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Introduction
The human mitochondrial genome has been used to study mater-
nal phylogenetic relationships1-6 and disease-related mutations,7 
as well as for DNA identification,8 and it is an important genomic 
region not only in molecular anthropology but also in the medical 
and forensic fields. High-throughput genotyping and parallel 
sequencing technologies have made it possible to perform human 
mitochondrial genome population analyses on a massive scale.9-11 
These high-throughput technologies also allow mitochondrial 
genome analyses of ancient humans or archaic hominins, as well as 
modern humans.12-17 However, the quantity of endogenous DNA 
in archeological remains is extremely low, which makes it difficult 
to obtain complete mitochondrial genome sequences. As an 
experimental method to deal with this problem, several target 
enrichment approaches have been employed,18-21 but these prob-
lems are still not completely resolved in the cases of extremely 
degraded samples. The stability of endogenous DNA in postmor-
tem resources is greatly affected by the environmental conditions, 
such as temperature, humidity, and pH.22 A simulation study 
based on a statistical model suggested that the endogenous DNA 
in archeological samples is rapidly degraded in warm climates.23 
Actually, it is often difficult to obtain complete mitochondrial 
genome sequences from degraded samples excavated in areas with 
warm or hot climates, such as East or Southeast Asia.24,25

There are several practical approaches for analyzing incom-
plete data with missing values. One of these approaches is the 
listwise deletion approach,26 which deletes categories, including 
missing values. However, this approach could limit comparisons 
with samples and discard some of the valuable data. Therefore, 
multiple imputation approaches have been proposed as methods 
to solve these problems.27,28 These approaches fill the missing 
values with approximate or estimated values, which allows sam-
ples to be analyzed without deleting categories including miss-
ing values. The imputation against the human mitochondrial 
genome facilitated the performance of mitochondrial haplo-
group prediction,29 improved the statistical power in a genome-
wide association study,10 and also minimized the impact of 
missing nucleotides in a population genetics analysis.30 However, 
these previous studies did not sufficiently assess the effect of the 
imputation on the worldwide mitochondrial DNA lineages, and 
as far as we know, there is no available imputation tool designed 
for the human mitochondrial genome. In this article, we propose 
a computational approach for deducing the missing nucleotides 
in partial human mitochondrial genome sequences and also 
assessing the effects of the imputation on the worldwide human 
mitochondria DNA lineages. Our computational approach will 
provide a practical solution to compensate for the missing data 
in the low-coverage human mitochondrial genomes.
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Materials and Methods
Simulated data set

To assess the impact of our approach on the global mitochon-
drial DNA lineages, we generated artificial low-coverage 
human mitochondrial genome sequences for representative 
mitochondrial macro-haplogroups (A, B, C, D, E, F, G, H, 
HV, I, J, K, L0, L1, L2, L3, L4, L5, L6, M, N, O, P, Q, R, R0, 
S, T, U, V, W, X, Y, and Z) in PhyloTree (Build 17;  
http://www.phylotree.org​).31 Based on the mitochondrial 
genome sequences of these haplogroups, we simulated artifi-
cial next-generation sequencing (NGS) reads with ART (v. 
MountRainier-2016-06-05),32 which is a simulation tool to 
generate synthetic NGS reads. In this study, we assumed 
paired-end reads based on the Illumina sequencer model in 
ART and mitochondrial genome coverage of ×10 to ×90. 
Next, these simulated short reads were aligned against the 
human mitochondrial reference sequence rCRS (revised 
Cambridge Reference Sequence),33 using BWA (Burrows-
Wheeler Aligner; v. 0.7.15).34 We then obtained artificial 
low-coverage mitochondrial genome sequences from these 
aligned reads with MitoSuite (v. 1.0.9).35 Finally, we applied 
our approach 500 times for each mitochondrial DNA lineage 
and investigated its precision. The precision of the imputa-
tion is computed as follows: TP/(TP + FP). True positive 
(TP) is the number of nucleotides imputed and validated. 
False positive (FP) is the number of nucleotides imputed but 
failed in validation.

