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C3 glomerulopathy (C3G) and atypical hemolytic uremic syndrome (aHUS) are two rare
diseases caused by dysregulated activity of the alternative pathway of complement
secondary to the presence of genetic and/or acquired factors. Complement factor I (FI)
is a serine protease that downregulates complement activity in the fluid phase and/or on
cell surfaces in conjunction with one of its cofactors, factor H (FH), complement receptor 1
(CR1/CD35), C4 binding protein (C4BP) or membrane cofactor protein (MCP/CD46).
Because altered FI activity is causally related to the pathogenesis of C3G and aHUS, we
sought to test functional activity of select CFI missense variants in these two patient
cohorts. We identified 65 patients (16, C3G; 48, aHUS; 1 with both) with at least one rare
variant inCFI (defined as a MAF < 0.1%). Eight C3G and eleven aHUS patients also carried
rare variants in either another complement gene, ADAMTS13 or THBD. We performed
comprehensive complement analyses including biomarker profiling, pathway activity and
autoantibody testing, and developed a novel FI functional assay, which we completed on
40 patients. Seventy-eight percent of rare CFI variants (31/40) were associated with FI
protein levels below the 25th percentile; in 22 cases, FI levels were below the lower limit of
normal (type 1 variants). Of the remaining nine variants, which associated with normal FI
levels, two variants reduced FI activity (type 2 variants). No patients carried currently
known autoantibodies (including FH autoantibodies and nephritic factors). We noted that
while rare variants in CFI predispose to complement-mediated diseases, phenotypes are
strongly contingent on the associated genetic background. As a general rule, in isolation, a
rare CFI variant most frequently leads to aHUS, with the co-inheritance of a CD46 loss-of-
function variant driving the onset of aHUS to the younger age group. In comparison, co-
inheritance of a gain-of-function variant in C3 alters the phenotype to C3G. Defects in CFH
(variants or fusion genes) are seen with both C3G and aHUS. This variability underscores
the complexity and multifactorial nature of these two complement-mediated
renal diseases.
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INTRODUCTION

The complement cascade is the cornerstone of the innate defense
system. It is the first line of defense against foreign and altered
host cells, it activates and potentiates adaptive immunity, and it
provides integrated crosstalk with other pathways including the
coagulation pathway (1). Activation of complement is triggered
via one of three pathways–the classical (CP), lectin (LP) and
alternative (AP)–all of which converge on C3bBb, a C3
convertase that cleaves C3 to C3b, to amplify the complement
response and initiate the terminal pathway with ultimate
formation of the membrane-bound lytic unit membrane attack
complex (C5b-9). The entire cascade is tightly regulated by
several mechanisms involving soluble and membrane-bound
regulators such as factor H (FH), factor I (FI) and membrane
cofactor protein (MCP/CD46) (2).

The primary function of FI is to downregulate complement
activity by proteolytic inactivation of C3b to iC3b and C4b to
iC4b in the presence of one of its four co-factors, FH, CR1, C4BP
and MCP. FI-mediated regulation is especially important in
controlling activity of the AP as this pathway is constitutively
active. FI is synthesized by the liver as a 66 kDa single chain
peptide that undergoes posttranslational glycosylation (adding
22 kDa of glycans) and protein cleavage to remove the signal
sequence and four internal amino acids (RRKR, residues 336 to
339) to generate a mature protein with a heavy chain (50 kDa,
Lys19–Ile335) and a light chain (38 kDa, Ile340–Val583) linked
by a single disulfide bond (Cys255-Cys471) (3, 4). The five
recognizable domains include a membrane-attack complex
(FIMAC) domain, scavenger receptor cysteine-rich (SRCR)
domain, two low-density lipoprotein receptor domains (LDLR1
and LDLR2) and, after a C-terminal linker on the heavy chain,
the catalytic or serine protease (SP) domain with its catalytic
triad His380-Asp429-Ser525 on the light chain (Figure 1) (5).

Deficiency of FI leads to unchecked AP amplification and
consumptive deficiency of complement components, such as C3,
with various phenotypic consequences (6). Complete absence of
FI, which is rare, results in severe and recurrent infections,
glomerulonephritis and/or autoimmune disease (7–11). Partial
FI deficiencies, which are much more common, lead to
dysregulated C3 convertase activity and predispose to several
complement-mediated diseases such as atypical hemolytic
uremic syndrome (aHUS) (12–15), age-related macular
degeneration (AMD) (16–18), and occasionally, C3
glomerulopathy (C3G) (19–22).

