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The human microbiome has been associated with health status, and risk of disease
development. While the etiology of microbiome-mediated disease remains to be
fully elucidated, one mechanism may be through microbial metabolism. Metabolites
produced by commensal organisms, including in response to host diet, may affect
host metabolic processes, with potentially protective or pathogenic consequences. We
conducted multi-omic phenotyping of healthy subjects (N = 136), in order to investigate
the interaction between diet, the microbiome, and the metabolome in a cross-sectional
sample. We analyzed the nutrient composition of self-reported diet (3-day food records
and food frequency questionnaires). We profiled the gut and oral microbiome (16S rRNA)
from stool and saliva, and applied metabolomic profiling to plasma and stool samples
in a subset of individuals (N = 75). We analyzed these multi-omic data to investigate
the relationship between diet, the microbiome, and the gut and circulating metabolome.
On a global level, we observed significant relationships, particularly between long-term
diet, the gut microbiome and the metabolome. Intake of plant-derived nutrients as well
as consumption of artificial sweeteners were associated with significant differences in
circulating metabolites, particularly bile acids, which were dependent on gut enterotype,
indicating that microbiome composition mediates the effect of diet on host physiology.
Our analysis identifies dietary compounds and phytochemicals that may modulate
bacterial abundance within the gut and interact with microbiome composition to alter
host metabolism.
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INTRODUCTION

The human microbiome is a complex ecosystem of bacteria,
viruses, fungi, and bacteriophages, which interact with each
other and their host (Sears, 2005; Goodman and Gordon, 2010;
Minot et al., 2011). Microbiome composition is unique to an
individual, is established early in life, and plays a crucial role
in lifelong health (Kau et al., 2011; Minot et al., 2011; Maynard
et al., 2012; Koren et al., 2013; Mohammadkhah et al., 2018).
Recent discoveries implicating the microbiome in disease have
been paradigm-shifting. However, we do not yet understand the
molecular mechanisms linking microbiota to health status.

There is considerable site-specificity in microbiome
composition, with distinct populations residing within each
body site of an individual (Faust et al., 2012; Ding and Schloss,
2014). The relative contributions of the microbiota at each body
site to overall host health are not yet clearly defined, but are
likely be depend on both the nature of the disease, and the
overall health of the host (Zhang et al., 2015). The microbiome
composition of the gut is of particular interest, given its location
at the crucial interface between exogenous dietary intake and
internal nutrient metabolism. Translocation of microbes and
microbial metabolites from the intestine to the bloodstream may
occur in the absence of intestinal disease, for example during
diet-induced post-prandial metabolic endotoxemia (Moreira
et al., 2012; Pendyala et al., 2012; Piya et al., 2013). The gut
microbiome, in combination with habitual diet, is likely to play a
major role in determining gut mucosal membrane permeability
and influencing systemic inflammation (Moreira et al., 2012;
Pendyala et al., 2012).

Numerous factors determine the specific population of
microbiota in humans, with diet being a key contributor (Zeevi
et al., 2015; Ferguson et al., 2016). Specific dietary components
act as substrates for microbial metabolism, shaping microbiome
composition and function. Multiple macronutrient-microbiome
associations have been reported, including carbohydrate intake
and Prevotella abundance (Wu et al., 2011), saturated fat intake
and Bacteroides and Faecalibacterium prausnitzii, and animal
protein intake and Bacteroides and Alistipes (De Filippo et al.,
2010; Cotillard et al., 2013; David et al., 2014). Microbiome
composition has been linked to disease through modulation
of specific metabolites and signaling pathways (Wang et al.,
2011; Koeth et al., 2013; Marcobal et al., 2013; Tang et al.,
2013). Gut microbial metabolism of animal-product-derived
carnitine to the pro-atherogenic metabolite trimethylamine
N-Oxide (TMAO) has been found to associate with increased
atherosclerotic risk (Wang et al., 2011; Koeth et al., 2013). Many
other dietary components may modulate disease risk through
parallel mechanisms.

