, Digestive and Kidney Diseases. In an ongoing collaboration with 558 

the NIDDK Information Network (DKNET)120, the SPP API will make the CoV 559 

consensome data points available in a hypothesis generation environment that will 560 

enable users to model intersections of CoV infection-modulated host signaling with their 561 

own research areas of interest. We welcome feedback and suggestions from the 562 

research community for the future development of the CoV infection consensomes and 563 

HCT node intersection networks. 564 

 565 

 566 

 567 

 568 

 569 

  570 
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Methods  571 

Consistent with emerging NIH mandates on rigor and reproducibility, we have used the 572 

Research Resource Identifier (RRID) standard121 to identify key research resources of 573 

relevance to our study.  574 

Dataset biocuration 575 

Datasets from Gene Expression Omnibus (SCR_005012) and Array Express 576 

(SCR_002964) were biocurated as previously described, with the incorporation of an 577 

additional classification of peptide ligands122 to supplement the existing mappings 578 

derived from the International Union of Pharmacology Guide To Pharmacology 579 

(SCR_013077).  580 

Dataset processing and consensome analysis 581 

Array data processing To process microarray expression data, we utilized the log2 582 

summarized and normalized array feature expression intensities provided by the 583 

investigator and housed in GEO. These data are available in the corresponding “Series 584 

Matrix Files(s)”. The full set of summarized and normalized sample expression values 585 

were extracted and processed in the statistical program R. To calculate differential gene 586 

expression for investigator-defined experimental contrasts, we used the linear modeling 587 

functions from the Bioconductor limma analysis package 123. Initially, a linear model was 588 

fitted to a group-means parameterization design matrix defining each experimental 589 

variable. Subsequently, we fitted a contrast matrix that recapitulated the sample 590 

contrasts of interest, in this case viral infection vs mock infection, producing fold-change 591 

and significance values for each array feature present on the array. The current 592 
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BioConductor array annotation library was used for annotation of array identifiers. P 593 

values obtained from limma analysis were not corrected for multiple comparisons. RNA-594 

Seq data processing. To process RNA-Seq expression data, we utilized the aligned, un-595 

normalized, gene summarized read count data provided by the investigator and housed 596 

in GEO. These data are available in the corresponding “Supplementary file” section of 597 

the GEO record. The full set of raw aligned gene read count values were extracted and 598 

processed in the statistical program R using the limma123 and edgeR analysis124 599 

packages. Read count values were initially filtered to remove genes with low read 600 

counts. Gene read count values were passed to downstream analysis if all replicate 601 

samples from at least one experimental condition had cpm > 1. Sequence library 602 

normalization factors were calculated to apply scale normalization to the raw aligned 603 

read counts using the TMM normalization method implemented in the edgeR package 604 

followed by the voom function125 to convert the gene read count values to log2-cpm. 605 

The log2-cpm values were initially fit to a group-means parameterization design matrix 606 

defining each experimental variable. This was subsequently fit to a contrast design 607 

matrix that recapitulates the sample contrasts of interest, in this case viral infection vs 608 

mock infection, producing fold-change and significance values for each aligned 609 

sequenced gene. If necessary, the current BioConductor human organism annotation 610 

library was used for annotation of investigator-provided gene identifiers. P values 611 

obtained from limma analysis were not corrected for multiple comparisons. 612 

Differential expression values were committed to the consensome analysis pipeline as 613 

previously described10. Briefly, the consensome algorithm surveys each experiment 614 

across all datasets and ranks genes according to the frequency with which they are 615 
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significantly differentially expressed. For each transcript, we counted the number of 616 

experiments where the significance for differential expression was ≤0.05, and then 617 

generated the binomial probability, referred to as the consensome p-value (CPV), of 618 

observing that many or more nominally significant experiments out of the number of 619 

experiments in which the transcript was assayed, given a true probability of 0.05. Genes 620 

were ranked firstly by CPV, then by geometric mean fold change (GMFC). A more 621 

detailed description of the transcriptomic consensome algorithm is available in a 622 

previous publication10. The consensomes and underlying datasets were loaded into an 623 

Oracle 13c database and made available on the SPP user interface as previously 624 

described10. 625 

Statistical analysis  626 

High confidence transcript intersection analysis was performed using the Bioconductor 627 