Empirical Data Set
To assess the impact of our approach on the empirical sequenc-
ing data, we used several low-coverage human mitochondrial 
genome sequences from high-throughput sequencing data. 
These sequences were from Southeast Asian individuals dating 
from the Neolithic period through the Iron Age (4100-1700 
years ago).25 We downloaded these alignment reads according 
to the accession number PRJEB24939. Due to the poor DNA 
preservation in tropical conditions, most of the mitochondrial 
genomes derived from these ancient remains had incomplete 
partial sequences. Lipson et  al25 evaluated the ancient DNA 
authenticity and the exogenous contamination for each NGS 
library. To reduce the influence of postmortem misincorpora-
tions,36 we clipped 2 bases from each end of the alignment 
reads, using BamUtil (v. 1.0.14).37 Finally, we obtained the 
mitochondrial genome sequences from the clipped reads, using 
MitoSuite. In this study, the haplogroup assignments were per-
formed according to the results of Lipson et al.25

Computational Deducing Approach
Our deducing approach couples the allele-sharing distance 
used for low-coverage sequencing data38 with the k-nearest 
neighbor (kNN), which is a simple and effective supervised 
classification algorithm.39 First, our procedure computes the 
allele-sharing distance to determine the pairwise distance 

among individual mitochondrial genome sequences, which is 
given by the following expression:
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where δij is the allele-sharing distance between individuals i 
and j, Sij is the number of polymorphic sites compared between 
individuals i and j, and Vi
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n of individuals i and j, respectively. Finally, we obtain the fol-
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where M is the number of pairs in the individual mitochondrial 
genome sequences. Based on the distance matrix, the KNN 
sequences are selected, and then the missing positions are assigned 
to the most common alleles in the selected neighbors. To ensure 
the robustness of the imputed alleles, our framework also intro-
duced the parameter f, which is the threshold frequency to deter-
mine the major alleles. In this study, we followed the parameter 
condition (f = 0.7, k = 5) used for kNN-based imputation pro-
cedures in Mizuno et al.40 The condition is one of the most accu-
rate combinations of parameter values in the previous research. 
Our approach also uses the reference population panel based on 
the complete mitochondrial genome sequences. Therefore, we 
obtained the worldwide human mitochondrial DNA sequences 
from PhyloTree Build 17 (http://www.phylotree.org).31 These 
sequences were aligned using MAFFT (v. 7.407)41 and oriented 
to the position of rCRS. Finally, we used 23 257 human mito-
chondrial DNA sequences as the default panel data set (ALL 
panel), including all present macro-haplogroups. The 1000 
Genomes Project panel (phase 3)42 is often used for imputation 
of genome-wide single-nucleotide polymorphisms (SNPs) in 
human population genetics, but the geographical region of the 
population and the mitochondrial genome lineage are limited. In 
this study, we designed the global panel data (ALL panel) with 
more than 4500 haplogroup lineages, covering known all macro-
haplogroups. In addition, in our framework, there is no need to 
assign mitochondrial haplogroups of sequences in advance. Our 
approach does not force the design of panel data to be composed 
of the same population or maternal lineages and will be able to 
prevent false estimates from panels with biased population struc-
ture. To investigate whether the panel design can rescue lineage-
specific mutations, we also used the worldwide macro-haplogroup 
panels consisting of the same macro-haplogroup lineages as the 
input mitochondrial genome.

http://www.phylotree.org
http://www.phylotree.org
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We also developed an open-source computer program, 
MitoIMP, implementing our imputation procedure (Figure 1). 
MitoIMP is freely available from https://github.com/omics-
tools/mitoimp. Our computer program supports the standard 
FASTA as the input and output format. In our computational 
framework, the genomic position of a mitochondrial genome 
sequence is oriented to that of the human mitochondrial 
genome reference sequence rCRS with MAFFT.41 Finally, 
MitoIMP outputs an imputed mitochondrial genome 
sequence in the FASTA format and provides a summary table 
for the imputation procedure.