C3G and aHUS are rare renal diseases caused by dysregulated
complement activity of the AP typically driven by genetic and/or
acquired factors. In C3G, uncontrolled complement activity in the
fluid phase and glomerular microenvironment leads to a
characteristic pattern of glomerular injury defined by the
predominant deposition of C3 fragments for which the disease
is named (23–25). Based on electron microscopy, two major
subclasses of C3G are recognized–C3 glomerulonephritis
(C3GN) and dense deposit disease (DDD). Classic clinical
findings of both subtypes are hematuria and proteinuria (26).
aHUS is a form of complement-mediated thrombotic
microangiopathy (TMA) characterized by microangiopathic
Frontiers in Immunology | www.frontiersin.org 2
hemolytic anemia, consumptive thrombocytopenia, and
multisystem end organ involvement primarily affecting the
kidney (27). In aHUS, dysregulated complement activity
primarily occurs on cell surfaces, leading to local prothrombotic
states, especially in the kidney.

Here, we reported 45 variants in CFI (MAF < 0.1%) identified
in 65 patients with either C3G or aHUS. We completed detailed
studies in 40 patients that included a novel FI functional assay
and identified both type 1 and type 2 CFI variants.
METHODS

Patients
Our C3G and TMA registry (C3G, n = 1048; TMA, n = 1468)
was searched for patients who were evaluated between 2009-’21
and carried a CFI variant with a minor allele frequency (MAF)
< 0.1%. Biomaterials included DNA (all patients) isolated from
peripheral blood using established methods (28), and serum and
plasma (most patients) collected at the time of disease onset
(acute flare) in patients with aHUS or during ongoing disease
(chronic period) in patients with C3G using a standard protocol
(29) and stored as one-time-use aliquots at -80°C. The study was
approved by the Institutional Review Board of Carver College of
Medicine at the University of Iowa.

Genetic and Biomarker Analyses
Genetic analysis was performed using a targeted sequencing
panel, which captures relevant complement genes as well as
THBD, ADAMTS13 and DGKE as we have described (30). In
addition, the CFH-CFHR and CFI genomic regions were
screened for copy number variation by multiplex ligation-
dependent probe amplification (MLPA) using the MRC
Holland SALSA kit and in-house designed probes.

Biomarker/functional testing was performed using a
customized panel that includes ELISAs, radial immunodiffusion
(RID), immunofixation electrophoresis (IFE), and hemolytic-
based assays (29). Specifically, CP and AP activities were
assessed using Quidel (San Diego, CA) and Wieslab kits (SVAR,
Malmö, Sweden). Fluid-phase activity was also tested using IFE on
a SPIFE machine (Helena Laboratories, Beaumont, TX). Serum
levels of C3, C5, properdin, FH, FI and complement activation
products C3c, Ba, Bb, sC5b-9 were measured using ELISA kits
(Hycult Biotech, Wayne, PA or Quidel, San Diego, CA). C4, FB
and FI were run by RID (The Binding Site, San Diego, CA). FH
and FB autoantibody assays were done by ELISA against purified
proteins FH and FB, respectively (Complement Tech, Tyler, TX).
C3-, C4-, and C5-nephritic factors were detected by cell-based
hemolytic methods (31).

Factor I Co-Factor Activity
To assess FI co-factor activity, we developed a novel FI functional
assay using C3b-decorated sheep erythrocytes (C3b-ShE)
prepared as previously described (32). To minimize the effect
of endogenous FH, patient serum or plasma was diluted 1:32 in
GVB-Mg2+ buffer (16). To assess FI function, 50 µL of diluted
May 2022 | Volume 13 | Article 866330
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serum/plasma, 50 µL of C3b-ShE (1x109/mL) and 100 µL of co-
factors were added to 200 µL of GVB-EDTA buffer. The co-
factors [FH (Complement Tech, Tyler, TX), sCR1 (Celldex
Therapeutics , New Haven, CT) or sMCP (Alexion
Pharmaceuticals, Boston, MA)] were assayed at final
concentrations of 50nM, 25nM and 50nM, respectively. The
resulting mixture was incubated at 37°C for 15 minutes. After 3
washes, cells were resuspended in 50 µL of GVB-Mg2+ buffer and
remaining C3b on ShE was titrated out by excess FB (5x of the
amount at Z = 1) and FD (0.3 mg) in GVB-Mg2+ buffer to form
C3 convertase at 30°C over a 5-minute period; the reaction was
stopped by adding 300 µL of GVB-EDTA buffer. 50 mL of the
mixture was transferred to an empty 96-well plate and hemolysis
was induced by adding 50 mL of rat EDTA serum diluted (1:10)
in GVB-EDTA buffer (as a source of C5-C9). After
centrifugation at 1000 x g, cell-free supernatant was transferred
to a flat bottom 96-well plate and absorbance was read at OD415.
The percentage of hemolysis in each well was calculated using
hypotonic lysis induced by water as 100%.

