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Abstract: H2O2-sensitive nanofilms composed of DNA and hemin-appended poly(ethyleneimine)
(H-PEI) were prepared by a layer-by-layer deposition of DNA and H-PEI through an electrostatic
interaction. The (H-PEI/DNA)5 film was decomposed by addition of 10 mM H2O2. H2O2-induced
decomposition was also confirmed in the hemin-containing (PEI/DNA)5 in which hemin molecules
were adsorbed by a noncovalent bond to the nanofilm. On the other hand, the (PEI/DNA)5 film
containing no hemin and the (H-PEI/PSS)5 film using PSS instead of DNA did not decompose even
with 100 mM H2O2. The mechanism of nanofilm decomposition was thought that more reactive
oxygen species (ROS) was formed by reaction of hemin and H2O2 and then the ROS caused DNA
cleavage. As a result (H-PEI/DNA)5 and hemin-containing (PEI/DNA)5 films were decomposed.
The decomposition rate of these nanofilms were depended on concentration of H2O2, modification
ratio of hemin, pH, and ionic strength.
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1. Introduction

Functional multilayer thin films have recently been prepared by a layer-by-layer (LbL) deposition
technique through electrostatic interaction of polycation and polyanion [1,2]. Synthetic polymers [3,4],
proteins [5–7], DNA [8,9], and polysaccharides [10,11] have been used for preparing LbL nanofilms.
Such layered thin films have found application in biosensors [5–7], separation and purification [12,13],
controlled release of drugs [14–16], and polyelectrolyte microcapsules [17–19]. In addition,
stimuli-sensitive LbL films were prepared such as pH [20–22], sugar [23–25], temperature [25], ion [26],
and electrical potential-sensitive LbL films [27].

In this work we report the H2O2-induced decomposition of LbL nanofilms composed of
hemin-appended poly(ethyleneimine) (H-PEI) and DNA. PEI and DNA have positive and negative
charge, respectively, and could form LbL multilayer film through electrostatic interaction. Hemin is iron
porphyrin molecule and the active cofactor for various enzymes, such as catalase and peroxidase [28].
It is known that the iron porphyrin produces more reactive oxygen species (ROS) such as hydroxy
radical (·OH) from reaction with H2O2 according to literatures [29,30]. The ROS causes non-specific
DNA cleavage [31–34]. Consequently, H-PEI/DNA nanofilm was expected to decompose by addition
of H2O2 as illustrated in Figure 1. On the other hand, oxidative stress of H2O2 related to various
diseases caused [35,36]. Therefore, H2O2-sensitive gel and nanoparticles were used for the drug
delivery system (DDS) [37–40]. It was thought that the H-PEI/DNA nanofilm is also used for DDS for
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this purpose by enclosing the drug inside the nanofilm. Actually, (H-PEI/DNA)5 film was decomposed
by addition of H2O2 and the decomposition ratio depended on concentration of H2O2, modification
ratio of hemin, pH, and ionic strength.
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Figure 1. Decomposition of H-PEI/DNA nanofilm by addition of H2O2.

2. Materials and Methods

2.1. Materials

Hemin and DNA (calf thymus) were obtained from Sigma-Aldrich Chemical Co. (Wisconsin,
WI, USA) and Funakoshi Co. (Kyoto, Japan), respectively. Poly(styrenesulfonate) sodium salt (PSS,
molecular weight; 500,000) and poly(allylamine) (PAH, molecular weight; 150,000) were from Scientific
Polymer Products, Inc. (Ontario, NY, USA) and Nittobo Co. (Tokyo, Japan). Poly(ethyleneimine) (PEI)
was purchased from Nacalai Tesque Inc. (Tokyo, Japan). All other reagents used were of the highest
grade and used without further purification.

Hemin-appended PEI (H-PEI) was synthesized as follows. PEI (100 mg) and hemin (37.9 mg)
were dissolved in 0.1 M HEPES buffer (pH 7.0), then N-hydroxysuccinimide (8.02 mg) and
1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (13.4 mg) were added in the solution
at 4 ◦C. After 24 h, reaction mixture was purified by dialyzing to water for three days and
freeze-dried. The content of hemin residues in PEI was 8.7% (molar ratio of hemin to primary
amine), as determined by UV-visible absorption spectroscopy at 390 nm using a molar extinction
coefficient of 42,000 M−1 cm−1 for hemin. Other modification ratio of 1.8%, 4.1%, and 6.5% H-PEI
and hemin-appended PAH (H-PAH: modification ratio of 8.0%) were synthesized by similar manners
and hemin was added 9.52 mg, 18.98 mg, 28.4 mg and 69.72 mg hemin to 100 mg each polymers,
respectively. Chemical structures of hemin, H-PEI, H-PAH, and PSS were shown in Figure 2.