Multidimensional Scaling Analysis
To assess the impact of our approach on an empirical low-
coverage mitochondrial genome, we performed a multidi-
mensional scaling (MDS) analysis using the mitochondrial 
genome sequences from 18 Southeast Asian ancient remains. 
The MDS analysis revealed a 2-dimensional relationship 
among the samples, based on the genetic distance of the 
mitochondrial genome sequences. The distances were deter-
mined based on the allele-sharing distance.38 The MDS anal-
ysis was performed before and after our deducing approach. 
Pairwise allele-sharing distances between mitochondrial 
genomes were calculated using MitoIMP, and the eigenvector 
of the distance matrix was obtained by the “cmdscale” com-
mand, which is implemented in R.43 The scatter plots were 
drawn using the ggplot2 package44 in R.

Results
Application to simulated low-coverage sequencing data

To investigate the effectiveness of our approach to worldwide 
mitochondrial DNA lineages, we assessed the precision of the 
imputation for each maternal lineage. Our simulation results 
showed that missing bases can be estimated with a precision of 
0.99 or higher in most of the macro-haplogroup lineages 
(Figure 2). We also found that the imputation precision for 

several macro-haplogroup L lineages was more affected by the 
loss of genome coverage than the other macro-haplogroups 
(Figure 2). Our approach showed decreased precision with the 
loss of genome coverage, but the FPs were only a few bases 
even where the mitochondrial genome lacked half of the 
genome coverage (Supplemental Figure S1). We also examined 
the region-by-region effects of our approach on the mitochon-
drial genome.

Although the imputation is uniformly performed on the 
entire mitochondrial genome, the effect of this procedure 
has not been evaluated so far for each region. Therefore, we 
also examined the precision of the imputation for each 
region of the mitochondrial genome and found that the 
effect of this procedure varied by region on the human mito-
chondrial genome (Figure 3). Although several nucleotide 
positions of the D-loop showed lower precision, our 
approach imputed the missing nucleotides with >0.9 high 
precision throughout most regions of the human mitochon-
drial genome.

Application to Empirical Low-Coverage Sequencing 
Data
We used partial mitochondrial genome sequences from 18 
ancient South Asian individuals for the empirical deducing 
approaches. These partial mitochondrial genome sequences 
showed different genome coverages with 5831 to 16 558 
nucleotides, which are equivalent to 35.2% to 99.9% of the 
covered region of the human mitochondrial reference 
sequence rCRS.33 Especially, VN39 was not found in 10 731 
positions, corresponding to about a 65% loss of the whole 
mitochondrial genome. To exclude intentional filling by geo-
graphical region–specific haplogroups, we used the world-
wide haplogroup sequences (ALL panel) for deducing the 
missing positions (parameters: k = 5, f = 0.7). As a result, 
more than 99% of the missing positions were filled after the 
process (Table 1).

Figure 1.  Flowchart of the imputation procedure.
This flowchart shows the imputation process in the MitoIMP program, implementing our approach. The rounded rectangles indicate the beginning and end of the 
procedure. The rectangles with a wavy base indicate the input and output files. The rectangular boxes represent processing or data manipulation. The MAFFT program is 
used to perform multiple alignments for the input sequence.

https://github.com/omics-tools/mitoimp
https://github.com/omics-tools/mitoimp
https://journals.sagepub.com/doi/suppl/10.1177/1177932219873884
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To investigate the relative relationships among individuals 
before and after the imputation, we performed an MDS analy-
sis. The results of the MDS analysis without/with missing data 
showed different positional arrangements (Figure 4A). Among 
the partial mitochondrial genome sequences with missing data, 
there is no correspondence between the arrangement and their 
maternal lineages. The calculated distance matrix among the 
partial mitochondrial genome sequences did not correspond to 
the assigned haplogroups (Figure 4B). Our results also revealed 
that such partial mitochondrial genome sequences have a sig-
nificant correlation between the calculated distance and the loss 
of coverage (Pearson correlation r2 = .548, P = 2.384e−13; 
Supplemental Figure S2). On the other hand, the mitochon-
drial genome sequences imputed by our approach presented at 
least 2 clusters, belonging to macro-haplogroups B and M7 
(Figure 4A and B). The individuals belonging to these 2 clusters 
showed different positional relationships before the filling pro-
cedure, but the imputed mitochondrial genome sequences seem 

to be plausibly arranged among the assigned macro-haplo-
groups. This result indicates that our approach can correct the 
unclear 2-dimensional arrangements among partial mitochon-
drial genome sequences.