Western Blot
Serum or plasma (1:80 diluted) in Laemmli buffer with or
without reducing reagent was separated on 4-15%
polyacrylamide gels (Bio-Rad, Hercules, CA). After
transferring, FI was visualized using rabbit monoclonal
antibody to FI (ab278524, Abcam, Waltham, MA) followed by
a secondary incubation and chemiluminescence.
Frontiers in Immunology | www.frontiersin.org 3
Statistics
Statistical analysis was performed using the Student’s t-test for
two group comparisons, Fisher’s exact test for contingency
tables, and Pearson correlation to measure linear relationships
between variables using GraphPad Prism 8.2 (GraphPad
Software, San Diego, CA). Error bars represent means ± SD.
The number of samples and number of experimental repetitions
are indicated in the figure legends. P < 0.05 was
considered significant.
RESULTS

Patient Cohorts and Rare Variants in CFI
Sixty-five unrelated patients (sixteen C3G [ten, C3GN; six, DDD];
48 aHUS; one C3G/aHUS) with rare variants in CFI were
identified in our registry (Figure 1), which represents significant
enrichment in our aHUS cohort as compared to the prevalence of
rare variants with MAF < 0.1% reported in gnomAD (1.77% of
141433 individuals in gnomAD vs 1.62% of 1048 C3G patients
(P > 0.05) and vs 3.34% of 1468 TMA patients (P < 0.0001)) (33).
In addition, the prevalence of rare variants is significantly higher in
aHUS as compared to C3G (P = 0.0078). Disease occurred at any
age in both cohorts (median age, 27.5 vs 37, respectively), although
more aHUS patients were diagnosed in early childhood (age < 5,
six aHUS vs one C3G). In the aHUS cohort, there were also more
females (female/male, 35/13), while in the C3G cohort, both
A

B

FIGURE 1 | CFI variants identified in patients with C3G and aHUS. (A) Schematic view of factor I and the 45 rare variants (MAF < 0.1%) identified in 65 patients
(red, aHUS; blue, C3G; brown, both C3G and aHUS). All variants were identified in heterozygosis except one homozygote (p.Ala210Thr) and two compound
heterozygotes (brackets above variants indicate compound heterozygosity). Novel variants are marker with #. (L, leading sequence; FIMAC, Factor I Membrane
Attack Complex; SRCR, Scavenger Receptor Cysteine-Rich; LDLR, Low-Density Lipoprotein Receptor). (B) FI levels in 40 patients (open circles, aHUS; filled blue
circles, C3GN; filled red circles, DDD; open square, C3G/aHUS; dashed lines, reference values: red, upper and lower limits of normal; blue, percentile lines).
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genders were equally affected (male/female, 9/8) (Figure 2A).
Demographic data and basic clinical information are shown
in Table 1.

Null alleles were found in nine of 48 (19%) patients with
aHUS and two of 15 (13%) patients with C3G (Tables 2, 3).
Three aHUS patients (#27, #28, #29) carried the same splice-
region variant (c.772G>A, p.Ala258Thr; the last nucleotide of
exon 5), which results in exon 5 skipping (34). Three patients
(#35, #46, #48) carried nonsense mutations (p.Arg336Ter,
p.Trp472Ter and p.Trp541Ter) and three patients (#31, #32,
#47) had micro-deletions that result in frame shifts (two with
c.786delA and one with c.1450_1454del). In the C3G cohort, two
Frontiers in Immunology | www.frontiersin.org 4
null alleles were identified–a microdeletion (c.1646delA; #58,
C3GN) and a splice site variant (c.1429+1G>C; #64, DDD).
Western blot confirmed the absence of detectable circulating
truncated proteins in all patients with null alleles, suggesting that
the transcribed mutant message undergoes nonsense-mediated
decay. We also confirmed non-expression of the c.1429+1G>C
allele on a western blot in a homozygote patient we are following
for recurrent infections.

Most variants (64/65) were found in heterozygosis, although
we identified one aHUS patient homozygous for p.Ala210Thr
(#21) and two who were compound heterozygotes (p.Pro64Leu/
p.Lys69Glu, #6; p.Gly119Arg/p.Gly287Arg, #10). One aHUS
A B

D E F

G IH

J K L

C

FIGURE 2 | Complement biomarker profiling in aHUS and C3G patients. (A) Age distribution. (B) Factor I levels. (C) Factor H levels. (D–H) Biomarkers for alternative
pathway (AP) activity including C3 and factor B, and associated activation products C3c and Bb. (I) AP fluid-phase activity by immunofixation eletrophoresis. (J–L) Biomarkers
for terminal pathway activity including C5, properdin and soluble terminal complement complex (sC5b-9). (left column, aHUS; right column-red dots, DDD patients; black dots,
C3GN patients; open circle, C3GN/aHUS patient; dashed line, lower limit of normal value for each assay; patients on eculizumab excluded from (J, L); *P < 0.05).
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patient carried two variants on the same allele (p.Cys48Arg/
p.Gln49Leu, #1) (Table 2). No C3G patients carried a second
rare variant in CFI and no large genomic deletions in the CFI
region were identified (Tables 3).