GeneOverlap analysis package17 (SCR_018419) implemented in R. Briefly, given a 628 

whole set I of IDs and two sets A ∈ I and B ∈ I, and S = A ∩ B, GeneOverlap calculates 629 

the significance of obtaining S. The problem is formulated as a hypergeometric 630 

distribution or contingency table, which is solved by Fisher’s exact test. p-values were 631 

adjusted for multiple testing by using the method of Benjamini & Hochberg to control the 632 

false discovery rate as implemented with the p.adjust function in R, to generate q-633 

values. The universe for the intersection was set at a conservative estimate of the total 634 

number of transcribed (protein and non protein-coding) genes in the human genome 635 

(25,000)126. R code for analyzing the intersection between an investigator gene set and 636 

CoV consensome HCTs has been deposited in the SPP Github account. A two tailed 637 

two sample t-test assuming equal variance was used to compare the mean percentile 638 
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ranking of the EMT (12 degrees of freedom) and E2F (14 degrees of freedom) 639 

signatures in the MERS, SARS1, SARS2 and IAV consensomes using the PRISM 640 

software package (SCR_005375).  641 

Consensome generation 642 

The procedure for generating transcriptomic consensomes has been previously 643 

described10. To generate the ChIP-Seq consensomes, we first retrieved processed 644 

gene lists from ChIP-Atlas127 (SCR_015511), in which human genes are ranked based 645 

upon their average MACS2 occupancy across all publically archived datasets in which a 646 

given pathway node is the IP antigen. Of the three stringency levels available (10, 5 and 647 

1 kb from the transcription start site), we selected the most stringent (1 kb). According to 648 

SPP convention10, we then mapped the IP antigen to its pathway node category, class 649 

and family, and the experimental cell line to its appropriate biosample physiological 650 

system and organ. We then organized the ranked lists into percentiles to generate the 651 

node ChIP-Seq consensomes. The 95th percentiles of all consensomes (HCTs, high 652 

confidence transcriptional targets) was used as the input for the HCT intersection 653 

analysis. 654 

SPP web application 655 

The SPP knowledgebase (SCR_018412) is a gene-centric Java Enterprise Edition 6, 656 

web-based application around which other gene, mRNA, protein and BSM data from 657 

external databases such as NCBI are collected. After undergoing semiautomated 658 

processing and biocuration as described above, the data and annotations are stored in 659 

SPP’s Oracle 13c database. RESTful web services exposing SPP data, which are 660 
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served to responsively designed views in the user interface, were created using a Flat 661 

UI Toolkit with a combination of JavaScript, D3.JS, AJAX, HTML5, and CSS3. 662 

JavaServer Faces and PrimeFaces are the primary technologies behind the user 663 

interface. SPP has been optimized for Firefox 24+, Chrome 30+, Safari 5.1.9+, and 664 

Internet Explorer 9+, with validations performed in BrowserStack and load testing in 665 

LoadUIWeb. XML describing each dataset and experiment is generated and submitted 666 

to CrossRef (SCR_003217) to mint DOIs10. 667 

  668 
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Data availability  669 

Important note on data availability: this paper refers to the first versions of the 670 

consensomes and HCT intersection networks based on the datasets available at the 671 

time of publication. As additional CoV infection datasets are archived over time, we will 672 

make updated versions of the consensomes and HCT intersection analyses accessible 673 

in future releases. The entire set of experimental metadata is available in figshare File 674 

F1, section 1. Consensome data points are in figshare File F1, sections 2-5.  675 

SPP SPP MERS137, SARS1141, SARS2145 and IAV149 consensomes, their underlying 676 

data points and metadata, as well as original datasets, are freely accessible at 677 

https://ww.signalingpathways.org. Programmatic access to all underlying data points 678 

and their associated metadata are supported by a RESTful API at 679 

https://www.signalingpathways.org/docs/. All SPP datasets are biocurated versions of 680 

publically archived datasets, are formatted according to the recommendations of the 681 

FORCE11 Joint Declaration on Data Citation Principles, and are made available under 682 

a Creative Commons CC BY 4.0 license. The original datasets are available are linked 683 

to from the corresponding SPP datasets using the original repository accession 684 

identifiers. These identifiers are for transcriptomic datasets, the Gene Expression 685 