Discussion
The effect of the loss of genome coverage

The missing data of mitochondrial genome sequences may be 
observed in empirical low-coverage sequencing data or 
genome-wide SNP array data. For example, ancient samples 
and museum samples have only trace amounts of endogenous 
DNA, and it is difficult to obtain complete mitochondrial 
genome sequences from such degraded samples. Although 
the incompleteness of the mitochondrial genome sequence 
may influence the calculation of the allele-sharing distances 
among individual sequences, our approach appears to be able 
to complement the deletion with the correct base in most of 

Figure 2.  The assessment of imputation procedures for mitochondrial haplogroup lineages.
The vertical axis shows the precision in the assessment of the simulated imputation procedures. The horizontal axis indicates the percentage of missing nucleotides 
(10%-90%) in the partial mitochondrial genome sequences. Error bars indicate the standard error of the mean (SEM). The results in the case of the “ALL” panel including 
all macro-haplogroup lineages are indicated by the blue line, and those of the “Haplogroup” panel consisting of the same macro-haplogroup lineages are indicated by the 
orange line.

https://journals.sagepub.com/doi/suppl/10.1177/1177932219873884
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the haplogroup lineages. However, the effect of the imputa-
tion approach on the missing data in the human mitochon-
drial genome sequence may vary among the regions. The 
human mitochondrial genome consists of 37 genes and a con-
trol region (D-loop). These 37 genes comprise 13 subunits of 
the respiratory chain complex genes, 22 transfer RNA genes, 
and 2 ribosomal RNA genes.45 Therefore, we should consider 
the effect of our approach across the entire region of the 
human mitochondrial genome sequence. In this study, we 
found several positions (nucleotide positions: 152, 310, and 
16 519) with a precision less than 0.9. These positions are 
located on the D-loop regions, which are known to have a 
higher mutation rate than that of the gene-coding regions in 

the human mitochondrial genome.46 As private alleles are 
accumulated in the D-loop, it is not preferable to use many 
candidate sequences in the KNN algorithm. Therefore, we 
may decrease erroneous estimations in D-loop by reducing 
the number of the parameter k. Although the effect of low 
coverage was observed at only a few nucleotide positions, 
most of the missing positions were correctly filled across the 
human mitochondrial genome sequence. This result indicates 
that our approach using partially obtained sequences helps to 
infer a nearly complete mitochondrial genome sequence. Our 
method will be a useful approach to complement the missing 
parts of low-coverage mitochondrial genome sequences in 
which unidentified sites occur randomly.

Figure 3.  The assessment of imputation procedures across the human mitochondrial genome.
The scatter plot inside the circle shows the precision of the imputed nucleotides in 500 imputation trials, using worldwide haplogroup lineages. Protein- and RNA-coding 
regions are shown in gray and the noncoding region (D-loop) is shown in green. The abbreviations of the regions over 100 bp (base pairs) are written in white letters. The 
numerical value of the outer frame indicates the genomic position in the mitochondrial genome at intervals of 1000 bp. The lines inside the circle are graduated by 0.1 
intervals, from 0.5 to 1.00.
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Understanding the Maternal Lineage for Accurate 
Imputation
To accurately fill the missing nucleotides in partial mitochon-
drial genome sequences, it is important to assess the impact of 
the imputation on each maternal lineage. Although the design 
of the population panel may lead to a bias of the filled nucleo-
tides, a panel design with appropriate maternal lineages will 
improve the imputation performance. Actually, a previous 
study using 1500-year-old highly degraded samples showed 
that a closely related population panel (haplogroup A panel) 
can fill more missing sites, as compared with population panels 
including other maternal lineages.40 However, this previous 
study assessed the impact of imputation on the macro-haplo-
group A lineages, but that of the worldwide maternal lineages 
has not been verified. In this study, we used the population 
panels for the worldwide mitochondrial genome lineages and 
also tested the effect of these panels on the imputation perfor-
mance. Our simulation result showed that the population pan-
els consisting of closely related maternal lineages could improve 
the precision of the imputed nucleotides (Figure 2). Although 

the precision slightly varied due to the haplogroup lineages, our 
approach filled the missing sequences of the low-coverage 
mitochondrial genome with nucleotides with a precision of 
0.99 or higher.