Additional Genetic and Acquired Drivers
Genetic variants (pathogenic or likely pathogenic, MAF < 0.1%)
in other complement or TMA genes were identified in ten
patients with aHUS and eight with C3G. One aHUS patient
(#46) carried a CFH-CFHR1 fusion gene identified by MLPA
(Table 2). In addition, two DDD patients carried a null allele in a
terminal pathway gene (#63, #64) (Table 3).

Homozygous deletions of CFHR3-CHR1 were found in 3/60
(5%) patients, however none was positive for factor H
autoantibodies (FHAAs). All patients were also negative for
FBAAs and all C3G patients were negative for C3-, C4- and
C5-nephritic factors.

Factor I Levels and Complement
Dysregulation
FI levels were measured in 40 patients (12 C3G; 27 aHUS and 1
C3G/aHUS) (Figure 2B and Supplementary Tables 1, 2). In 31
of 40 (78%) patients, these levels were in the lowest quartile of the
normal reference range (24.5 mg/L, normal reference mean = 31,
standard deviation = 6.5). The lowest FI levels were found in two
aHUS patients with biallelic variants. Excluding these two
patients, FI levels were higher in C3G patients as compared to
aHUS patients, however the difference was not statistically
significant (median C3G vs aHUS, 24 vs 19.4, P = 0.09). FH
levels showed the reverse trend and tended to be lower in C3G
patients, although this comparison also did not reach statistical
significance (Figure 2C, P = 0.08).

Several serum complement biomarkers were abnormal,
including C3, which was low in four of twelve (33%) C3G and
nine of 27 (33%) aHUS patients (Figure 2D), consistent with
increased C3 convertase activity. In both cohorts, elevation in
C3c occurred in a few patients while C4 was normal in most
patients (Figures 2E, F). FB was low in three of twelve (25%)
patients with C3G and five of 26 (19%) aHUS patients
Frontiers in Immunology | www.frontiersin.org 5
(Figure 2G), while Bb was high in four of eleven (36%) C3G
and twelve of 21 (57%) aHUS patients (Figure 2H). Overall, the
levels of FI showed moderate correlation with plasma C3 and
factor B levels (Pearson’s r correlation = 0.39 and 0.36; P = 0.014
and 0.026, respectively). These findings also reflect increased
convertase activity associated with a decrease in FI. Ba was
elevated in most patients (Supplementary Tables 1, 2)
however this biomarker does not accurately reflect
complement dysregulation but rather the degree of renal injury
(35, 36). The positive IFE in three of eleven (27%) C3G and nine
of 24 (38%) aHUS patients recapitulated dysregulated upstream
complement activity (Figure 2I). Of terminal pathway
biomarkers (Figures 2J–L), sC5b-9 was elevated in six of
seventeen (35%) aHUS and four of ten (40%) C3G patients not
on Eculizumab (Figure 2L).

Cell-Based FI Functional Assay
In nine patients [four aHUS patients (p.Arg187Gln, p.Asp208Asn,
p.Ser221Tyr, p.Arg474Gln); five C3G patients (p.Ala76Gly,
p.Lys136Thr, p.Ile244Ser, p.Arg336Gly, p.Asp477His)], FI levels
were above the lowest quartile and in these patients, we evaluated
FI co-factor activity. Two type 2 variants were identified–
p.Arg474Gln and p.Arg336Gly–both of which reduced C3b
cleavage activity with all three cofactors (FH, sCR1 and MCP)
(Figures 3A–C). Western blotting showed that p.Arg336Gly
circulates as unprocessed single chain (Figure 3D). No functional
impairment of FI activity was detectable with the other variants.
DISCUSSION

Sixty-five unrelated patients [sixteen C3G (ten, C3GN; six,
DDD); 48 aHUS; one C3G/aHUS] with rare variants in CFI
were identified in our registry, which represents significant
enrichment in our aHUS cohort as compared to the prevalence
of rare CFI variants reported in gnomAD (1.77% of 141433
individuals in gnomAD vs 1.62% of 1048 C3G patients (P > 0.05)
and vs 3.34% of 1468 TMA patients (P < 0.0001)) (33). Eighteen
of these variants are novel and three (p.Val184Met, p.Arg448Cys,
TABLE 1 | Patient demographics.