Nanomaterials 2018, 8, x FOR PEER REVIEW  2 of 10 

 

delivery system (DDS) [37–40]. It was thought that the H-PEI/DNA nanofilm is also used for DDS for 
this purpose by enclosing the drug inside the nanofilm. Actually, (H-PEI/DNA)5 film was 
decomposed by addition of H2O2 and the decomposition ratio depended on concentration of H2O2, 
modification ratio of hemin, pH, and ionic strength. 

 
Figure 1. Decomposition of H-PEI/DNA nanofilm by addition of H2O2. 

2. Materials and Methods 

2.1. Materials 

Hemin and DNA (calf thymus) were obtained from Sigma-Aldrich Chemical Co. (Wisconsin, 
WI, USA) and Funakoshi Co. (Kyoto, Japan), respectively. Poly(styrenesulfonate) sodium salt (PSS, 
molecular weight; 500,000) and poly(allylamine) (PAH, molecular weight; 150,000) were from 
Scientific Polymer Products, Inc. (Ontario, NY, USA) and Nittobo Co. (Tokyo, Japan). 
Poly(ethyleneimine) (PEI) was purchased from Nacalai Tesque Inc. (Tokyo, Japan). All other reagents 
used were of the highest grade and used without further purification. 

Hemin-appended PEI (H-PEI) was synthesized as follows. PEI (100 mg) and hemin (37.9 mg) 
were dissolved in 0.1 M HEPES buffer (pH 7.0), then N-hydroxysuccinimide (8.02 mg) and 1-ethyl-3-
(3-dimethylaminopropyl) carbodiimide hydrochloride (13.4 mg) were added in the solution at 4 °C. 
After 24 h, reaction mixture was purified by dialyzing to water for three days and freeze-dried. The 
content of hemin residues in PEI was 8.7% (molar ratio of hemin to primary amine), as determined 
by UV-visible absorption spectroscopy at 390 nm using a molar extinction coefficient of 42,000 M−1 
cm−1 for hemin. Other modification ratio of 1.8%, 4.1%, and 6.5% H-PEI and hemin-appended PAH 
(H-PAH: modification ratio of 8.0%) were synthesized by similar manners and hemin was added 9.52 
mg, 18.98 mg, 28.4 mg and 69.72 mg hemin to 100 mg each polymers, respectively. Chemical 
structures of hemin, H-PEI, H-PAH, and PSS were shown in Figure 2. 

 
Figure 2. Chemical structures of hemin, H-PAH, H-PEI, and PSS. 

  

H-PEI

DNA

H O2 2

Hemin

H
N

N

NH

HN

O

N

N
N

N

O
HO

Fe
Cl

HN

O

N

N
N

N

O
HO

Fe
Cl

OH

O

N

N
N

N

O
HO

Fe
Cl

SO3Na

Hemin
Hemin-PAH Hemin-PEI

PSS

Figure 2. Chemical structures of hemin, H-PAH, H-PEI, and PSS.
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2.2. Apparatus

A quartz crystal microbalance (QCM, QCA 917 system, Seiko EG & G, Tokyo, Japan) was used
for gravimetric analysis of the LbL films. A 9-MHz AT-cut quartz resonator coated with a thin Au
layer (surface area; 0.2 cm2) was used as a probe, in which the adsorption of 1 ng of substance induces
a −0.91 Hz change in the resonance frequency. Atomic force microscope images were recorded on
SPM-9600 (SIMADZU). UV–VIS spectrum was recorded on a Shimadzu 3100PC spectrophotometer
(Kyoto, Japan).

2.3. Preparation of Nanofilms

H-PEI/DNA nanofilms were prepared on 9 MHz Au-coated quartz resonator for QCM analysis.
The quartz resonator was immersed in a H-PEI solution (0.1 mg/mL, in 0.1 M Tris-HCl buffer, pH 7.4)
for 15 min to deposit the first H-PEI layer through a hydrophobic force of attraction. After being
rinsed in Tris-HCl buffer for 5 min to remove any weakly adsorbed H-PEI, the quartz resonator was
immersed in a DNA solution (0.1 mg/mL, in 0.1 M Tris-HCl buffer, pH 7.4) for 15 min to deposit
DNA through an electrostatic interaction. The second H-PEI layer was deposited similarly on the
surface of the quartz resonator. The deposition was repeated to build up nanofilms. The quartz slide
was cleaned by chromic acid mixture before use. (PEI/DNA)5, (H-PAH/DNA)5 and (H-PEI/PSS)5

nanofilms were prepared by a same manner. Hemin-containing (PEI/DNA)5 and (PAH/DNA)5 films
were prepared by immersing (PEI/DNA)5 and (PAH/PSS)5 films in 0.1 mg/mL hemin solutions into
15 min, respectively, followed by immersing 0.1 M Tris-HCl buffer for 5 min to remove any weakly
adsorbed hemin.