The imputation performance may also reflect the differences 
in the phylogenetic diversity of the haplogroup lineages. The 
most recent common ancestor of the human mitochondrial 
genome is dated back to approximately 150 000 to 250 000 years 
ago,2,3,47 and the phylogenetic relationships involving modern 
human mitochondrial genomes can be largely divided into 
maternal lineages in sub-Saharan Africa (African haplogroup L) 
and non-Africa, with the exception of the “back-to-Africa” line-
ages.48 Especially, it is well known that the human mitochondrial 
DNA lineages among Africans are more than twice as diverse as 
those of non-Africans.49 Therefore, although the precision of 
imputation might decrease in several haplogroup L lineages, our 
approach will be especially effective for most of the non-African 
mitochondrial DNA lineages. Depending on the maternal line-
ages of samples, setting the parameters may be useful to reduce 
biased alleles’ assignments caused by population structure. For 

Table 1.  Empirical mitochondrial genome sequences used in this study.

Sample Age (BP) Country Haplogroup mtGenome 
coverage (%)

Missing 
nucleotides

References

  Before 
imp.

After 
imp.

Before 
imp.

After 
imp.

AB40C 1890-1730 Cambodia B5a1a 71.5 99.9 4726 14 Lipson et al25

BCES B16 2600-2400 Thailand M72a 87.7 99.9 2031 4 Lipson et al25

BCES B27 3000-2800 Thailand M74b2 68.8 99.9 5163 3 Lipson et al25

BCES B38 3200-3000 Thailand B5a1a 72.8 99.9 4499 14 Lipson et al25

BCES B54 3200-3000 Thailand B5a1c 70.1 99.9 4954 13 Lipson et al25

BCES B67 3500-3200 Thailand F1f 44.7 99.9 9162 4 Lipson et al25

OAI1/S28 3200-2700 Myanmar D4q 50.7 99.9 8163 1 Lipson et al25

OAI1/S29 3200-2700 Myanmar D4h1c 44.2 99.9 9240 12 Lipson et al25

VN22 3835-3695 Vietnam M13b 68.9 99.9 5161 6 Lipson et al25

VN29 3900-3600 Vietnam M7b1a1 58.3 99.9 6915 3 Lipson et al25

VN31 3900-3600 Vietnam No call (N.A.) 59.7 99.9 6684 6 Lipson et al25

VN33 3900-3600 Vietnam B5a1a 93.7 99.9 1051 2 Lipson et al25

VN34 4080-3845 Vietnam M7b1a1 99.1 100 141 0 Lipson et al25

VN37 3825-3635 Vietnam M7b1a1 92.3 99.9 1276 3 Lipson et al25

VN39 3830-3695 Vietnam M7b1a1 35.2 99.9 10 731 9 Lipson et al25

VN40 3820-3615 Vietnam M74b 98.8 100 198 0 Lipson et al25

VN41 2100-1900 Vietnam C7a 99.9 100 11 0 Lipson et al25

VN42 1995-1900 Vietnam M8a2a 59.5 99.9 6705 8 Lipson et al25

The mtGenome coverage shows the percentages of mapped positions in the mitochondrial genome. Missing nucleotides represent the number of missing bases in the 
mitochondrial genome.
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Figure 4.  The relative relationships among individuals before and after the imputation. (A) The left and right figures show the results of the MDS analysis 

before and after the imputation procedure, respectively. The color scheme is according to macro-haplogroup lineages—B5 (blue), C7 (green), D4 (pink), 

F1 (light blue), M13 (cyan), M7 (red), M72 (light green), M74 (yellow), M8 (orange), N.A. (dark gray). (B) These figures are heat maps, based on the 

allele-sharing distance matrix among the empirical human mitochondrial genome sequences. Color keys of the distance values are shown on the upper 

left of each heatmap. The left figure shows the heatmap based on the allele-sharing distance before the imputation. The right figure shows the heatmap 

based on the allele-sharing distance after the imputation. Clusters of macro-haplogroups B5 and M7 are outlined by the white dashed lines.

example, population-specific alleles can be reduced by increasing 
the parameter k and the parameter f.

