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Abstract

Recent technical advances in the field of quantitative proteomics have stimulated a large number of biomarker discovery
studies of various diseases, providing avenues for new treatments and diagnostics. However, inherent challenges have
limited the successful translation of candidate biomarkers into clinical use, thus highlighting the need for a robust analytical
methodology to transition from biomarker discovery to clinical implementation. We have developed an end-to-end
computational proteomic pipeline for biomarkers studies. At the discovery stage, the pipeline emphasizes different aspects
of experimental design, appropriate statistical methodologies, and quality assessment of results. At the validation stage, the
pipeline focuses on the migration of the results to a platform appropriate for external validation, and the development of a
classifier score based on corroborated protein biomarkers. At the last stage towards clinical implementation, the main aims
are to develop and validate an assay suitable for clinical deployment, and to calibrate the biomarker classifier using the
developed assay. The proposed pipeline was applied to a biomarker study in cardiac transplantation aimed at developing a
minimally invasive clinical test to monitor acute rejection. Starting with an untargeted screening of the human plasma
proteome, five candidate biomarker proteins were identified. Rejection-regulated proteins reflect cellular and humoral
immune responses, acute phase inflammatory pathways, and lipid metabolism biological processes. A multiplex multiple
reaction monitoring mass-spectrometry (MRM-MS) assay was developed for the five candidate biomarkers and validated by
enzyme-linked immune-sorbent (ELISA) and immunonephelometric assays (INA). A classifier score based on corroborated
proteins demonstrated that the developed MRM-MS assay provides an appropriate methodology for an external validation,
which is still in progress. Plasma proteomic biomarkers of acute cardiac rejection may offer a relevant post-transplant
monitoring tool to effectively guide clinical care. The proposed computational pipeline is highly applicable to a wide range
of biomarker proteomic studies.
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Introduction

After the first successful human-to-human heart transplant in
1967, cardiac transplantation became the primary therapy for

patients with end-stage heart failure due to dilated cardiomyop-
athy or ischemic heart disease. Improvements in immunosuppres-

sive drug therapies have significantly increased the number of

successful transplants, yet episodes of acute rejection and
progression of chronic rejection remain major factors that
negatively impact long term graft survival. Acute rejection is
predominantly considered to be an immunological reaction in
response to the major and minor histocompatibility antigens
recognized as ‘foreign’ by the graft recipient. This process triggers
the subsequent activation, migration and infiltration of immune

PLOS Computational Biology | www.ploscompbiol.org 1 April 2013 | Volume 9 | Issue 4 | e1002963



cells such as T- and B-lymphocytes, which can ultimately lead to
cellular- and antibody-mediated destruction of the heart allograft
tissue [1]. Endomyocardial biopsy (EMB), through which histo-
logical features such as cellular infiltration and myocyte damage
can be observed, is currently considered to be the only reliable
gold standard for diagnosis and monitoring of acute cardiac
allograft rejection [2]. However, the invasive and qualitative
nature, risk of complications, associated cost and lack of timeliness
of the results render the EMB a suboptimal procedure for routine
monitoring [3]. A more reliable, minimally invasive, inexpensive,
and early diagnostic tool to monitor graft survival remains a
significant clinical unmet need.

Since proteins may serve as molecular indicators (i.e., biomark-

ers) of cardiac allograft rejection, plasma proteomics offers an

attractive and promising avenue for the development of diagnosis

tools for cardiac transplantation [4]. Technical advances in the

field of quantitative proteomics in the last decade have enabled the

identification and quantitation of thousands of proteins and have

stimulated a large body of research focused on the discovery of

new biomarkers. However, the translation of candidate biomark-

ers from discovery research into proteomic tests for clinical use has

faced significant challenges, due mostly to a lack of an adequate

analytical pipeline [5,6,7,8]. In a significant step forward,

technological proteomic pipelines have recently been proposed,

optimizing the design of the discovery, validation, and clinical

implementation stages of biomarker studies [8,9,10,11]. Never-

theless, the development of new clinical proteomic tests hinges on

a tailored computational pipeline to distill the information

contained in thousands of proteins into an accurate classifier

score with demonstrable clinical utility.

Computational proteomics is a new and expanding field of

research which primarily focuses on data management and mass-

spectra analysis for the discovery phase of biomarker studies

[12,13,14]. Although previous work has acknowledged the need of

a tailored computational pipeline in proteomics (e.g.,[15]), a

systematic and complete process that specifically addresses the

challenges emerging from proteomic studies has not been

proposed or demonstrated to date. Using unsuitable methodolog-

ical tools to explore and analyze the data may result in the

selection of biomarkers that ultimately fail in the final stages of

validation, or may fail to select relevant biomarkers. For example,

identifying a panel of candidate markers based only on the

comparison of relative abundance between case and control

samples, or the use of classical statistical tests when the sample size

of the study is too small, may result in the identification of many

false candidate markers.

We complement previous work by proposing a computation

pipeline powered by extensive statistical analysis for all stages of

quantitative proteomics biomarker studies (Figure 1). At the

discovery stage, the pipeline focuses on selecting an appropriate

experimental design and statistical methodologies to identify and

assess a panel of candidate biomarkers. At the validation stage, the

pipeline emphasizes on the migration of discovery results to the

validation platform, and the development and validation of a

biomarker classifier. At the clinical implementation stage, the main

aims are to develop an assay suitable for clinical deployment, and

to calibrate the biomarker classifier using the developed assay.

We demonstrate the power of our methodology in a proteomic

biomarker study in the context of cardiac transplantation, with a

goal towards the development of a more accurate and less invasive

blood test for monitoring graft survival. Our work identified a

panel of five candidate plasma proteins that clearly discriminates

acute cardiac allograft rejection from non-rejection. These

biomarker proteins distribute broadly among three relevant

biological processes: cellular and humoral immune responses,

acute phase inflammatory pathways and lipid metabolism. Of the

five candidate biomarkers, we corroborated four using two

independent platforms. A classifier score based on these four

corroborated proteins measured by multiple reaction monitoring

mass-spectrometry (MRM-MS) demonstrated that plasma protein

biomarkers have significant potential in serving as a reliable,

minimally-invasive, inexpensive, and timely diagnostic tool for

acute cardiac allograft rejection. Our results advance the

approaches to diagnosis with respect to cardiac transplantation

biomarker, as well as the computational methodologies tailored for

a wide range of proteomic biomarker studies.

Methods

A synopsis of the computational pipeline proposed in this study

is illustrated in Figure 1. We first describe in detail each of its steps

for the discovery, validation, and clinical implementation stages.

We then present a brief description of the materials and methods

related to the biomarker study in cardiac transplantation used to

illustrate the proposed methodology.

Computation Pipeline: Discovery Stage
Recent technological advances in quantitative proteomics have

enabled the untargeted quantitation and identification of hundreds

to thousands of proteins simultaneously from complex samples

such as human plasma. The aim of the discovery pipeline is to

create a list of candidate markers from an extensive set of proteins

identified and measured within each sample.