Characteristics C3G aHUS

C3GN DDD

Patients, n 11 6 48
Sex (Male/Female) 7/4 2/4 13/35
Age, yr (median, quartile range) 30, 20-42 25, 21-31 37, 16-45
Onset, median age (yr, quartile range) 25, 14-37 17, 12-23 30, 10-38
Ethnicity

Caucasian (n, %) 9 (82%) 6 (100%) 36 (75%)
Non-Caucasian (n, %) 2 (18%) 0 (0%) 12 (25%)

Proteinuria (n/data avail, %) 11/11 (100%) 6/6 (100%) 11/14 (79%)
Hematuria (n/data avail, %) 8/11 (73%) 2/2 (100%) 13/20 (65%)
Outcome and treatments

ESRD, n 3 2 24
Transplantation, n 1 0 7
Failed transplant, n 1 0 2

complement C5 inhibition, n 4 0 15
May 2022 | Volume 13 | A
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p.Trp541Ter) are reported for the first time in an aHUS cohort
[previously associated only with AMD (18, 37–39)]. In 40
patients, we completed serological and functional studies to
facilitate the classification of these variants based on
ACMG guidelines.

Low FI levels have a variety of phenotypic consequences with
the most extreme, complete CFI deficiency, leading to
uncontrolled AP activity and C3 consumption (7). As a
consequence of C3 consumption, severe and recurrent
pyogenic infections with encapsulated organisms such as
Streptococcus pneumoniae, Haemophilus influenzae and
Neisseria meningit idis develop, driven by defective
opsonization, immune adherence and phagocytosis (40).
Whilst we have not seen complete FI deficiency in our C3G
and aHUS cohorts, we have identified several patients with low
or borderline low FI levels (16-24.5 mg/L, normal range 18 – 44)
with the presenting phenotype typically driven by other acquired
or genetic factors. For example, in isolation a rare CFI variant
most frequently leads to aHUS, however the co-inheritance of a
CD46 loss-of-function pathogenic variant drives the onset of
aHUS to the younger age group (#4, #7, #9, #30, #45) while a
gain-of-function pathogenic variant in C3 alters the phenotype to
C3G (4 of 15 vs 1 of 48, C3G vs aHUS, P = 0.0097). Defects in
CFH (variants or fusion genes) are seen with both C3G and
aHUS (3 of 15 vs 2 of 48, C3G vs aHUS, P = 0.0828).

Autoantibodies to complement components (such as FHAAs,
FBAAs, C3-, C4-, C5-nephritic factors) also play an important role
Frontiers in Immunology | www.frontiersin.org 6
in the pathogenesis of C3G and aHUS (23, 41), and while none of
the patients in this study was co-positive for autoantibodies, we
did not consider this finding surprising. With respect to aHUS, the
prevalence of FHAAs is generally low, and when identified, they
are typically seen in the pre-teenage years in children who are
homozygous for the deletion of CFHR3-CFHR1. This genotype
was identified only three times in our aHUS cohort, all in adults.
With respect to C3G, about 60% of patients are positive for genetic
mutations and/or autoantibodies as drivers of disease (19, 29). Of
this 60%, ~10% are co-positive for both genetic drivers and
autoantibodies, ~70% have only autoantibodies, and ~20% have
only genetic variants. In our C3G cohort, half had additional
genetic variants contributing to the complement dysregulation.

In 27 patients in our aHUS cohort, we measured FI levels and
identified 18 type 1 variants (low expression) and five variants with
limited expression (within 1st quartile, Figure 1B). The remaining
4 variants–p.Arg187Gln, p.Asp208Asn, p.Ser221Tyr and
p.Arg474Gln–were associated with normal FI levels (above the
lowest quartile). Of these, p.Asp208Asn is a novel variant, while
p.Arg187Gln, p.Ser221Tyr and p.Arg474Gln have been reported.
Although no data are provided for p.Arg187Gln, p.Ser221Tyr was
associated with normal FI levels in two AMD studies (16, 18).
p.Arg474Gln has also been reported in AMD cohorts with normal
FI levels (18, 42, 43) and in an aHUS cohort with low FI levels,
although the aHUS patient also carried another type 1 variant
p.Ala258Thr (44). Our functional data show that p.Arg474Gln
affects FI cofactor activity with all three cofactors (FH, MCP,
A B