We hypothesized that habitual diet is associated with
microbiome composition in healthy humans, and that
microbiome composition is associated with gut and plasma
metabolites. Using multi-omic sample analysis in up to 150
healthy subjects we profiled the microbiome (16S rRNA;
stool and saliva) and the metabolome (stool and plasma) to
examine the interaction between diet, the microbiome, and
systemic metabolism. Our results identify global relationships

and highlight novel associations between specific dietary
components and circulating metabolites, that are modulated by
gut bacteria, and may have consequences on health status and
future disease risk.

MATERIALS AND METHODS

Study Population
The ABO Glycoproteomics in Platelets and Endothelial
Cells (ABO) Study recruited healthy volunteers (N = 150;
men and non-pregnant/lactating women age 18–50) to a
protocol at the University of Pennsylvania from 2012–2014.
Exclusion criteria included known illnesses, history of organ
transplant, tobacco, and prescription medication use (except
oral contraceptives). Participants were instructed to avoid
over-the-counter medications, supplements, and vitamins for
the 2-week period prior to the scheduled visit. Subjects provided
a fasting blood sample (following a 12-h overnight fast). As part
of a diet and microbiome-focused sub-study, reported here,
subjects provided a stool and saliva sample for microbiome
analysis (N = 136 with stool samples). All subjects completed
validated 3-day food records prior to the study visit (Trabulsi and
Schoeller, 2001), including on the day directly before the visit,
and a weekend day. Nutrient composition was analyzed using
Food Processor 8.1 (ESHA Research, Salem, OR). In addition,
all subjects completed food frequency questionnaires (FFQ) to
assess habitual dietary intake, including serving size, of 134 food
items over the previous year [the National Cancer Institute’s
Diet History Questionnaire (DHQ I)] (Subar et al., 2001, 2010).
Completed subject responses were analyzed using Diet∗Calc
version 1.5.1. Diet data were converted to nutrient intake values
of 191 long-term dietary variables and 139 short-term dietary
variables. All subjects provided written informed consent. The
study was approved by the Institutional Review Boards of the
University of Pennsylvania and Vanderbilt University.

Sample Processing, DNA Extraction and
Sequencing
Subjects collected a stool sample within the 24 h prior to the study
visit, using a stool collection kit (Commode Specimen Collection
System, Fisher Scientific, Pittsburgh, PA, United States) provided
to them. Samples were stored at 4◦C and aliquots made within
36 h of sample collection. Processed samples were stored at
−80◦C prior to nucleic acid extraction. Subjects were instructed
to brush their teeth and floss if desired, but not to use mouthwash,
following their final meal on the day before the visit (>12 h before
visit). Subjects were further instructed not to brush their teeth
or use floss or mouthwash on the morning of their visit. Saliva
samples were collected using the OMNIGene Discover OM505
DNA/RNA collection kit (DNA Genotek). Following collection,
samples were divided into aliquots, and stored at −80◦C prior
to nucleic acid extraction. DNA was isolated from stool and
saliva samples using the PSP Spin Stool DNA Plus Kit (Stratec,
Germany). The 16S rRNA gene region was amplified using
barcoded primers (Caporaso et al., 2012) (Eurofins Genomics,
Louisville, KY, United States) and DNA libraries were cleaned
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(MinElute PCR Purification kit, Qiagen, Germantown, MD,
United States) prior to quantification and pooling. Pooled
DNA libraries were sequenced on the MiSeq platform, 300 bp
paired-end reads, at an average depth of 158,000 reads/sample
(Illumina Inc., San Diego, CA, United States). Stool samples were
sequenced in two batches, at the University of Pennsylvania Next-
Generation Sequencing Center (UPenn NGSC, N = 107) and
the Vanderbilt University Technologies for Advanced Genomics
(VANTAGE) Core (N = 29). All saliva samples (N = 85)
were sequenced in one batch at VANTAGE. DNA sequences
in Fastq files were de-multiplexed, assembled, clustered, and
phylogenetically classified using the Mothur pipeline (Schloss
et al., 2009). Phylogenetic classification was performed against the
Silva V123 16S database. Mothur was run using standard cutoffs,
creating OTU clusters at 97% identity.