Step 1: Data preprocessing. The first step of the discovery

pipeline is to assemble the data generated by (untargeted)

quantitative proteomics approaches to perform further statistical

analysis. As broadly reviewed by Nesvizhskii and Aebersold [16],

the appealing peptide-centric nature of most untargeted proteo-

mics methods is faced with the challenge of recovering the

identities of the proteins, originally present in the sample, from the

Author Summary

Novel proteomic technology has led to the generation of
vast amounts of biological data and the identification of
numerous potential biomarkers. However, computational
approaches to translate this information into knowledge
capable of impacting clinical care have been lagging. We
propose a computational proteomic pipeline for biomarker
studies that is founded on the combination of advanced
statistical methodologies. We demonstrate our approach
through the analysis of data obtained from heart trans-
plant patients. Heart transplantation is the gold standard
treatment for patients with end-stage heart failure, but is
complicated by episodes of immune rejection that can
adversely impact patient outcomes. Current rejection
monitoring approaches are highly invasive, requiring a
biopsy of the heart. This work aims to reduce the need for
biopsies, and demonstrate the power and utility of
computational approaches in proteomic biomarker dis-
covery. Our work utilizes novel high-throughput proteomic
technology combined with advanced statistical techniques
to identify blood markers that guide the decision as to
whether a biopsy is warranted, reduce the number of
unnecessary biopsies, and ultimately diagnose the pres-
ence of rejection in heart transplant patients. Additionally,
the proposed computational methodologies can be
applied to a range of proteomic biomarker studies of
various diseases and conditions.

Computational Proteomic Pipeline
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list of peptides identified based on the observed MS/MS spectra.

In accordance with established guidelines [17], most software tools

report minimal protein lists sufficient to explain all observed

peptides using protein groups ([16][18], and the example in Figure

S3). In general, each protein group contains proteins with a high

degree of sequence similarity, including multiple entries for one

gene product, and isoforms or multiple members of a protein

family.

Because for many cases there is insufficient evidence to

determine which protein(s) from each group was originally present

in the analyzed samples, a comprehensive exploration of the data

needs to link and compare protein groups, instead of single protein

identities, across multiple experimental runs. Thus, we used an

algorithm, called Protein Group Code Algorithm (PGCA), to pre-

process protein summaries organized using protein groups

(manuscript in preparation). PGCA creates global protein groups

from connected groups identified across the different runs and

assigns a protein group code (PGC) to each global group. Using

this PGC to link groups across multiple runs enables the analysis of

interesting proteins that are identified within groups with an

unstable composition across runs (further details are given as

supporting materials in Text S1).

Step 2: Sample selection. Motivated by the diagnosis study

in cardiac transplantation, this study was designed to ensure a

rigorous case-control analysis at the event time. Thus, the

discovery cohort (training set) was constructed by selecting one

sample per patient to maintain usual assumptions of independence

between samples in statistical tests. Samples in the case and control

groups were matched 1 to 2 by time post-transplant and, where

possible, age and gender. A power calculation was used to

determine the number of samples statistically needed within the

case and the control groups (Figure S1A). A different design would

be required to identify proteins with differential patterns across

time requiring a longitudinal analysis of the data [19,20].

Step 3: Pre-filtering. A common observation in most

shotgun proteomic studies is that, even when the same sample is

processed multiple times, not all peptides are detected in every

experimental run (undersampling) [11,16,21]. Undersampling

may introduce missing values or outlying protein levels in the

resulting proteomics data. Considering undersampling [16,21], the

PGCs detected in at least two-thirds of the experimental runs

within each analyzed group were considered for subsequent

analyses. Although this approach usually increases the number of

analyzed proteins, it also introduces missing values in the data.

Step 4: Candidate protein markers. An important step of

the computational analysis is the selection of candidate protein

markers through univariate statistical tests. It is important to note

that low sample variance estimates associated with small sample

sizes can increase the number of false positives in many classical

tests. Thus, when the study sample size is small, we recommend

the use of an empirical Bayes method (eBayes) that estimates

protein-specific variances by pooling information from other

proteins to construct moderated t-tests [22]. Further, a robust

variant of eBayes tests can be used which is also less sensitive to

outlying observations, usually present in proteomics data [22]. In

our biomarker study, robust eBayes tests were used to identify a list

of candidate markers (two-sided test, significance level al-

pha = 0.01). Alternative univariate methods, including t-tests and

Wilcoxon tests, can be used in larger discovery studies [23].

Considering the inherent variability observed in isobaric tagging

for relative and absolute protein quantification (iTRAQ) data and

the number of analyzed PGCs, p values were not adjusted when

pursuing multiple inferences as usually performed in microarray

data studies. Although the number of false positives was not

controlled by this approach, further corroboration of the identified

candidate markers was assessed with two independent platforms.

Step 5: Quality assessment. Another step of fundamental

importance in any discovery study is quality assessment of the

identified markers. Several quality control parameters were

examined in accordance with guidelines for proteomic data

publication [17], including the qualitative reproducibility of the

depletion, the number of peptides used to identify the proteins in

each sample, and other parameters to examine the quality of the

identification and quantitation of the proteomics data (more details

are given as supporting material in Text S1).

The quality of the results was also assessed from a statistical

perspective, by examining the potential existence of important

confounding factors. As previously demonstrated by Culhane and

Quackenbush, the signature of the identified panel may be

influenced by the experimental design [24,25]. Failure to account

for potential confounding factors may result in the identification of

many false candidate markers that fail to pass the test of validation

in an independent cohort. A multivariate ANCOVA approach can

be used to test if the simultaneous association between the

biomarker panel and the main effect (rejection versus non-rejection

in our case) remains significant when corrected for potential

confounding factors. This test was implemented using the

GlobalAncova Bioconductor package (version 3.6.0) [24,25].

Given that the focus of the pipeline is to identify a panel of

proteins that together discriminate between case and control

samples, using a multivariate test is desirable. Later in the

pipeline, we also examined the potential effect of the confounding

factors on the classifier score.

Step 6: Missing values. As some statistical methodologies do

not allow the presence of missing values, the imputation of missing

values can be a critical step of the computational pipeline. We used

a k-nearest neighbor (kNN) approach [26] to minimize the

influence of specific modeling or class information through the

imputation. For any missing protein level, the kNN method

imputes the weighted average of the protein levels from amongst

the k-nearest neighbor proteins available for the corresponding

sample. The selection of the k nearest proteins is based on the

comparison of protein levels with that of the protein of interest

available in other samples [26]. Different imputation methods

were previously compared in a similar case study, suggesting that

the decision to impute is more important than the choice of the

imputation method [27].

Step 7: Classifier score. The relative levels of the candidate

biomarkers were combined into a single classifier score generated

by a Linear Discriminant Analysis (LDA) classifier to demonstrate

the joint performance of the identified candidate markers. As LDA

seeks a linear combination of markers that best discriminates both

groups together, the proteomics panel can sometimes achieve a

satisfactory classification even when single markers do not clearly

differentiate groups (i.e., even though some fold-changes appear

relatively small). The score was centered at the LDA cut-off point

Figure 1. Proteomic computational pipeline synopsis. The 3-stage computational pipeline enables an initial untargeted exploration of the
plasma proteome resulting in a list of potential biomarkers, followed by the validation of a set of candidate biomarkers that emphasizes the
combination of candidate protein biomarkers into a classifier score with clinical utility. The bottom panel outlines the main steps of the
computational pipeline that provide a systematic process from discovery to validation to clinical implementation of plasma protein biomarkers.
doi:10.1371/journal.pcbi.1002963.g001
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so that samples with positive and negative scores are classified as

cases and controls, respectively. Additional details about multi-

variate classifiers are given in Step 3 of the Validation Stage.