Omnibus (GEO) Series (GSE); and for cistromic/ChIP-Seq datasets, the NCBI 686 

Sequence Read Archive (SRA) study identifier (SRP). SPP consensomes are assigned 687 

DOIs as shown in Table 1. 688 

NDEx NDEx versions of consensomes (MERS138, SARS1142, SARS2146 and IAV150) and 689 

node family (MERS139, SARS1143, SARS2147 and IAV151) and node (MERS140, 690 
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SARS1144, SARS2148 and IAV152) HCT intersection networks are freely available in the 691 

NDEx repository and assigned DOIs as shown in Table 1. NDEx is a recommended 692 

repository for Scientific Data, Springer Nature and the PLOS family of journals and is 693 

registered on FAIRsharing.org; for additional info and documentation, please visit 694 

http://ndexbio.org. The official SPP account in NDEx is available at: 695 

https://bit.ly/30nN129.  696 

Code availability  697 

SPP source code is available in the SPP GitHub account under a Creative Commons 698 

CC BY 4.0 license at https://github.com/signaling-pathways-project.    699 
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Figure Titles and Legends 1108 

Figure 1. Rankings of canonical interferon-stimulated genes (ISGs) in the viral 1109 

consensomes. Shown are the percentile rankings of 20 ISGS12 in the SARS1 (a), 1110 

SARS2 (b), MERS (c) and IAV (d) consensomes. Note that numerous genes have 1111 

identical q-value and percentile values and are therefore superimposed in the plots. Full 1112 

underlying data are provided in figshare File 1. Please refer to the Methods section for a 1113 

full description of the consensome algorithm. 1114 

Figure 2. High confidence transcriptional target (HCT) intersection analysis of 1115 

viral infection and human receptors or signaling enzymes based on 1116 

transcriptomic consensomes. Full numerical data are provided in figshare File F1, 1117 

section 6. Due to space constraints some class and family names may differ slightly 1118 

from those in the SPP knowledgebase. All q-values refer to those obtained using the 1119 

GeneOverlap analysis package in R17. 1120 

Figure 3. High confidence transcriptional target (HCT) intersection analysis of 1121 

viral infection and human transcription factors based on ChIP-Seq consensomes. 1122 

White cells represent q > 5e-2 intersections. Full numerical data are provided in figshare 1123 

File F1, section 7. Due to space constraints some class and family names may differ 1124 

slightly from those in the SPP knowledgebase. All q-values refer to those obtained using 1125 

the GeneOverlap analysis package in R17. 1126 

Figure 4. High confidence transcriptional target (HCT) intersection analysis of 1127 

viral infection and human signaling enzymes based on ChIP-Seq consensomes. 1128 

White cells represent non-significant (q > 5e-2) intersections. Full numerical data are 1129 

provided in figshare File F1, section 7. Due to space constraints some class and family 1130 
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names may differ slightly from those in the SPP knowledgebase. All q-values refer to 1131 

those obtained using the GeneOverlap analysis package in R17. 1132 

Figure 5. Hypothesis generation use case 1: strain- and tissue-specific regulation 1133 

of ACE2 in response to CoV infection of human cells. All data points are p < 0.05. 1134 

Refer to figshare File F1, section 1 for full details on the underlying datasets. 1135 

Figure 6. Hypothesis generation use case 2: antagonism between PGR and 1136 

SARS2 inflammatory signaling in the regulation of viral response genes in the 1137 

airway epithelium. GMFC: geometric mean fold change. PGR loss of function 1138 

experiments were retrieved from the SPP knowledgebase128.  1139 

Figure 7. Hypothesis generation use case 3: evidence for a SARS2 infection-1140 

associated EMT transcriptional signature. a. CoV HCT intersection with the 1141 

literature-curated EMT signature for all-biosample and lung epithelium-specific 1142 

consensomes. The IAV consensome is comprised of lung epithelial cell lines and was 1143 

therefore omitted from the lung epithelium-only consensome analysis. Refer to the 1144 

column “EMT” in figshare File F1, section 3 for the list of EMT SARS2 HCTs. q-values 1145 

refer to those obtained using the GeneOverlap analysis package in R17. b. Comparison 1146 

of mean percentile ranking of the EMT-associated SARS2 HCTs across viral 1147 

consensomes. Note that SARS2 HCTs are all in the 97-99th percentile and are therefore 1148 

superimposed in the scatterplot. Indicated are the results of the two-tailed two sample t-1149 

test assuming equal variance comparing the percentile rankings of the SARS2 EMT 1150 