Impact of Deducing Approach for Poorly Preserved 
Fossil Remains
The full-length sequence of the human mitochondrial genome 
can facilitate the estimation of population dynamics,47,50,51 and 

new findings surrounding the diversity of the human mito-
chondrial genome have been revealed by comparisons with the 
diversity of mitochondrial genomes of archaic hominins, such 
as Neanderthals.52 However, extremely degraded archeological 
remains often contain less than 1% endogenous DNA, which 
makes it difficult to obtain the full-length mitochondrial 
genome. Environments with high temperatures and humidity 
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rapidly fragment the endogenous DNA in postmortem sam-
ples; therefore, ancient genome research involving warm and 
humid environments, such as East or Southeast Asia, has been 
hindered. As approaches to examine such degraded ancient 
remains, experimental methods such as DNA extraction pro-
tocols specialized for ancient bones53,54 and target enrichment 
methods19,55,56 are often applied. However, these experimental 
methods are generally expensive, and when applied to highly 
degraded fossil remains, the complete mitochondrial genome 
sequence would not be successfully obtained. Therefore, short 
regions, such as hypervariable regions (HVRs), have often 
been used in previous studies on ancient DNA from warm and 
humid geographical regions.57-59 However, the mitochondrial 
genome coverages obtained from ancient remains vary accord-
ing to their DNA preservation. Actually, some empirical 
sequencing data from prehistoric Southeast Asian samples 
have large defects in the D-loop, including the HVRs. HV39 
showed an especially low-coverage mitochondrial genome 
sequence, with more than half of the coverage missing. In 
addition, our simulation results suggest that the effect of the 
missing data on the control regions including HVRs is greater 
than that in other regions of the mitochondrial genome. 
Partial and incomplete mitochondrial DNA sequences might 
not be considered and neglected in detailed discussions. 
Therefore, we may also have limited insight into the analysis 
of low-coverage mitochondrial genome sequences including 
missing data. The filling of missing alleles for ancient genomes 
might be a challenging approach because ancient human 
genome resources are limited. However, our results show that 
our application can robustly impute most of the missing 
nucleotides in worldwide human mitochondrial DNA line-
ages (Figure 1 and Supplemental Figure S1). In this study, we 
have shown that the missing nucleotides can have a consider-
able impact on genetic distance calculations (Supplemental 
Figure S2). Our approach would be preferable to minimize the 
impact of missing nucleotides on the downstream analysis 
such as the MDS analysis.

In this study, we propose a computational deducing 
approach designed for such incomplete mitochondrial genome 
sequences. Recent improvements in NGS and target enrich-
ment technologies have increased the opportunity to obtain 
randomly fragmented various partial sequences beyond spe-
cific regions of the human mitochondrial genome. Our 
approach imputes the missing regions using such partial 
sequences of the mitochondrial genome, without relying on 
the use of limited sequences or SNPs. Thus, this approach will 
work better for shotgun or target enrichment sequencing, as 
compared with genome-wide SNP arrays, amplicon sequenc-
ing, and polymerase chain reaction amplification. We also 
applied our approach to empirical low-coverage mitochon-
drial genome sequences. In the MDS analysis, our approach 
achieved the correct positional relationships by filling in the 
missing nucleotides. In particular, the individuals belonging to 

the macro-haplogroup lineages B5 and M7 appeared to be 
more closely clustered after the imputation. This result sug-
gests that most of the missing regions were complemented by 
phylogenetically informative nucleotides. Our approach can 
be applied to low-coverage mitochondrial genome sequences 
from these empirical poorly preserved fossil remains and will 
prompt the use of partial mitochondrial DNA sequences that 
previously would have been discarded.
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