Although the GlobalAncova analysis performs a simultaneous

global assessment for all candidate PGCs, it does not test the

influence of potential confounders in the aggregated classifier

score. Thus, we also examined the potential effect of the

confounding factors on the LDA score by looking at the Pearson

correlation between the score and the potential confounders.

Computation Pipeline: Validation Stage
As widely discussed in the literature, any list of candidate

markers identified in a discovery stage must be validated in a large

and independent cohort of patients before its clinical utility

assessment. To bridge the gap between discovery and clinical

technologies, the validation stage is usually performed in an

independent platform which provides a timely and cost-effective

approach to measure all samples. To overcome the dependence on

antibody availability, we developed an MRM-MS assay to

complete the validation stage. However, similar analytical steps

would have been taken if another independent platform was used.

Step 1: Technical corroboration. The first step is to

corroborate that the results from the discovery are successfully

translated to the proteomic technologies required in the validation

stage. This technical corroboration was first examined by a

correlation analysis among the protein levels in common samples

measured by different proteomic platforms. To control the

influence of outliers in the results, these correlations were

estimated using the Spearman correlation coefficient.

Step 2: Corroboration of discovery results. The second

analytical step is to corroborate that the previously identified

differentiation of protein levels between case and control samples

is still present when the candidate markers are measured using the

new platform(s). The number of samples required for this

corroboration needs to be determined based on the estimated

variation associated with the new platform (Figure S1B). To allow

the comparison of results between the discovery and the validation

stages, we recommend using the same statistical test as that used in

the discovery, e.g., robust eBayes in our biomarker study. Since

the purpose of this corroboration is to test the translation of the

results in the new platform, a less stringent statistical cutoff can be

used, e.g., two-sided test, significance level alpha = 0.05.

Step 3: Development of a classifier score. Despite the

general consensus that a panel of biomarkers will be required to

classify new samples in a clinical setting, a fundamental analytical

step often neglected during the validation stage is the examination

of the complementary contribution of each candidate marker to

classify new samples [6,28,29,30]. In general, most studies identify

long lists of candidate markers that are then examined in isolation

from each other to discriminate case from control sample groups.

In this study, different classifiers were built using MRM-MS

measurements that sequentially incorporate the corroborated

proteins to evaluate their complementary contribution to the

classification performance. Although these multivariate classifiers

were constructed by Linear Discriminant Analysis (LDA) in our

biomarker study, alternative methodologies might be considered,

including Support Vector Machines, Elastic Net logistic regression

analysis, and Random Forests, among others [23,28]. LDA assigns

a weight to each contributing protein to generate an aggregated

score, called the classifier score [31]. The numerical weights of

each proteomic marker in the aggregated classifier score thus

reflect their contribution to jointly differentiate the case from the

control groups. As previously explained, the score was centered at

the LDA cut-off point.

The examination of the contribution of each biomarker to the

classifier performance can be used to select a final classifier (i.e., a

final biomarker panel with the corresponding model) to be tested

on an external cohort of patients. Since an independent test cohort

was not available at this point, all classification performance

measures of the panel were estimated by a stratified 6-fold cross-

validation (more details are given as supporting material in Text

S1). If available, an intermediate cohort can be used to determine

the final classifier and the corresponding threshold to be validated.

More importantly, the output of this step is a locked-down model

(with a threshold selected) to be validated in an independent

cohort.

Step 4: Validation of the classifier score. In the last step of

the validation stage, the classifier score must be validated in a large

external cohort of patients. Common performance measures

include sensitivity, specificity, and area under the receiver

operating curve (AUC) [32] (definitions are given as supporting

material in Text S1). Previous methods have been proposed for the

determination of the sample size of this stage [33]. In our

biomarker study this stage is still in progress.

Computation Pipeline: Clinical Implementation
The final translation of proteomic results from the validation to

the clinical implementation stage requires careful examination of

many factors, including the development of assays suitable for

clinical laboratories, considerations from health economics, as well

as approval of regulatory agencies (e.g., Food and Drug

Administration, Conformité Européenne mark) [8]. From a

methodological point of view, the following steps are crucial to

complete this last stage.

Step 1: Assay migration. A critical next step towards clinical

implementation is to develop and validate an assay suitable for

clinical deployment according to Clinical Laboratory and Stan-

dards Institute’s protocols to measure the proteins in the identified

panel.

Step 2: Calibration of the classifier score. After the assay

migration step, the biomarker classifier score based on the panel

proteins, rather than a simple set of individual proteins, needs to

be calibrated using the developed assay. Even though the statistical

model to integrate these proteins was locked down in Step 3 of the

Validation stage, new weights that reflect the contribution of each

biomarker measured in the new assay to the classifier score must

be calculated. This calibration can be performed using either the

samples from the training set or those from an intermediate set.

Step 3: Clinical performance. Lastly, the classifier needs to

be tested in an independent and large cohort with clinical

complexity. Different performance measures may be evaluated

and emphasized depending on the ‘‘fit-to-purpose’’ of the study,

including sensitivity, specificity, negative and/or positive predic-

tive value.

Additional Methods Related to the Biomarker Study
A brief summary of the materials and methods used in the

proteomic biomarker study of cardiac transplantation are outlined

here and further details are given as supporting material in Text

S1.

Ethics statement. This study was approved by the Human

Research Ethics Board of the University of British Columbia. All

patients enrolled in this study signed consent forms.

Study cohorts. A prospective, longitudinal study, approved

by the Human Research Ethics Board of the University of British

Columbia, was conducted on 63 patients, with signed consent,

who received a cardiac transplant at St. Paul’s Hospital,

Vancouver, British Columbia between March 2005 and February

Computational Proteomic Pipeline
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2008. Of these 63 patients, 44 were included in the acute rejection

cohort and were thus part of this study. Patient demographic

characteristics are summarized in Table S1.

Pre-transplant and protocol heart tissue biopsies were blindedly

reviewed by multiple cardiac pathologists and classified according

to the current International Society for Heart and Lung

Transplantation (ISHLT) grading scale [2]. Samples graded with

an ISHLT Grade $2R (multi-foci or diffuse immune cell

infiltration with significant associated myocyte damage) were

considered significant in the current study for the case group (acute

rejection, AR). Samples with ISHLT Grade 0R (normal EMB

with no evidence of cellular infiltration) were considered to

construct the control group (non-rejection, NR). Mild non-

treatable rejections (ISHLT Grade 1R; some cellular infiltrate

with limited or absence of myocyte damage; 1R) were excluded

from the case-control discovery analysis and were only used as test

samples and for the correlation analysis.

iTRAQ samples and data processing. An important

component of the experimental design for an untargeted platform

like iTRAQ is the choice of the reference sample used to ensure

interpretable results across different runs [34]. Ideally, this sample

should contain all relevant proteins related to the study of interest,

thus, pooling some samples from the analyzed groups may be a

good option. However, to allow the comparison of the samples in

the cardiac study with those of other organs and conditions, a

common, pooled normal plasma from 16 healthy individuals was

used as a reference sample to run all iTRAQ experiments from

different cohorts of the Biomarkers in Transplantation (BiT)

initiative. This is consistent with the observations made by Song et

al. [35] that consistency of the reference used throughout the

entire experiment, including future comparative studies, is more

relevant than the actual composition of the reference sample.