DC

FIGURE 3 | Assessing FI function. In the presence of a cofactor (A) FH 50 nM; (B) sCR1 25nM; (C) MCP 50nM, C3b cleavage activity by FI in patient serum (diluted
1:32) is measured using C3b-decorated sheep erythrocytes. Non-cleaved C3b is developed by the addition of both FB/FD to form C3 convertase and rat-EDTA serum
as a source of C5-C9. Percent hemolysis is calculated and plotted as a function of FI concentration determined by ELISA. The grey line in each figure serves as a normal
reference line calculated from a normal sample (FI concentration, 40 mg/L) with serial dilutions. Serum from a CFI c.1429+1G>C homozygote (FI is undetectable) serves
as a positive control (black dot). (D) Circulating FI by a Western blot. Patient sample (1:80 diluted in PBS) with reducing reagent separated on a 4-15% polyacrylamide gel
and transferred. FI was visualized by an antibody specific to the heavy chain (50k Da). CFI p.Arg336Gly results in an unprocessed single chain (88k Da).
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sCR1) (Figure 3), making p.Arg474Gln a type 2 pathogenic
variant. No functional defects were observed with p.Arg187Gln,
p.Asp208Asn and p.Ser221Tyr, and based on these data, these
three variants should be classified as likely benign.
Frontiers in Immunology | www.frontiersin.org 7
Low FI levels (< 25%) were found in six C3GN patients and
one DDD patient (#60). Of the six C3GN patients, two CFI
variants were identified in each of two patients (p.Gly119Arg,
#50 and #62; p.Ala240Gly, #52 and #53), with the remaining two
TABLE 2 | Demographic and genetic data in patients with aHUS.

ID Age Onset Sex DNA Protein Domain MAF
(gnomAD)

CADD Other genes (including
ADAMTS13, THBD,
terminal pathway genes)

CFHR3-1-4-2-5

1 37 36 M c.142T>C;
c.146A>T**

p.Cys48Arg;
p.Gln49Leu**

Novel 26.4
24.1

wildtype

2 67 65 F c.148C>G p.Pro50Ala 9.6E-05 24.8 wildtype
3 41 32 F c.153G>T p.Trp51Cys Novel 28 del(CFHR3-1)
4 6 3 F c.191C>T p.Pro64Leu FIMAC 2.3E-04 27.2 CFH c.3553G>C, p.A1185P

CD46 c.191G>A, p.C64Y
wildtype

5 13 5 F c.191C>T p.Pro64Leu FIMAC 2.3E-04 27.2 wildtype
6 50 43 F c.191C>T;

c.205A>G^
p.Pro64Leu;
p.Lys69Glu^

FIMAC 2.3E-04
2.4E-05

27.2
25.4

del(CFHR3-1)

7 11 3 F c.227C>G p.Ala76Gly FIMAC Novel 15.5 CD46 c.350_351dupAC# wildtype
8 37 31 M c.338G>A p.Ser113Asn 2.1E-05 8.8 del(CFHR3-1)
9 1 1 F c.355G>A p.Gly119Arg SRCR 4.2E-04 23 CD46 c.565T>G, p.Y189D wildtype
10 34 22 F c.355G>A;

c.859G>A^
p.Gly119Arg;
p.Gly287Arg^

SRCR 4.2E-04;
4.6E-05

23;
23.2

wildtype

11 45 35 F c.355G>A p.Gly119Arg SRCR 4.2E-04 23 Not done
12 47 40 F c.355G>A p.Gly119Arg SRCR 4.2E-04 23 wildtype
13 45 38 F c.355G>A p.Gly119Arg SRCR 4.2E-04 23 del(CFHR3-1)
14 32 20 F c.454G>A p.Val152Met SRCR 4.2E-05 27.8 wildtype
15 13 5 M c.472G>A p.Gly158Arg SRCR Novel 28.2 Not done
16 27 20 F c.530A>T p.Asn177Ile SRCR 6.0E-05 16.8 del(CFHR3-1)
17 31 31 F c.550G>A p.Val184Met SRCR Novel 22 ADAMTS13 c.2753T>C, p.L918P del(CFHR3-1)
18 60 52 F c.560G>A p.Arg187Gln SRCR 7.8E-05 16.5 del(CFHR3-1)
19 37 37 F c.570G>T p.Glu190Asp SRCR 8.0E-06 24.1 wildtype
20 2 1 F c.622G>A p.Asp208Asn SRCR 4.0E-06 8.4 wildtype
21 30 27 F c.628G>A# p.Ala210Thr# SRCR 1.2E-05 23.7 del(CFHR3-1)#