HCTs across the four viral consensomes. 1151 

Figure 8. Hypothesis generation use case 4: efficient SARS2 repression of E2F 1152 

family HCTs encoding key cell cycle regulators. a. Relative abundance of E2F HCT 1153 
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cell cycle regulators in response to SARS2 infection. b. Comparison of SARS2, SARS1, 1154 

MERS and IAV consensome percentiles of the E2F HCT cell cycle regulators. Indicated 1155 

are the results of the two-tailed two sample t-test assuming equal variance comparing 1156 

the percentile rankings of the SARS2 EMT HCTs across the four viral consensomes. 1157 

Figure 9. Mining of CoV consensomes and underlying data points in the SPP 1158 

knowledgebase. a. The Ominer query form can be configured as shown to access the 1159 

CoV infection consensomes. In the example shown, the user wishes to view the SARS2 1160 

consensome. b. Consensomes are displayed in a tabular format. Target transcript 1161 

symbols in the consensomes link to SPP transcriptomic Regulation Reports (c) c. 1162 

Regulation Reports for consensome transcripts are filtered to show only data points that 1163 

contributed to their consensome ranking. Clicking on a data point opens a Fold Change 1164 

Information window that links to the SPP curated version of the original archived dataset 1165 

(d). d. Like all SPP datasets, CoV infection datasets are comprehensively aligned with 1166 

FAIR data best practice and feature human-readable names and descriptions, a DOI, 1167 

one-click addition to citation managers, and machine-readable downloadable data files. 1168 

For a walk-through of CoV consensome data mining options in SPP, please refer to the 1169 

accompanying YouTube video (http://tiny.cc/2i56rz). 1170 

Figure 10. Visualization of viral consensomes and HCT intersection networks in 1171 

the NDEx repository. In all panels, transcripts (consensome networks; panels a, b & c) 1172 

and nodes (HCT intersection network; panel d) are color-coded according to their 1173 

category as follows: receptors (orange), enzymes (blue), transcription factors (green), 1174 

ion channels (mustard) and co-nodes (grey). Additional contextual information is 1175 

available in the description of each network on the NDEx site. Red arrows are explained 1176 

.CC-BY 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted July 15, 2020. . https://doi.org/10.1101/2020.04.24.059527doi: bioRxiv preprint 

http://tiny.cc/2i56rz
https://doi.org/10.1101/2020.04.24.059527
http://creativecommons.org/licenses/by/4.0/


 

56 
 

in the text. a. Sample view of SARS2 consensome showing top 5% of transcripts. White 1177 

rectangles represent classes to which transcripts have been mapped in the SPP 1178 

biocuration pipeline10. Orange rectangle refers to the view in panel b. b. Zoomed-in view 1179 

of orange rectangle in panel A. IL6 transcript is highlighted to show the contextual 1180 

information available in the side panel. c. Top 20 ranked transcripts in the SARS2 1181 

consensome. Edge widths are proportional to the GMFC. d. Selected classes 1182 

represented in the top 5% of nodes in the SARS2 ChIP-Seq HCT intersection network. 1183 

Node circle size is inversely proportional to the intersection q-value.  1184 

  1185 
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Tables and Table legends 1186 