All blood samples were processed following rigorously defined

standard operating procedures [36,37]. Briefly, peripheral blood

samples were drawn into ethylenediaminetetraacetic acid (EDTA)

tubes. Plasma was separated and depleted of the 14 most abundant

proteins (albumin, fibrinogen, transferrin, IgG, IgA, IgM, hapto-

globin, a2-macroglobulin, a1-acid glycoprotein, a1-antitrypsin,

apolipoprotein A-I, apolipoprotein A-II, complement C3, and

apolipoprotein B) by immunoaffinity chromatography (GenWay

Biotech, San Diego, CA), then trypsin digested and labeled

(Applied Biosystems; Foster City, CA). Trypsin peptides from the

reference sample were labeled with iTRAQ reagent 114 and

peptides from 3 patient samples were randomly labeled with

reagents 115, 116 and 117. Spotted peptides were analyzed by a

4800 MALDI TOF/TOF analyzer (Applied Biosystems; Foster

City, CA), and MS/MS data were processed using ProteinPilot

software v2.0 (Applied Biosystems). Database searching was

performed against the International Protein Index (IPI HUMAN

v3.39 database) [38]. As recommended by the European

Bioinformatics Institute (EBI), the IPI accession numbers of the

protein identifiers in our biomarker panel were subsequently

updated according to the latest version of UniProtKB database.

For each analyzed sample, relative protein levels (ratios of labels

115, 116 and 117 relative to 114, respectively) were estimated for

each protein group by ProteinPilot. Protein Group Code

Algorithm (PGCA) was used to match protein groups identified

by Protein Pilot from different experimental runs (manuscript in

preparation).

Technical validation. Four out of five markers in the panel

were assayed either by enzyme-linked immune-sorbent assay

(ELISA), for adiponectin (ADIPOQ, R&D Systems, Minneapolis,

MN), factor X (FX, Diapharma, West Chester, OH), and b2-

microglobulin (B2M, standard clinical laboratory), or by

immunonephelometric assay (INA) for serum ceruloplasmin (CP,

standard clinical laboratory). ELISA/INA assays were not

available for phospholipid transfer protein precursor (PLTP).

The same pooled plasma control used for iTRAQ, and patient

plasma samples were assayed in duplicate or triplicate. An

analogous pooled serum control sample was used for CP. Data

from ELISA kits was analyzed on a VersaMax Tunable

Microplate Reader (Molecular Devices, Sunnyvale, CA).

Multiplex MRM-MS assay development. A multiplex

MRM-MS assay was developed for the 5 proteins that constitute

the cardiac biomarker panel. MRM-MS ion pairs for 16 selected

peptides representing the 5 proteins ( Table S2) and their

sensitivities were optimized as previously described [39,40]. Stable

isotopically-labeled peptide standards (SIS peptides) were synthe-

sized using Fmoc chemistry with isotopically- labeled amino acids,

[13C6]Lys or [13C6
15N4]Arg. The absolute concentrations of each

synthetic SIS peptide were determined by amino acid analysis.

Further details on sample preparation and MRM-MS data

acquisition are given as supporting material in Text S1.

Statistical analyses. A detailed description of the statistical

methods was described in previous subsections. All the statistical

analysis was implemented using R version 2.10.1 [41] with the

following packages: limma (version 1.9.6) [42], GlobalAncova

from Bioconductor (version 3.6.0) [24,25], impute (version 1.24.0)

[26], and ROCR (version 1.0-4) [43].

Results

The first two stages of the computational pipeline, discovery and

validation, were applied to a biomarker study in cardiac

transplantation. An overall schematic of the number of samples,

design, and proteomics data used at each stage is summarized in

Table 1.

Discovery Stage
In the discovery stage, multiplexed iTRAQ-LC-MALDI-TOF/

TOF mass spectrometry was used to identify and quantitate

proteins from 108 depleted plasma samples representing a time

course of 20 weeks from the first 26 patients enrolled (Figure S2).

These samples were processed in 50 independent iTRAQ runs,

including other samples from the heart cohort. In addition, each

iTRAQ run included a normal pooled control plasma sample to

provide a common reference across multiple runs. A total of 924

protein groups (PGCs) was cumulatively identified from the 50

runs with an average of 273 PGCs within each run.

Following the selection criteria and the power calculation

described in the supporting material (Text S1), the first AR

samples from 6 (out of 8) AR patients were selected as cases, and

samples from 14 (out of 18) NR patients at matching time points

were selected as controls (Figure S2A and Table 1). The remaining

88 longitudinally collected iTRAQ samples were used as test

samples to initially validate the results at the Discovery stage.

Although samples in this test set are part of BiT cohort, none of

them were previously used in the training set. As described in Step

3 of the Discovery stage, only those PGCs identified in at least 2/3

of the AR and the NR groups were considered for further analysis.

The resulting data consisted of 127 PGCs measured in at least 4

(out of 6) AR patients and 10 (out of 14) NR patients. Of these 127

PGCs, 51 PGCs contained 133 missing values out of a total of

1020 values (i.e., 51 PGCs620 patients).

A panel of 5 PGCs was identified with significant differential

relative concentrations (robust eBayes p value,0.01) between AR

and NR samples (Tables 2 and 3). This panel consisted of 3 PGCs

that were more abundant in AR versus NR samples: B2M, F10,
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and CP, and 2 PGCs that were less abundant: PLTP, and

ADIPOQ (Wilcoxon tests are shown in the Table S3).

The quality assessment of the proteomics data demonstrated a

strong confidence regarding identified protein identities, wherein

98% of the 127 analyzed PGCs and all 5 PGCs candidate

biomarkers were identified based on two or more peptides (Figure

S5). Similarly, results showed an overall good coverage and

quantitative levels for the analyzed proteins (Table S4). The

potential confounding of the results was examined using all

available clinical data close to the event time, including daily dose

of immunosuppressants, weight, and blood pressure. The

GlobalAncova p values (Table 4 and Table S5) demonstrate that

the simultaneous relative concentrations of the 5 candidate PGCs

remained significantly different in the AR group versus the NR

group (p value,0.05) after adjusting for potential confounders.

The correlation values in Table 4 show that none of the clinical

variables were highly correlated with the LDA classifier score

(r,0.5). Overall, the results demonstrated that the identification of

the biomarker panel was not confounded by other clinical

variables available for this study cohort.

To illustrate the joint performance of all candidate markers to

discriminate AR from NR samples, the average LDA score was

calculated for all the AR samples (n = 10) and the NR samples

from NR patients (n = 40) available at each time point (Figure 2).