2.4. Decomposition of Nanofilms

The H2O2-induced decomposition of the nanofilms was studied by monitoring the resonance
frequency change (∆F) of the 5-bilayer film-coated quartz resonator in a flow-through cell of QCM.
The H2O2 solution was injected to the flow-through cell to monitor the decomposition of the nanofilm
and the decomposition characteristic was evaluated by ∆F after 1 h. All experiments were carried out
at room temperature (ca. 20 ◦C).

2.5. Observation of Nanofilms with AFM

For AFM observation, (H-PEI/DNA)5 nanofilm was prepared on a circular glass slide (diameter
was 1.5 cm) which was cleaned using fuming nitric acid and thoroughly rinsed in distilled water.
The glass slide was immersed in distilled water two times of 30 min to desalt and dried in a desiccator
for three days. Then the film was cut with an ultrasonic cutter (USW-333, Honda Electronics Co., LTD.,
Aichi, Japan) and the surface and thickness of the film were observed. In addition, the (H-PEI/DNA)5

nanofilm was immersed in 100 mM of H2O2 solution one hour to disintegrate and observed by
a similar manner. All AFM images were taken in contact mode using Olympus microcantilevers
(OMCL-TR800PSA-1, Olympus Co., Tokyo, Japan) at room temperature in air.

3. Results and Discussion

Figure 3 shows the change in the resonance frequency (∆F) of a QCM observed on depositing
H-PEI and DNA on the quartz resonator. The ∆F values decreased on deposition of both H-PEI and
DNA, showing that H-PEI and DNA could form a LbL nanofilm. It is reasonable that H-PEI and DNA
form the H-PEI/DNA film, because PEI and DNA could bind through the electrostatic interaction
(PEI and DNA are polycation and polyanicon, respectively). Deposition amount of H-PEI and DNA
were 1.33 µg/cm2 and 12.8 µg/cm2 in (H-PEI/DNA)5 film. Hemin was appended to PEI at 8.7%
for primary amin of PEI (PEI contains primary, secondary, and tertiary amines at 1:2:1 [41]). It was
estimated that (H-PEI/DNA)5 film contained 6.17 µmol/cm2 of hemin molecules.
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Figure 3. Typical QCM response for the deposition of LbL films constructed of H-PEI and DNA at pH
7.4. The quartz resonator was exposed to 0.1 mg/mL H-PEI (modification ratio of 8.7%) (a), 0.1 mg/mL
DNA (b), and 0.1 M Tris-HCl buffer solution (c).

The H2O2-induced decomposition of a (H-PEI/DNA)5 film was investigated on QCM (Figure 4).
∆F has not changed in buffer solution, suggesting the (H-PEI/DNA)5 film was stable in this condition.
By contrast, the ∆F increased when a 100 mM H2O2 solution was applied. In the case of exposing
(H-PEI/DNA)5 film to 100 mM H2O2, ∆F was increase 1500 Hz after 1 h, and it showed that ca. 90%
weight of (H-PEI/DNA)5 film exfoliated from the quartz slide. The increase of ∆F depended on
concentration of H2O2. When (H-PEI/DNA)5 films were exposed to 10, 20, 50, and 100 mM H2O2

solutions, these decomposition ratios were 18.7, 22.0, 44.2, and 95.1%, respectively.
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Figure 4. QCM frequence change of the (H-PEI/DNA)5 films in the presence of H2O2 in 0.1 M Tris-HCl
buffer solution (pH 7.0).

The surface morphology and thickness of (H-PEI/DNA)5 film was observed by AFM (Figure 5).
The surface of (H-PEI/DNA)5 film was rough and average thickness was estimated at 27.7 nm from
cross section (Figure 5a). On the other hand, the surface of (H-PEI/DNA)5 film was smooth and
average thickness was decreased at 2.7 nm after exposure to H2O2 (Figure 5b). The thickness of
(H-PEI/DNA)5 film was decreased by H2O2 processing. It was suggested that (H-PEI/DNA)5 film
was decomposed by H2O2.
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To investigate the mechanism of the (H-PEI/DNA)5 film decomposition, various polymers
were used for H2O2-sensitive LBL film preparation and these films were tested (Figure 6).
(H-PEH/DNA)5 film was decomposed at 96% by addition of 100 mM H2O2 solution after 1 h.
By contrast, the decomposition rate of (PEI/DNA)5 which did not contain hemin molecules was
3.6%. A hemin-containing (PEI/DNA)5 film in which hemin was adsorbed by a noncovalent bond
after preparation of film was decomposed 85.5% by H2O2. These results suggested that hemin
molecules were necessary for H2O2 decomposition of nanofilms for producing of ROS from reaction
with H2O2. The decomposition rate of the (H-PEI/PSS)5 film prepared using PSS instead of DNA and
(H-PAH/DNA)5 film prepared using PAH instead of PEI were 2.6% and 8.4% under same conditions.
It was thought that LbL nanofilms composed of PEI and DNA were convenient for H2O2 response.
The ROS effectively cleaved DNA more than PSS. In addition, PEI was branched polycation and its
electric charge density is lower than that of liner polycation of PAH. Low charge density of PEI was
useful for degradation. Porphyrin molecules such as hemin could interact with a major groove of
DNA [42,43]. It was known that PEI binding porphyrin could interact with DNA effectively than
PAH binding one [43]. Therefore, (H-PEH/DNA)5 and hemin-containing (PEI/DNA)5 film were
decomposed by H2O2 more effectively than other nanofilms.
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The decomposition properties of (H-PEI/DNA)5 film were investigated under various conditions.
Figure 7A shows the effect of hemin modification ratio in PEI on decomposition ratio of (H-PEI/DNA)5