Table 1. DOI-driven links to consensomes and HCT intersection networks. SPP 1187 

DOIs point to the web browser version of the consensome, which contains a 1188 

downloadable version of the full consensome. For clarity of visualization, NDEx 1189 

consensome DOIs point to networks containing transcripts in the top 5% of each 1190 

consensome (i.e. HCTs for each viral infection); the full consensome network can be 1191 

reached from this page. Similarly, NDEx HCT intersection DOIs point to networks 1192 

containing nodes in the top 5% of each HCT intersection network; the full HCT 1193 

intersection network can be reached from this page. TX, transcriptomic node family 1194 

intersection; CX, ChIP-Seq node intersection. 1195 

  1196 
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Table 1 1197 

 1198 

 1199 

 1200 

 1201 

 1202 

 1203 

 1204 

Virus Resource Network type DOI Reference 

MERS-CoV SPP Consensome 10.1621/jgxM527b8s.1  137 

 NDEx Consensome 10.18119/N9QG7S  138 

  HCT intersection (TX) 10.18119/N9PG63 139 

  HCT intersection (CX) 10.18119/N96G6R 140 

SARS-CoV-1 SPP Consensome 10.1621/jgxM527b8s.1 141 

 NDEx Consensome 10.18119/N9KP4G 142 

  HCT intersection (TX) 10.18119/N9JS46 143 

  HCT intersection (CX) 10.18119/N92P56 144 

SARS-CoV-2 SPP Consensome 10.1621/k9ygy4i49j.1 145 

 NDEx Consensome 10.18119/N9G02W 146 

  HCT intersection (TX) 10.18119/N9F016 147 

  HCT intersection (CX) 10.18119/N9Z01V 148 

IAV SPP Consensome 10.1621/58AOyXDIAH.1 149 

 NDEx Consensome 10.18119/N9B60Z 150 

  HCT intersection (TX) 10.18119/N9989R 151 

  HCT intersection (CX) 10.18119/N9T609 152 

.CC-BY 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted July 15, 2020. . https://doi.org/10.1101/2020.04.24.059527doi: bioRxiv preprint 

https://dx.doi.org/10.1621/jgxM527b8s.1
https://dx.doi.org/10.18119/N9QG7S
https://dx.doi.org/10.18119/N9PG63
https://dx.doi.org/10.18119/N96G6R
https://dx.doi.org/10.1621/jgxM527b8s.1
https://dx.doi.org/10.18119/N9KP4G
https://dx.doi.org/10.18119/N9JS46
https://dx.doi.org/10.18119/N92P56
https://dx.doi.org/10.1621/k9ygy4i49j.1
https://dx.doi.org/10.18119/N9G02W
https://dx.doi.org/10.18119/N9F016
https://dx.doi.org/10.18119/N9Z01V
https://dx.doi.org/10.1621/58AOyXDIAH.1
https://dx.doi.org/10.18119/N9B60Z
https://dx.doi.org/10.18119/N9989R
https://dx.doi.org/10.18119/N9T609
https://doi.org/10.1101/2020.04.24.059527
http://creativecommons.org/licenses/by/4.0/


0

10

20

30

40

50

60

70

80

90

100

1E-131E-111E-091E-071E-051E-031E-01

C
on

se
ns

o
m

e 
pe

rc
en

til
e

IFI27
OAS1

Consensome q-value

IFIT1
IFIH1
DDX58

IFI6
IFIT3
MX1
ISG15

IRF9
IFIT2
ISG20
IFITM3
IFITM1
IFI35

IFI35
IRF7
IFIT5

IFI35
IRF7
IFIT5

IFITM2

IFI16

IFI30

SARS2
C

on
se

ns
o

m
e 

pe
rc

en
til

e

Consensome q-value

SARS1

0

10

20

30

40

50

60

70

80

90

100

1E-551E-471E-391E-311E-231E-151E-07

IFIT1

IFI6
IFI35

IFIT2
MX1

IFITM1
DDX58 ISG15OAS1

IRF9
IFIT5
IFIH1
IRF7
IFITM3
ISG20

IFIT3

IFITM2

IFI27
IFI16

IFI30

0

10

20

30

40

50

60

70

80

90

100

1E-581E-491E-401E-311E-221E-131E-04

C
on

se
ns

o
m

e 
pe

rc
en

til
e

Consensome q-value

MERS

IFI35IFIT1
IFIT3

IFIT5

IFIT2
IFI30
ISG20
IRF9

IFIH1
IFI16

IRF7
IFITM3

OAS1

ISG15
IFITM1
IFITM2

MX1

IFI27

DDX58

IFI6

0

10

20

30

40

50

60

70

80

90

100

1E-191E-161E-131E-101E-071E-041E-01

C
on

se
ns

o
m

e 
pe

rc
en

til
e

Consensome q-value

IAV

IFIT2
IFI27
MX1
IFITM1
IFITM3
IRF9

IFIT1
IFIT3
ISG15
OAS1
DDX58
IRF7
IFIH1
IFI35
IFIT5
ISG20
IFITM2

IFI6
IFI16

IFI30

a. b.

c. d.