Based on these initial results, the identified candidate markers

together discriminated the two groups regardless of which week

the rejection occurred after transplantation. Despite this differen-

tiation, the two AR samples in week 2 were still classified as NR

(negative score) by the classifier. Although the LDA classifier score

was trained to discriminate AR from NR samples, Figure S7 also

includes the score of 47 1R mild, non-treatable rejection samples.

Average scores of 1R samples from NR patients were in general

similar to those of NR samples, while those from AR patients were

closer to the average scores of AR samples.

Figure 3 illustrates the temporal correlation of the score with the

diagnosis of rejection. The classifier score for AR patients was at

baseline before the rejection episode (pre-rejection point) with a

similar average value to that of NR patients at matched time

point(s) (no statistical evidence of differentiation). The score for AR

patients was differentially elevated at the time point(s) of rejection

(as determined by biopsy) compared to that of NR patients (alpha

level = 0.05, two-sided t test, p value,0.001) at matched time

Table 1. Proteomics biomarker study schematic.

Platform Experimental Design Cohort Set of Proteins

Discovery

Data Processing iTRAQ Reference design Number of patients = 26 Number
of samples = 108 (10 AR, 47 1R, 51
NR) Reference = 16 healthy

924 PGCs, of which 43% were
identified based on 2 or more
peptides

Pre-filtering iTRAQ PGCs identified in at least 2/3
of case and control samples

Number of patients/samples = 20 (6
AR, 14 NR)

127 PGCs, of which 98% were
identified based on 2 or more
peptides

Candidate Markers iTRAQ Case versus control,
independent samples

Number of patients/samples = 20
(6 AR, 14 NR)

5 PGCs, of which 100% were
identified based on 2 or more
peptides

Relevance of Results iTRAQ Longitudinal representation Number of patients = 26 Number
of samples = 108

Classifier score based on 5 PGCs

Validation

Technical Corroboration ELISA/INA Independent samples, 25
samples (7 AR, 6 1R, 12 NR)
in common with the iTRAQ
samples

Number of patients/samples = 43
(13 AR, 12 1R, 18 NR)
Reference = 16 healthy

4 proteins available in ELISA or
INA

Technical Corroboration MRM-MS Independent samples, 23
samples (7 AR, 6 1R, 11 NR) in
common with the iTRAQ and
ELISA samples

Number of patients/samples = 23
(7 AR, 6 1R, 11 NR) Reference =
16 healthy

5 proteins, 16 peptides

Classifier Development ELISA/INA Case versus control,
independent samples

Number of patients/samples = 30
(12 AR, 18 NR)

Classifier score based on 4
corroborated proteins

Classifier Development MRM-MS Case versus control,
independent samples

Number of patients/samples = 17
(6 AR, 11 NR)

Classifier score based on 4
corroborated proteins

Overall schematic of the cardiac transplantation study following the computational pipeline. PGC = protein group code, AR = acute rejection, 1R = mild non-treatable
rejection, NR = non-rejection.
doi:10.1371/journal.pcbi.1002963.t001

Table 2. Panel of plasma proteins with differential relative
levels between acute rejection and non-rejection samples.

PGC Gene Symbol p value Fold-Change

6 CP 0.002 +1.28

151 PLTP 0.003 21.56

188 B2M 0.004 +1.46

84 F10 0.006 +1.27

92 ADIPOQ 0.007 21.31

Quantitative results of the discovery analysis. For each protein group code
(PGC), corresponding genes (Gene Symbol) of all proteins within the groups are
shown in the second column. p values calculated by the robust eBayes test, and
fold-changes with directions (positive sign for proteins more abundant in acute
rejection (AR) relative to non-rejection (NR), and negative sign otherwise) are
given. The values in these columns correspond to the PGC and not to a
particular protein identifier.
doi:10.1371/journal.pcbi.1002963.t002
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point(s). The score for the AR patients returned to baseline

following treatment and resolution of the rejection episode (post-

rejection point, non-rejection determined by biopsy) with a similar

average value to that of NR patients. In addition, the evaluation of

the score across time shows that the biomarker signature is specific

to the rejection episodes, rather than reflecting confounded

differences or potential bias between the groups (e.g., different

medication regimens).

Further results from an initial validation performed in this stage

based on 88 test iTRAQ samples not included in the discovery are

shown in Figure S6. A total of 3 out the 4 AR and 29 out of the 37

NR samples tested were correctly classified (non-highlighted cells).

Similar results were obtained only if a single test sample per

patient was randomly selected.

Validation Stage
The results from the iTRAQ discovery analysis were corrob-

orated and initially validated by two independent assays: ELISA/

INA (available for ADIPOQ, F10, B2M, and CP), and MRM-MS

(developed for ADIPOQ, F10, B2M, CP, and PLTP). Following

the results of the power calculation illustrated in Figure S2B, a

total of 43 patients were selected and plasma and serum samples

were processed by ELISA/INA for an initial validation cohort that

extends the discovery cohort. A subset of 25 of these 43 samples, 7

Table 3. Identification of protein groups in the panel.

PGC Gene Symbol IPI Accession IPI Protein Name Uniprot Uniprot Protein Name

6 CP IPI00017601.1 Ceruloplasmin precursor Q1L857 P00450
A5PL27

Ceruloplasmin (Ferroxidase; CP protein)

151 PLTP IPI00643034.2 Isoform 1 of Phospholipid
transfer protein precursor

Q53H91 B3KUE5 Phospholipid transfer protein isoform a
variant; Phospholipid transfer protein
Phospholipid transfer protein, isoform CRA_c

IPI00217778.1 Isoform 2 of Phospholipid
transfer protein precursor

P55058 Phospholipid transfer protein (Lipid transfer
protein II)

IPI00022733.3 45 kDa protein P55058 Phospholipid transfer protein

188 B2M IPI00004656.2 b2-microglobulin P61769 -

IPI00796379.1 b2-microglobulin protein F5H6I0 Beta-2-microglobulin

IPI00868938.1 b2-microglobulin A6XND9 -

84 F10 IPI00019576.1 Coagulation factor X
precursor

P00742 Q5JVE7 Coagulation factor X (Stuart factor; Stuart-
Prower factor; Coagulation factor X, isoform
CRA_a)

IPI00552633.2 Coagulation factor X Q5JVE8 -

92 ADIPOQ IPI00020019.1 Adiponectin precursor A8K660 Q15848 Adiponectin C1Q and collagen domain
containing; (30 kDa adipocyte complement-
related protein; Adipocyte complement-
related 30 kDa protein)

Accession numbers and protein names from the IPI database have been updated according to UniProt database. Alternative protein names are given in parenthesis.
doi:10.1371/journal.pcbi.1002963.t003

Table 4. Confounding factors.