Metabolomics
Samples for a subset of individuals (N = 75 plasma and
N = 75 stool, matched subjects) were profiled at Metabolon
(Metabolon Inc., Morrisville, NC, United States) using their
global metabolomics platform, which can identify and quantitate
>1,000 metabolites through multiple mass spectrometry
methods. In our study, 812 metabolites were detected in plasma,
and 770 in stool samples. For each metabolite, the raw peak
intensity was rescaled to set the median across all samples equal
to 1, and values below the limit of detection were imputed with
the lowest observed value in the dataset. Metabolite pathway
enrichment analysis was conducted using MetaboAnalyst
(Xia and Wishart, 2011).

Data Processing for Microbiome, Dietary
and Metabolite Variables
Data processing and statistical analysis was performed in R. For
the stool microbiome dataset, the OTUs were classified into 11
phyla, 20 classes, 21 orders, 32 families, and 130 genera. For the
saliva microbiome dataset, the OTUs were classified into 13 phyla,
21 classes, 32 orders, 52 families, and 103 genera. We obtained
two independent measures of dietary intake: 3-day food diaries
(for short-term recent diet) and a food frequency questionnaire
(FFQ, for long-term habitual diet). Dietary and metabolite
variables were normalized using inverse normal transformation
(INT) and transformed variables that did not follow a normal
distribution (Shapiro–Wilk test p < 0.05) were removed (Maritz,
1995). These removed variables had very small variability and/or
had many tied observations. The remaining dietary variables
were further normalized using the residual method to adjust
for total caloric intake and gender, and standardized to have
mean of 0 and SD of 1. Since some dietary variables were
almost identical, we chose one representative for each highly
correlated cluster (Spearman correlation > 0.9), resulting in 91
long-term dietary variables and 82 short-term dietary variables in
the final dataset for the downstream analysis. The complete list
mapping dietary variables to the selected representative variables
are available in Supplementary Tables S1, S2. In order to group
metabolites that were highly correlated, we defined metabolic
modules using weighted correlation network analysis WGCNA

(Langfelder and Horvath, 2008). The WGCNA has been shown
to be an efficient and robust method in grouping metabolomic
data (McHardy et al., 2013) and allows us to summarize each
module by its module eigenvalue. Using WGCNA, the gut
metabolites were organized into 8 modules with 40 un-clustered
metabolites, and plasma metabolites were organized into 16
modules with 169 un-clustered metabolites. The complete list
of metabolites and their module organization are available in
Supplementary Tables S3, S4. The abundance values of the un-
clustered metabolites were combined with standardized module
eigenvalues in the downstream analysis.

Distance Correlation Analysis
To evaluate the global association between pairs of
high-dimensional variables among diet, microbiome and
metabolomics, we used the distance correlation t-test (Székely
and Rizzo, 2013) implemented in the R package “energy” to
test the dependence among each pair of these three data types.
Compared to Pearson correlation, the distance correlation
(Székely et al., 2007; Székely and Rizzo, 2009) is a non-
parametric approach (without distributional assumption)
and has the power to detect general (non-linear) dependence
between two sets of high- dimensional random variables.
The distance correlation t-test allows the dimension of
the random vectors to be larger than the sample size. The
ability for detecting general dependence and handling high-
dimensionality of data makes distance correlation t-test suitable
for analyzing this dataset.

Microbial Enterotypes Analysis
We conducted distance-based clustering using the Partitioning
Around Medoids (PAM) method (Kaufman and Rousseeuw,
1987) with the various distances including Euclidean, Bray–
Curtis and Jaccard, and identified two enterotypes. To evaluate
if diet-metabolite associations are modulated by microbial
enterotype, we tested diet-enterotype interaction through linear
regression for each pair of diet-metabolite variables, with the
metabolite as the outcome, using the individual metabolites
rather than metabolite modules.