22 45 38 M c.628G>A p.Ala210Thr SRCR 1.2E-05 23.7 del(CFHR3-1)#

23 68 62 M c.662C>A p.Ser221Tyr LDLR1 4.0E-06 9.3 del(CFHR3-1)
24 31 22 F c.719C>G p.Ala240Gly LDLR1 2.5E-04 23.8 wildtype
25 20 11 F c.719C>G p.Ala240Gly LDLR1 2.5E-04 23.8 del(CFHR3-1)
26 39 33 M c.719C>G p.Ala240Gly LDLR1 2.5E-04 23.8 wildtype
27 56 55 F c.772G>A p.Ala258Thr LDLR2 1.2E-04 34 Not done
28 38 30 M c.772G>A p.Ala258Thr LDLR2 1.2E-04 34 wildtype
29 39 32 F c.772G>A p.Ala258Thr LDLR2 1.2E-04 34 wildtype
30 14 6 F c.803C>T p.Ser268Leu LDLR2 Novel 26.4 CD46 c.768C>A, p.C256X# wildtype
31 57 45 M c.786delA p.Gly263Alafs*37 LDLR2 2.0E-05 C9 c.1030A>G, p.T344A wildtype
32 13 4 F c.786delA p.Gly263Alafs*37 LDLR2 2.0E-05 del(CFHR3-1)
33 31 26 M c.950G>A p.Arg317Gln 2.1E-05 18.6 wildtype
34 37 34 F c.949C>T p.Arg317Trp 8.5E-05 14.9 wildtype
35 37 29 F c.1006C>T p.Arg336Ter Novel 35 wildtype
36 12 1 M c.1150G>A p.Ala384Thr SP 7.8E-05 3.7 Not done
37 59 51 M c.1190T>A p.Val397Glu SP Novel 17.1 wildtype
38 36 30 F c.1189G>T p.Val397Leu SP Novel 0.001 CFH c.575G>A, p.C192Y wildtype
39 68 60 F c.1342C>T p.Arg448Cys SP 7.2E-05 11.1 del(CFHR3-1)
40 11 8 F c.1354G>C p.Ala452Pro SP 3.2E-05 25.7 THBD c.1465G>T, p.D489Y wildtype
41 38 36 F c.1354G>A p.Ala452Thr SP 1.2E-05 25.1 wildtype
42 41 33 F c.1421G>A p.Arg474Gln SP 4.8E-05 22.1 del(CFHR3-1)
43 14 5 F c.1429G>C p.Asp477His SP 2.0E-05 35 del(CFHR3-1)
44 3 2 F c.1429G>C p.Asp477His SP 2.0E-05 35 wildtype
45 17 11 M c.1541A>G p.Tyr514Cys SP 4.0E-06 15.8 CD46 c.350_351dupAC Not done
46 32 24 M c.1415G>A p.Trp472Ter SP Novel 41 CFH-CFHR1 fusion
47 69 69 F c.1450_1454del p.Leu484Valfs*3 SP 2.8E-05 C3 c.1898A>G, p.K633R del(CFHR3-1)#

48 40 40 F c.1622G>A p.Trp541Ter SP Novel 42 wildtype
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patients carrying truncating variants (p.Asn549Thrfs*25, #58;
c.1429+1G>C, #64). Interestingly, p.Gly119Arg and p.Ala240Gly
were also identified in aHUS patients (p.Gly119Arg, #9, #10, #11,
#12, #13; p.Ala240Gly, #24, #25, #26) and are well-documented
type 1 variants (18, 21, 45–48). p.Gly119Arg and p.Ala240Gly are
also present in the general population with the highest minor
allele frequencies in Europeans (MAF = 0.000852 and 0.000093,
respectively). These data suggest that carrying p.Gly119Arg or
p.Ala240Gly is a risk factor for complement-mediated disease
depending, in part, on the expressivity of the other CFI allele
and/or the presence of mutations in other genes. For example,
one aHUS patient (#10) had extremely low FI levels as a result of
compound heterozygosis (p.Gly119Arg and p.Gly287Arg on
opposite alleles), while all C3G patients carrying either the
p.Gly119Arg allele or the p.Ala240Gly allele had a second
pathogenic or likely pathogenic variant in CFH or C3 (#50,
#52, #53, #62; Table 3).

Similarly, p.Pro64Leu, a variant that has been documented
in AMD patients with low FI expression (16, 18), was identified
in three aHUS patients (one CFI compound het) and one DDD
patient (#4, #5, #6 and #61). The DDD patient also carried a
gain-of-functions variant in C3, p.Arg161Trp, which has been
shown to increase C3b affinity for factor B and reduce binding
to MCP, although FH-mediated regulation is unchanged (14,
49, 50).

With two other variants [p.Ala76Gly (novel), p.Asp477His]
identified in both C3GN and aHUS patients (#49 vs #7 and #57 vs
#43 and #44, C3G vs aHUS), we noticed much higher FI levels in
C3G as compared to aHUS patients. In these five patients, all FI
results were confirmed by another technique (RID) and Western
blotting, and large genomic deletions were ruled out by MLPA.
Frontiers in Immunology | www.frontiersin.org 8
In addition, FI functional assays showed normal C3b cleavage in
all patients. Further research is required to understand this
variability. We classified both variants as VUSs (variant of
unknown significance).