Potential Confounders GlobalAncova p value
Correlation with
Score Acute Rejection Mean (SD) Non-Rejection Mean (SD)

Weight (kg) 0.008 20.17 74.38 (17.89) 76.76 (29.88)

Systolic blood pressure (mmHg) 0.015 0.34 133.67 (15.71) 122.00 (18.13)

BUN in blood ( mmoI/L) 0.011 20.43 14.63 (6.12) 11.64 (5.26)

Creatinine in blood (umoI/L) 0.004 20.42 145.17 (53.83) 125.86 (55.40)

Glucose in blood (mmoI/L) 0.036 20.35 6.50 (1.99) 6.06 (2.15)

Neutrophil Number in blood (xA9/L) 0.009 20.02 6.77 (4.58) 6.56 (4.56)

Cyclosporine daily dose (mg) 0.005 20.18 175.00 (161.25) 167.86 (195.48)

Mycophonelate Mofetil daily dose (mg) 0.007 20.38 2250.00 (524.40) 1821.43 (540.91)

Prednisone daily dose (mg) 0.013 0.05 10.83 (8.01) 11.79 (6.08)

Tacrolimus daily dose (mg) 0.014 0.41 1.67 (4.08) 4.00 (5.22)

The GlobalAncova analysis evaluates if the panel protein levels remain significantly differentiated between the acute rejection (AR) and the non-rejection (NR) groups
after adjusting for potential confounding factors. A p value below 0.05 provides evidence of significant differentiation. We use the clinical data available at the time
closest to the collection time of the plasma sample measured by iTRAQ (additional potential confounders are shown in the Table S5). The correlation between the value
of potential confounders and the LDA classifier score was evaluated using a Pearson correlation coefficient. The last two columns show the mean and standard
deviation (SD) of the clinical variables for the 6 AR samples and 14 NR samples in the discovery cohort.
doi:10.1371/journal.pcbi.1002963.t004
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AR, 6 1R and 12 NR, were also part of the iTRAQ discovery

cohort. Of these 25 samples, 23 were also processed by MRM-MS

(Table 1 and Figures S2A and S2B). Samples measured by the

three assays were used to perform the correlation analysis.

Results showed good levels of correlations for B2M, ADIPOQ,

and CP (r.0.6, Figure 4-A). F10 measurements from both

ELISA/INA and MRM-MS and PLTP measurements from

MRM-MS did not show a similar degree of correspondence with

iTRAQ as seen for other proteins. However, a good correlation

was observed between ELISA/INA and MRM-MS for F10

measurements (r = 0.69, Figure 4A).

The differential protein levels between AR and NR samples

observed in the discovery stage were successfully translated for 3 of

4 proteins measured by ELISA/INA (B2M, ADIPOQ, and CP, p

Figure 2. Plasma protein panel. Average Linear Discriminant Analysis classifier score (Classifier score) for all available acute rejection (AR) samples
(pink solid point), and non-rejection (NR) samples from NR patients (green solid triangle), at each time point. The score was centered at the LDA cut-
off point so that samples with positive and negative scores are classified as ‘‘rejection’’ or ‘‘non-rejection’’, respectively. Vertical lines represent
standard errors. Means and standard error bars can be used to assess differences of the score between groups at any of the studied time points.
Sample sizes available at each time point are shown in the bottom table.
doi:10.1371/journal.pcbi.1002963.g002
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value,0.05), and 4 of 5 proteins measured by MRM-MS (B2M,

ADIPOQ, CP, and PLTP) (Figure 4A). Results from the ELISA/

INA data provided additional validation in 12 new patients using a

platform other than iTRAQ (Table 1, and 0R(E) and 2R(E)

samples in Figure S2A). Taken together, with the exception of

F10, the results showed that measurements from the three

platforms were strongly correlated and corroborated most of the

results from the iTRAQ discovery stage.

Figure 4B demonstrates the gain in classification performance

by a panel of markers combined together into a multivariate

classifier score. Although estimated on a small cohort, the

sensitivity estimates improved from 17% for the classifier based

only on B2M to 100% for the classifier based on the 4

corroborated protein panel (B2M&ADIPOQ&CP&PLTP), the

specificity improved from 91% to 100%, and the AUC improved

from 0.25 to the maximum of 1. Based on the classification

performance of the evaluated MRM-MS classifier scores, a panel

of 4 proteins (B2M, ADIPOQ, CP, and PLTP) was selected to

complete the validation stage.

Figure 4C illustrates the resulting classifier score based on the 4-

protein panel for the test samples resulting from a 6-fold cross-

validation. Samples with a positive proteomic classifier score were

classified as ‘‘rejection’’, and those with a negative score were

classified as ‘‘non-rejection’’. In this initial validation, all test

samples were correctly classified by the proteomic classifier score.

However, because the test samples in the cross-validation were still

part of the discovery analysis, these performance measures cannot

be used to characterize the identified classifier. Although similar

results were obtained using the ELISA/INA measurements on an

extended cohort of patients (Figure S8B), a larger validation in an

external cohort of patients is still required to complete this phase.

A prospective clinical assessment of the value of these proteomic

markers of acute rejection is currently underway using MRM-MS

measurements of over 200 samples from six Canadian sites.

Discussion

Over the last two decades, the accelerating pace of technological

progress has initiated a new era in the field of clinical proteomics.

In particular, plasma proteomics offers a powerful tool to examine

the underlying mechanisms of various diseases and opens novel

avenues for biomarkers discoveries. To date, the number and

quality of technical resources available for proteomic biomarker

studies are well recognized. However, the development of

Figure 3. Transition plot. Linear Discriminant Analysis classifier score (Classifier score) when patients transitioned between non-rejection (NR) and
acute rejection (AR) episodes. The first consecutive AR time points were averaged (AR, pink solid point) from 7 AR patients. Non-rejection samples
from the same patients, before and after AR (‘‘NR before AR’’ and ‘‘NR after AR’’) were averaged (pink solid triangle). The average time trend for these
samples is represented with a pink solid line. A control curve (dashed green line) was constructed from 9 NR patients matched to AR patients by
available time points (green solid triangle). Vertical lines represent standard errors. The asterisk (*) means that the two-sided t-test p value,0.001.
doi:10.1371/journal.pcbi.1002963.g003
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statistical methods to address the challenges that have arisen in the

field has lagged behind, dramatically reducing the pace, quality

and precision of biomarker studies. An important piece of the

puzzle in clinical proteomics is to distill the information contained

in the very rich data generated by new proteomic technologies via

a tailored computational pipeline [15].

In this study we propose and apply a computational pipeline

that provides a systematic process to analyze proteomics data

related to biomarker studies. The computational steps described in

this study are consistent with, and complement those described in

previous technological and analytical pipelines [6,8,9,10]. Our

pipeline successfully generated an accurate classifier score based

on four plasma proteins to diagnose acute rejection in patients who

have received cardiac transplants.

There are likely additional plasma protein biomarkers that were

not identified by this approach. For example, additional candidate

markers may be identified using a different reference sample or an

alternative proteomics platform. However, initial validation results

indicate that a classifier score based on 4 corroborated biomarkers

can achieve a satisfactory classification of acute rejection and non-

rejection samples. If validated in a larger and external cohort of

patients, the identified proteomic biomarker panel can be used to

develop a more accurate and minimally invasive clinical blood test

to monitor allograft rejection.