.CC-BY 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted July 15, 2020. . https://doi.org/10.1101/2020.04.24.059527doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.24.059527
http://creativecommons.org/licenses/by/4.0/


Category Class Family SARS1 SARS2 MERS IAV

Receptors Cataly�c receptors Collagen receptors

Epidermal growth factor receptors

Fibroblast growth factor receptors

Insulin receptor family

Interferon receptor family

Notch receptors

Toll-like receptors

Transforming growth factor-β receptor family

Tumor necrosis factor receptors

G protein coupled receptors Class Frizzled GPCRs

Nuclear receptors Androgen receptor

Estrogen receptors

Estrogen-related receptors

Glucocor�coid receptor

Peroxisome proliferator-ac�vated receptors

Progesterone receptor

Re�noic acid receptors

Re�noid X receptors

Vitamin D receptor

Xenobio�c receptors

Enzymes Kinases Abl kinases (ABL)

Cyclin-dependent kinases (CDK)

Src kinases

Nucleo�dyltransferases Telomerase reverse transcriptase

DNA topoisomerases (TOP)

Pathway node family transcriptomic HCTs Viral HCTs intersec�on q-value

<1E-65

1E-60-1E-65

1E-55-1E-60

1E-50-1E-55

1E-45-1E-50

1E-40-1E-45

1E-35-1E-40

1E-30-1E-35

1E-25-1E-30

1E-20-1E-25

1E-15-1E-20

1E-10-1E-15

1E-5-1E-10

5E-2-1E-5

q-value.CC-BY 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted July 15, 2020. . https://doi.org/10.1101/2020.04.24.059527doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.24.059527
http://creativecommons.org/licenses/by/4.0/


Class Family NodeColumn1SARS1 SARS2 MERS IAV Class Family NodeColumn1SARS1 SARS2 MERS IAV