films. The (H-PEI/DNA)5 film which used modification ratio of 6.5% and 4.1% H-PEI film were more
sensitive than 1.8% of one, because these films could react effectively with H2O2 by lot of hemin
molecules in film. However, decomposition of modification ratio of 8.7% hemin film was decreased.
We thought that the interaction between hemin and DNA was excessively formed in nanofilm and
disturbed the decomposition of the film. Effects of reaction solution pH and ion strength were studied
(Figure 7B,C). The pH 9 solution decomposed (H-PEI/DNA)5 film effectively more than pH 4 and pH
7 solutions. The interaction for (H-PEI/DNA)5 film formation weakened, because positive charge of
PEI was decreased in pH 9 solution. Thus, H-PEI and DNA interaction for composition of LbL film
was decreased and LbL film was decomposed low concentration of H2O2. Similarly, high ion strength
reduced electrostatic interaction of PEI and DNA for LbL film. Therefore, (H-PEI/DAN)5 film was
decomposed by low concentration of H2O2 in 300 mM NaCl solution (Figure 7C).
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Figure 7. Effect of modification ratio of hemin (A), pH (B), and ion strength (C) on the H2O2-induced
decomposition properties of (H-PEI/DNA)5 film. H-PEI of (B,C) were 8.7% modification ratio.
Error bars represent standard deviation (n = 4).
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The decomposition properties of hemin-containing (PEI/DNA)5 films were investigated similarly.
Figure 8A shows the decomposition ratio of hemin-containing (PEI/DNA)5 films prepared by
immersing in 0.1 mg/mL and 0.01 mg/mL hemin solutions to absorb on nanofilm and these films
contained 2.27 nmol/cm2 and 1.09 nmol/cm2 hemin molecules, respectively. The decomposition ratio
of hemin-containing (PEI/DNA)5 film increased with increasing hemin content in film. However,
hemin-containing (PEI/DNA)5 film (1.0 mg/mL) and (H-PEI/DNA)5 (6.5%) film were 62% and
85%, respectively. It seems that introduce hemin molecules into the LbL film by covalent bond was
effective for the decomposition of the LbL film. Effects of reaction solution pH and ion strength
were studied (Figure 8B,C). The pH 9 solution decomposed hemin-containing (PEI/DNA)5 films film
effectively more than pH 4 and pH 7 solutions from same reason of (H-PEI/DNA)5 film. However,
the ionic strength did not effect on the collapse of the film. When hemin molecules adsorbed into
(PEI/DNA)5 film, counter ions were also adsorbed. The effect of the ion strength of the reaction
solution was reduced.
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the H2O2-induced decomposition properties of hemin-containing (PEI/DNA)5. Hemin-containing
(PEI/DNA)5 of (B,C) were prepared by 0.1 mg/mL hemin solution. Error bars represent standard
deviation (n = 4).
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4. Conclusions

The (H-PEI/DNA)5 and hemin-containing (PEI/DNA)5 nanofilms were prepared by LbL
technique and were decomposed by addition of H2O2. The decomposition depended on modification
rate of hemin, concentration of H2O2, pH and ion strength of reaction solution. We have previously
reported H2O2 sensitive nanofilms using the reaction of phenylboronic acid to phenol by H2O2 [44,45].
We also developed glucose and lactate stimuli responsive nanofilm combining this thin film with the
enzymatic reaction of glucose oxidase [46] and lactate oxidase [47] (These enzymes produce H2O2

from each substrate). These nanofilms responded to each stimulus and decomposed within several
minutes under physiological conditions, suggesting the application of insulin and anticancer drugs
to DDS. However, there are some drugs that sustained release is desirable for DDS applications.
The (H-PEI/DNA)5 and hemin-containing (PEI/DNA)5 nanofilms showed sustained degradation
against low concentration H2O2. If the carrier containing drugs can be degraded persistently, it may
be achieved as sustained drug release carrier by using this hemin base nanofilm.
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