The analysis may also reveal some biomarkers previously

associated with unrelated disease phenotypes, or that are not linked

to cardiac transplantation. In general, looking at injury controls is a

good idea and ideally one would want to include such to show that

the identified panel is specific for the disease of interest. However,

such comparisons would require additional carefully phenotyped

cohorts, analyzed with the same analytical and technological

methods on the same sample source, which for many relevant

injuries are difficult or impossible to obtain. The data shown in our

study do not address this point and much more work needs to be

done on the comparison of acute rejection with other injuries.

The complex pathobiology of acute cardiac allograft rejection is

reflected in the heterogeneity of markers identified in this study. The

majority of proteins identified distribute broadly among three

biological processes, consistent with the current understanding and

pathogenesis of acute rejection: cellular and humoral immune

responses, acute phase inflammatory pathways and lipid metabo-

lism. Our results also highlight the anticipated distinction between

the plasma proteome and that observed in tissue-based discovery

studies [44]. As well, while circulating protein markers of acute

allograft rejection found by others were mainly indicative of tissue

damage and stress [44], we also identified markers that implicate

immune and vascular processes, in addition to other aspects of the

rejection process. In general, knowing the biological process of the

identified markers may lead to a better understanding of disease

pathogenesis, and to novel therapeutic targets.

Cellular and Humoral Immunity
Transplantation elicits a host immune response that encom-

passes both cellular and humoral immunity, which together lead to

graft tissue damage, and episodes of acute and chronic rejection.

B2M is a protein associated with MHC Class I histocompatibility

antigens, with increased levels reflecting allograft rejection,

autoimmune or lymphoproliferative diseases as a result of

increased immune activation [45]. Several studies have reported

higher circulating levels of B2M in cardiac or renal allograft

rejection [46,47,48], consistent with our observations. Important-

ly, our data demonstrates improved classification performance

when additional markers are used with B2M.

Acute Phase Response/Inflammation
Acute rejection resulting from cellular infiltration of the graft

leads to severe local inflammation, which has systemic conse-

quences with a concomitant increase in circulating inflammatory

markers. The acute phase response to inflammatory stimuli

involves the production and release of numerous plasma proteins

by the liver. CP, significantly up-regulated in AR relative to NR

samples in this study, is a positive acute phase reactant. It is

elevated in acute and chronic inflammatory states and elevated

plasma CP is also associated with increased cardiovascular disease

risk [49]. CP is a player in inflammation, coagulation, angiogen-

esis, and vasculopathy, but its role in the pathogenesis of acute

rejection is unknown. Current evidence supports a relationship

between inflammation and coagulation [50]. FX, a key mediator

in the conversion of prothrombin to thrombin, is up-regulated in

our acute rejection cohort, and this finding may reflect an

intersection between inflammatory and coagulation responses in

acute rejection. However, this protein was not validated in our

study. C reactive protein (CRP), an acute phase reactant protein

previously studied in the context of acute cardiac allograft

rejection, was not identified in our study. Consistent with this

finding, previous work has demonstrated conflicting evidence

regarding the informative value of CRP in monitoring acute

cardiac allograft rejection [51].

Lipid Metabolism
Dyslipidemia as a consequence of immunosuppressive therapy

has been reported in cardiac allograft recipients, and is a risk

factor for chronic rejection [52]. Lipid metabolism is represented

by two proteins in our panel: ADIPOQ and PLTP. ADIPOQ is a

circulating plasma protein involved in metabolic processes shown

to play a role in atherosclerotic cardiovascular diseases [53]. Work

by Nakano and others described elevated ADIPOQ as reflective of

tolerance following a rat model of orthotopic liver transplantation,

suggesting a mechanistic role for this protein and corresponding

with the observed decrease in ADIPOQ levels during acute

rejection episodes [54]. Further, recent work by Okamoto and

colleagues [55] has demonstrated that ADIPOQ inhibits allograft

rejection in a murine model of cardiac transplantation. PLTP

plays a role in HDL remodeling and cholesterol metabolism but its

involvement in acute rejection is unknown.

A comparison between the current panel identified for the

diagnosis of cardiac allograft rejection, and that of renal allograft

rejection [37], reveals that the biological roles of identified proteins

Figure 4. Technical validation. A. For both ELISA/INA and MRM-MS corroboration analysis, p values were calculated by robust eBayes (12 acute
rejection (AR) versus 18 non-rejection (NR) samples in ELISA/INA, and 6 AR versus 11 NR in MRM-MS, two-sided test). The correlations among platforms
are based on all available common samples, i.e., 25 samples measured by iTRAQ and ELISA/INA, and 23 samples measured by iTRAQ, ELISA/INA, and
MRM-MS (Figure S2). B. Validation performance (y-axis) estimated by a 6-fold cross-validation: sensitivity (blue diamond), specificity (brown square),
and area under the receiver operating curve (AUC) (red star) for incremental classifier panels. The sensitivity and specificity estimates were calculated
using a probability cut-off of 0.5. The x-axis shows three nested classifier panels based on a single candidate marker (B2M), 2 markers (B2M&ADIPOQ)
and 3 markers (B2M&ADIPOQ&CP), respectively, measured by MRM-MS. As F10 was not validated in either ELISA/INA or MRM-MS, it was not included
in any MRM-based classifier. C. MRM-MS classifier score generated by a 6-fold cross-validation using Linear Discriminant Analysis. Samples with a
positive proteomic classifier score are classified as ‘‘rejection’’ and those with a negative score are classified as ‘‘non-rejection’’.
doi:10.1371/journal.pcbi.1002963.g004
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are shared in the setting of both transplantation situations.

Moreover, the relative regulation of proteins involved in these

biological processes is likewise shared. Our current data reveals a

differentiation of particular molecules involved in the pathogenesis

of cardiac versus renal allograft rejection.

The plasma protein markers identified in this study have the

potential to be further assessed in combinatorial analyses with

Biomarkers in Transplantation (BiT) genomic and metabolomic

data. Notably, numerous research groups, including the BiT

group, have identified potential gene expression markers of cardiac

allograft rejection using microarray and qPCR analyses of

peripheral and whole blood [56,57,58,59]. These studies provide

an opportunity for a systems biology approach to understanding

allograft rejection.

Taken together, the panel of protein markers identified and

initially validated in this study offers a fresh approach to the

diagnosis of acute cardiac rejection, providing novel avenues of

investigation and potential new targets for therapeutic interven-

tion. The computational pipeline proposed and applied in this

biomarker is highly applicable to a wide range of biomarker

proteomic studies.

Supporting Information

Figure S1 Power calculations. A. Power curves to design the

discovery iTRAQ study, based on an estimated coefficient of

variation of 0.25 for iTRAQ relative ratios (in log scale). The sample

size of the NR group was assumed to be twice as large as that of the

AR group. The red, green and blue curves correspond to fold-

changes (ratios of means protein relative levels) of 1.15, 1.2, and 1.3,

respectively. B. Power curves for the identified markers to be

validated by ELISA/INA. The calculation was based on the

coefficient of variations and the fold-changes (right table) computed

from pilot data. The solid, dotted, and dashed lines correspond to

estimates based on ADIPOQ, CP, and B2M data, respectively.