ARID domain ARID1 family ARID1A E2F/FOX FOXM FOXM1

ARID2 family ARID2 FOXO FOXO1

ARID3 family ARID3A FOXP FOXP1

BHLH factors Ahr-like family AHR FOXP2

AHRR Forkhead/winged helix Regulatory X (RFX) RFX5

EPAS1 Grainyhead domain GRH-like protein GRHL2

HIF1A GRHL3

AP-2 family TFAP2A Heat shock factors HSF HSF1

TFAP2C Heteromeric CCAAT bdg Heteromeric CCAAT bdg NFYA

AP-4 family TFAP4 NFYB

Arnt-like ARNT NFYC

ARNTL HMG domain Canonical HMG protein HMGB2

CLOCK Group B SOX2

E2A-related TCF12 SOX3

TCF3 Group E SOX9

TCF4 TCF-7-related LEF1

Hairy-related BHLHE40 TCF7L2

HEY1 UBF-related UBTF

Mad-like MXI1 WHSC1-related SSRP1

MESP TCF21 Homeo domain Caudal type homeobox (CDX) CDX2

Mondo-like MLXIP HNF1-like HNF1B

Myc / Max MAX HOX4 HOXA4

MYC HOX5 HOXC5

MYCN HOX6-7 HOXA6

Myogenic TFs MYF5 Nanog homeobox NANOG

MYOD1 NK-2.1 NKX2-1

Neurogenin-Atonal like NEUROD1 Oct-1/2-like (POU2 ) POU2F2

SREBP SREBF1 Orthoden�cle homeobox OTX2

SREBF2 PBX PBX1

Tal/HEN-like TAL1 PBX3

TFE3-like MITF PBX4

TFEB SATB SATB1

Twist-like HAND2 SIX1-like SIX1

USF USF1 SIX2

USF2 TLX TLX1

BZIP factors ATF-2-like ATF2 ZHX ZHX2

ATF3 Zn finger E-box bdg homeobox ZEB1

JDP2 MADS box Myocyte enhancer 2 MEF2A

ATF-4-related ATF4 MEF2B

B-ATF-related BATF MEF2C

BATF3 Responders to external signals   SRF

C/EBP CEBPA p53 domain p53-related TP53

CEBPB TP63

CEBPD Paired box PAX-2-like (par�al homeobox) PAX5

DDIT3 Rel Homology Region Early B-Cell-related EBF1

CREB-like CREB1 EBF3

Fos FOS IkappaB-related BCL3

FOSL1 M RBPJ

FOSL2 NFAT-related NFATC1

Jun JUN NF-kappaB p50 subunit-like NFKB1

JUNB NFKB2

JUND REL

Large Maf MAF RELA

NF-E2-like BACH1 RELB

BACH2 Runt domain Core-binding subunit CBFB

NFE2L2 RUNX1

Small Maf MAFF RUNX1T1

MAFG RUNX2

MAFK RUNX3

C2H2 Zn finger factors B-cell lymphoma 13 BCL11B SAND domain Sp140-like SP140

B-cell lymphoma 2 BCL11A SMAD/NF1 DBD Co-ac�va�ng (Co) Smads SMAD4

BCL6 BCL6 Regulatory (R) Smads SMAD1

CTCF-like CTCF SMAD2

CTCFL SMAD3

Early growth response EGR1 STAT domain STAT STAT1

GFI1 GFI1 STAT2

Gli-like GLI2 STAT3

Hypermethy. in Cancer HIC1 STAT4

Ikaros IKZF1 STAT5A

Kruppel-like KLF1 STAT5B

KLF11 T Box factors TBrain-related TBX21

KLF4 TBX2-related (TBX) TBX2

KLF5 TEA domain TEF-1-related TEAD1

KLF6 TEAD4

MAZ-like MAZ Tryptophan cluster EHF-like ELF3

PLAG Zinc Finger PLAG1 Elf-1-like ELF1

REST REST Elk-like ELK1

Sal-like SALL3 ELK4

Snail-like SNAI2 ETV1

Sp1-like SP1 ETV4

SP2 ETV5

SP4 Ets-like ERG

YY1-like YY1 ETS1

ZBTB17 ZBTB17 FLI1

ZBTB7 ZBTB7A GABPA

ZFX/ZFY ZFX Interferon-regulatory IRF1

ZNF263 ZNF263 IRF2

ZNF341 ZNF341 IRF4

ZNF362-like ZNF384 IRF8

ZNF366-like ZNF366 Myb-like MYB

ZNF639-like ZNF711 MYBL2

ZNF76-like ZNF143 Nuclear receptor corepressor NCOR1

ZNF83 ZNF83 NCOR2

ZNF92 ZNF92 REST corepressor RCOR1

ZNF99-like ZBTB48 Spi-like SPI1

CXXC zinc finger CpG-binding protein CXXC1 Others Bromodomain PHD finger BPTF

E2F/FOX Dp-1 TFDP1 Nuclear I NFIC

E2F E2F1 PR/SET domain PRDM1

E2F4 Single GATA-type zinc-finger MTA3

E2F6 TRPS1

FOXA FOXA1 Two zinc-finger GATA GATA1

FOXA2 GATA2

FOXF FOXF1 GATA3

FOXH FOXH1 GATA4

FOXK FOXK1 GATA6

Pathway node ChIP-Seq consensome HCTs Viral HCTs intersec�on q-value Pathway node ChIP-Seq consensome Viral HCTs intersec�on q-value

<1E-30

1E-25-1E-30

1E-20-1E-25

1E-15-1E-20

1E-10-1E-15

1E-5-1E-10

1E-2-1E-5

5E-2-1E-2

q-value
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Class Family NodeColumn3SARS1 SARS2 MERS IAV