We completed functional studies on all C3G patients with
normal FI levels (p.Lys136Thr, p.Ile244Ser, p.Arg336Gly,
p.Asn428Ser) and observed significantly impaired FI function
(C3b cleavage) with all cofactors (FH, MCP, sCR1) for only
p.Arg336Gly (Figures 3A–C). Because maturation of FI requires
a proteolytic process that removes four amino acids (Arg-Arg-
Lys-Arg) at residues 336-339, FI p.Gly336 circulates as an
unprocessed pro-peptide without functional activity
(Figure 3D). This finding has also been reported for
p.Arg339Lys and p.Arg339Glu in aHUS patients (21, 44) and
p.Arg339Gln in AMD patients (18, 38, 43). Common to all these
mutations is the removal of a positive charged residue from the
consensus sequence R-x-K/R-R. Therefore, we would expect
individuals carrying these variants to have an identifiable
circulating unprocessed single peptide and these variants
should be classified as likely pathogenic.

Finally, when measuring FI levels, it should be remembered
that as an acute-phase protein its serum concentration increases
non-specifically in response to many cytokines (17). In our
experience, in the acute phase, FI levels can be elevated ~25%
above baseline, however this increase does not occur in isolation
but rather in conjunction with an increase in other complement
biomarkers, especially FB, C4 and FH (Figure 4). To ensure that
the impact of a rare hypomorphic allele variant is not masked by
the normal allele, serial testing of complement biomarkers is
advisable. Anti-C5 therapy with eculizumab does not impact FI
levels although it does elevate plasma C5, suppress sC5b-9, and
TABLE 3 | Demographic and genetic data in patients with C3G.

ID Age Onset Sex DNA Protein Domain MAF
(gnomAD)

CADD Other genes (including
ADAMTS13, THBD, terminal
pathway genes)

CFHR3-1-4-2-5

C3GN
49 30 25 F c.227C>G p.Ala76Gly FIMAC Novel 15.5 C3 c.2203C>T, p.R735W wildtype
50 68 67 M c.355G>A p.Gly119Arg SRCR 4.2E-04 23 CFH c.3628C>T, R1210C wildtype
51 35 28 F c. 407A>C p.Lys136Thr SRCR Novel 4.9 wildtype
52 59 47 M c.719C>G p.Ala240Gly LDLR1 2.5E-04 23.8 CFH c.790+1 G>A del(CFHR3-1)
53 16 13 F c.719C>G p.Ala240Gly LDLR1 2.5E-04 23.8 C3 c.2203C>T, p.R735W wildtype
54 23 15 F c.731T>G p.Ile244Ser LDLR1 3.6E-05 23 wildtype
55 10 7 M c.1006C>G p.Arg336Gly 5.2E-05 22.9 wildtype
56 35 28 M c.1111G>A p.Gly371Ser SP Novel 31 wildtype
57 52 46 M c.1429G>C p.Asp477His SP 2.0E-05 35 Not done
58 17 12 M c.1646delA p.Asn549Thrfs*25 SP Novel del(CFHR3-1)
DDD
59 25 12 F c.148C>G p.Pro50Ala 9.6E-05 24.8 wildtype
60 25 23 F c.170G>A p.Gly57Asp FIMAC 4.0E-06 23.1 wildtype
61 1 1 M c.191C>T p.Pro64Leu FIMAC 2.3E-04 27.2 C3 c.481C>T, p.R161W del(CFHR3-1)
62 19 12 F c.355G>A p.Gly119Arg SRCR 4.2E-04 23 C3 c.4594C>T, p.R1532W del(CFHR3-1)
63 57 57 F c.1283A>G p.Asn428Ser SP Novel 23.4 CFH c.1056T>A, p.Y352X

C6 c.1375A>T, p.K459X
wildtype

64 33 22 M c.1429+1G>C Exon skipping SP 2.8E-05 33 C9 c.1042delA wildtype
C3GN/aHUS
65 25 19 M c.570G>T p.Glu190Asp SRCR 8.0E-06 24.1 del(CFHR3-1)
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abolish activity of the classical and alternative pathways. And
finally, we found that the prevalence of rare CFI variants is
significantly higher in aHUS as compared to C3G (P = 0.0078).
While this finding suggests that partial FI deficiency might have
less impact on C3G, precisely how a relative deficiency in FI
contributes to the underlying pathophysiology of these two
diseases requires further study.

In summary, rare variants in CFI play a causal role in C3G and
aHUS although the clinically observed phenotype is strongly
contingent on the associated genetic background. Functional
testing should be considered to assess FI activity if a rare CFI
variant is identified. Our results suggest that the majority of CFI
missense variants with aMAF < 0.1%will be type 1 variants (~80%),
although a small of type 2 variants (~5%) will also be identified.
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