(PDF)

Figure S2 Study design. A. The 3 boxes at the top show the

number of patients and samples in the different cohorts. Some of

these patient samples were processed by more than one platform

to study the correlation between measurements from different

technologies. The table shows the ISHLT Grades of rejections and

longitudinal distribution of samples processed with iTRAQ (I),

ELISA (E) and/or MRM-MS (M). Filled grey cells indicate

samples used in the training set of the iTRAQ discovery analysis.

Samples graded with an ISHLT Grade $2R (multi-foci or diffuse

immune cell infiltration with significant associated myocyte

damage) were considered to construct the case group (AR, acute

rejection). Samples with ISHLT Grade 0R (normal EMB with no

evidence of cellular infiltration) were considered for the non-

rejection (NR) control group. Mild non-treatable rejections

(ISHLT Grade 1R; some cellular infiltrate with limited or absence

of myocyte damage; 1R) were only used as test samples. Asterisks

indicate patients with additional complications (e.g., prolonged

peri-transplant ischemia, infection, second transplant, etc). Black

triangle represents AR biopsy with no plasma sample available. B.
Overlap of samples in the iTRAQ, the ELISA/INA, and the

MRM-MS cohorts. A subset of these samples were included in the

training sets of the discovery and corroboration analyses

(highlighted cells in panel A of this Figure S2).

(PDF)

Figure S3 ProteinPilot’s local groups, related protein
sequences, and identified peptides. A. Example of the

protein group corresponding to b2-microglobulin (B2M) as shown

in the protein summaries given by ProteinPilot for three distinct

experimental iTRAQ runs (ExpID) in the cardiac biomarker

study. The Unused, Total and %Cov are identification quality

parameters given by ProteinPilot. Quantitative values correspond-

ing to only one of the 3 ratios is shown (115:114). B. Aligned

protein sequences from the B2M protein group. Peptides identified

by Paragon Software within each experimental iTRAQ runs are

shown in bold-black fonts. The accession number chosen by Pro

Group Algorithm to represent the group in the protein and

peptide summaries (top-identifier) is shown in bold-black font.

(PDF)

Figure S4 Quality of depletion. Qualitative reproducibility

of the depletion measured on 19 iTRAQ runs used to process all

samples in our discovery analysis on 9 of the 14 depleted proteins.

At least one AR sample was processed in the first 6 iTRAQ runs

and one 0R sample in the last 14 runs. Bars represent average

percentages of remaining peptides from depleted proteins in AR

(red bar) and in NR (black diagonals) samples. Standard errors are

shown with vertical lines.

(PDF)

Figure S5 Proportion of protein group codes (PGC’s)
identified using different peptide counts (p). Peptide

counts used to identify each PGC differ run to run. Thus, average

peptide counts across iTRAQ runs were used for PGC’s identified

in multiple runs. ‘‘Total’’, ‘‘Analyzed’’ and ‘‘Panel’’ represent the

sets of PGC’s detected in at least one of the 18 samples included in

the discovery, detected in at least 2/3 of the AR and NR groups,

and identified with significant differential relative concentrations,

respectively. Each bar represents the proportion of PGC’s within

each group identified based on p distinct peptides.

(PDF)

Figure S6 Classification results. Set of AR and NR samples

in the test set classified based on the LDA score. Samples used in

the discovery and 1R samples were not included in the test set.

Biopsy and classifier results are shown in the top-left and bottom-

right corners of each cell, respectively. For example, the second

week sample (W2) of the first acute rejection patient (AR1) was

classified as AR based on the biopsy (top-left) and as a 0R based on

the proteomic classifier (bottom-right). Misclassified samples are

highlighted with filled bold-font cells.

(PDF)

Figure S7 Classifier score for 1R samples. Average score

generated by LDA for all available AR samples (pink solid dot), 1R

samples from AR patients (pink open dot), 1R samples from NR

patients (green open triangle), and NR samples from NR patients

(green solid triangle), at each time point. Standard errors are

represented with vertical lines. Sample sizes available at each time

point are shown in the table.

(PDF)

Figure S8 Technical validation. A. Scatter plots of protein

concentrations (y-axis) for 13 AR versus 18 NR samples (x-axis) in

ELISA/INA, and 6 AR versus 11 NR in MRM-MS for the

validated proteins. Median values are represented by horizontal

lines within each group. B. Classifiers performance (y-axis)

estimated by a cross-validation: Sensitivity (solid dot), specificity

(solid triangle), and accuracy (open square) for incremental

classifier panels. The x-axis shows three nested classifier panels

based on a single marker (B2M), 2 markers (B2M&ADIPOQ) and

3 markers (B2M&ADIPOQ&CP), respectively, measured by

ELISA/INA. As F10 and PLTP were not validated in ELISA/

INA they were not included in any ELISA/INA-based classifier.

(PDF)
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Table S1 Demographic characteristics of patients.
Numbers in parentheses are percentages unless otherwise stated.

(PDF)

Table S2 MRM-MS assay. The ‘‘Component Name’’ column

shows the protein group code (PGC), the peptide sequence, and

the precursor/product ion pairs. The last column shows the

retention times used to acquire the MRM-MS data.

(XLSX)

Table S3 Corroboration of the discovery results by a
different statistical test. Comparison of p values calculated by

the robust eBayes test (fifth column) used in the iTRAQ discovery and

the Wilcoxon test (sixth column). Tests were based on iTRAQ data

for the 5 identified candidate markers (6 AR versus 14 NR samples).

(PDF)

Table S4 Quality control parameters of proteomic data.
‘‘Unused’’ represents the median of the Unused ProtScores

calculated by ProteinPilot for the top protein within each iTRAQ

run protein group. Unused values equal to 2.0 is equivalent to a

99% confidence. Similarly, ‘‘Coverage’’ and ‘‘Error factor’’

represent the median of percent coverage and error factor

measures calculated by ProteinPilot for each group in each

iTRAQ run. ‘‘Peptide count’’ shows the average of unique peptide

counts, excluding miscleavages, used for protein identification and

quantitation by ProteinPilot in each iTRAQ run. ‘‘Missing AR/

NR’’ shows the number of samples in the rejection (AR) and non-

rejection (NR) groups in which each protein group was not

detected. ‘‘Length’’ and ‘‘pI/molecular mass’’ contain the number

of amino acids in each sequence and the isoelectric point/

molecular mass (kDa) for each protein, respectively. aValues in

these columns correspond to the PGC and not to a particular

protein identifier.

(PDF)

Table S5 Confounding factors. The GlobalAncova analysis

evaluates if the panel protein levels remain significantly differen-

tiated between the acute rejection (AR) and the non-rejection (NR)

groups after adjusting for potential confounding factors. A p value

below 0.05 provides evidence of significant differentiation. We use

all clinical data available at the time closest to the collection time

of the plasma sample measured by iTRAQ. The correlation

between the value of potential confounders and the LDA classifier

score was evaluated using a Pearson correlation coefficient. The

last two columns show the mean and standard deviation (SD) of

the clinical variables for the 6 AR samples and 14 NR samples in

the discovery cohort.

(PDF)

Text S1 A detailed description of sample selection
criteria, plasma collection, depletion, trypsin digestion,
iTRAQ labeling, 2D-LC chromatography, mass spec-
trometry, data processing procedures and analyses are
given in this supporting material.

(PDF)
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