Acetyltransferases CBP/p300 CREBBP

EP300

Lysine acetyltransferases (KAT) KAT7

Nuclear receptor coac�vator (NCOA) NCOA1

ATPases EP400 EP400

Deacetylases Histone deacetylases (HDAC) HDAC1

HDAC2

HDAC6

Demethylases Histone-H3-lysine-36 demethylases (KDM) KDM1A

KDM2B

KDM4A

KDM4C

KDM5A

KDM5B

KDM5D

KDM6A

KDM6B

Jumonji domain containing JMJD1C

JMJD6

Dioxygenases Ten-eleven transloca�on (TET) TET2

E3 ubiqui�n ligases BRCA1 BRCA1

Protein inhibitor of ac�vated STAT (PIAS) PIAS1

Tripar�te mo�f-containing (TRIM) TRIM24

TRIM25

TRIM28

Helicases (DNA) ATRX chroma�n remodeler ATRX

Chromodomain-helicases-DNA binding (CHD) CHD1

CHD2

ERCC excision repair (ERCC) ERCC3

Kinases Cyclin-dependent kinases (CDK) CDK6

CDK7

CDK8

CDK9

Extracellular signal-regulated kinases (ERK) MAPK1

Mammalian target of rapamycin (MTOR) MTOR

Mitogen-ac�vated protein kinases (MAPK) MAPK14

Protein kinase C (PKC) PRKCQ

Methyltransferases ASH like methyltransferase ASH2L

DNA (cytosine-5-)-methyltransferases (DNMT) DNMT3A

Euchroma�c histone-lysine N-methyltransferases EHMT2

Histone-lysine N-methyltransferases (KMT) KMT2A

KMT2B

KMT2C

KMT2D

Protein arginine methyltransferases (PRMT) PRMT1

SET domain-containing (SETD) SETD1A

Pep�dases Proteasome 20S subunit PSMB5

Regulatory factors Cyclin-dependent kinase inhibitors (CDKN) CDKN1B

Cyclins (CCN) CCND2

CCNT2

Elonga�on factors for RNA polymerase II ELL2

PAF1 homolog PAF1

Protein phosphatase 1 regulatory subunits NONO

SFPQ

Ribonucleases Argonaute AGO2

Topoisomerases DNA topoisomerases (TOP) TOP1

Other enzymes Recombina�on ac�va�ng RAG1

RAG2

Pathway node ChIP-Seq consensome HCTs Viral HCTs intersec�on q-value

<1E-9

1E-8-1E-9

1E-7-1E-8

1E-6-1E-7

1E-5-1E-6

1E-4-1E-5

1E-3-1E-4

1E-2-1E-3

5E-2-1E-2

q-value

.CC-BY 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted July 15, 2020. . https://doi.org/10.1101/2020.04.24.059527doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.24.059527
http://creativecommons.org/licenses/by/4.0/


-0.5

-0.25

0

0.25

0.5

0.75

1

LUNG CV GI KI OT

LOG FC

MERS
SARS1
SARS2
IAV

.CC-BY 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted July 15, 2020. . https://doi.org/10.1101/2020.04.24.059527doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.24.059527
http://creativecommons.org/licenses/by/4.0/


Symbol Name log10 GMFC SARS2 RU/DEX vs V RU vs V (DEX)

CXCL1 C-X-C motif chemokine ligand 1 0.36 0.18

CXCL2 C-X-C motif chemokine ligand 2 0.53 0.57

IER3 immediate early response 3 0.21 0.53

IFIT3 interferon induced protein with tetratricopeptide repeats 3 0.96 0.16 0.26

IFITM3 interferon induced transmembrane protein 3 0.33 0.16 0.20

IL1B interleukin 1 beta 0.38 0.30 0.29

ISG15 ISG15 ubiquitin like modifier 0.70 0.23 0.27

ISG20 interferon stimulated exonuclease gene 20 0.44 0.20 0.22

NFKBIA NFKB inhibitor alpha 0.54 0.24

OAS1 2'-5'-oligoadenylate synthetase 1 0.45 0.16 0.28

STAT1 signal transducer and activator of transcription 1 0.30 0.21 0.14

TNFAIP3 TNF alpha induced protein 3 0.65 0.27
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Virus INT OR q INT OR q

MERS 19 1.3 1.8e-1 13 1.3 1.9e-1

SARS1 15 1.2 2.3e-1 16 1.2 1.9e-1

SARS2 34 5.8 4.5e-14 32 3.7 1.1e-8

IAV 24 2.5 1.4e-4

All tissues viral HCTs Lung epithelium viral HCTs

EMT signature intersection analysis
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