Sparse Linear Log-Contrast Model
To further narrow down the interplay between diet/metabolome
and microbiome, we used the sparse linear log-contrast
model (Lin et al., 2014) to pinpoint important genera that
are associated with dietary or metabolite variables. In this
model, a dietary or metabolite variable is the response
and the top 50 most abundant genera are compositional
covariates. For the diet-microbiome analysis, it makes intuitive
sense to analyze microbiome variables as the dependent
variables since we hypothesize that diet perturbs microbial
compositions. Nevertheless, we selected the log-contrast model
for several reasons. It is very challenging to find a suitable
probabilistic distribution for the microbial composition due to
its unique features, such as zero-inflation, over-dispersion,
and complex correlation structure (Li, 2015; Tang and
Chen, 2018). Further, it has been demonstrated in genetic
association studies that such inverse regression (treating
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dependent variables as covariates) is advantageous if there
are multiple dependent variables and the distribution is
difficult to specify (Majumdar et al., 2016). Alternative methods
that treat microbiome as dependent variables include sparse
Dirichlet-Multinomial (DM) method (Chen and Li, 2013)
and multivariate zero-inflated logistic-normal method (Li
et al., 2018), however, we determined that the log-contrast
model was the most suitable currently available model for our
study. For the taxa that are unclassified at the genus level,
their identities at higher levels were used. Because of the
unit-sum constraint of the microbial relative abundance, the
components of a composition cannot vary freely. The sparse
linear log-contrast model respects the compositional nature
of the microbiome data, in which the unit-sum constraint
on the compositional vector is translated into the zero-sum
constraint on the association coefficients across taxa in log-ratio
scale (Lin et al., 2014). The zero-sum constraint is crucial for
the resulting estimator to enjoy interpretive advantages over a
standard lasso estimator (Tibshirani, 1994). In our analysis, we
used 10-fold cross validation to choose the tuning parameter.
To obtain stable selection results, we generated 100 bootstrap
samples and used the same cross-validation procedure to
select the genera. The genera that were selected over 70 times
out of 100 were considered associated with the dietary or
metabolite variable.

Microbiome Mediation Analysis
We considered how the effect of a dietary nutrient on a
metabolite is transmitted through the microbial communities.
Specifically, we were interested in identifying microbial taxa
that mediate the diet-metabolite pathway. We focused on pairs
of diet-metabolite variables linked to at least one common
genus identified by the log-contrast model in section 2.7,
and applied mediation analysis to the diet-gut microbiome-
metabolite triplet. The top 50 most abundant genera were
used as candidate microbiome mediators. To handle the
compositional and high-dimensional nature of microbiome
mediators, we utilized the state-of-the-art compositional
mediation analysis for microbiome data (R Package ccmm)
(Sohn and Li, 2019). Certain assumptions are required to
make casual interpretation of the mediation effects (Imai et al.,
2010; Sohn and Li, 2019). In particular, the key assumption
assumes that there is no unmeasured confounding variable
after controlling covariates. The method enables us to estimate
the total mediation effects of microbiome composition,
as well as to select important microbial taxa mediating
the diet-metabolite association and estimate taxon-specific
mediation effects.

RESULTS

We conducted multi-omic phenotyping of up to 150 healthy
subjects to probe diet, microbiome, and metabolome
relationships in a cross-sectional sample. The overall study
design, sample availability and subject characteristics are shown
in Figure 1. By design, participants were healthy with no overt

disease, consuming diets broadly representative of a standard
American diet. Dietary variables calculated from the short and
long-term diet questionnaires were significantly correlated
with each other, suggesting that subjects’ diets immediately
prior to microbiome sampling were broadly representative of
their diets over the past year. Of 150 enrolled subjects who
completed a dietary questionnaire, 136 subjects provided a stool
sample for microbiome analysis. We conducted metabolomic
profiling in matched stool and plasma samples in a subset of
these individuals (N = 75) and collected saliva samples for
microbiome analysis in a separate subset (N = 85). No global
associations were detected between diet, the microbiome, or
metabolome, and demographic variables (age, sex, race, and
BMI; PERMANOVA p > 0.1). We observed a difference in
gut microbiome composition by batch (p = 0.04, UPenn vs.
VANTAGE, see section “Sample Processing, DNA Extraction
and Sequencing”). There were no differences in metabolite or
nutrient profiles between the batches (p > 0.1), or in enterotype
distribution (chi-square test p = 0.86). To assess whether the
batch effect had any effect on our results, we repeated all the
relevant analyses using only batch 1 samples (N = 107) and
confirmed the conclusions remained the same. As the overall
results did not differ, we report here the results from the analyses
of the entire sample.

The Gut Microbiome Is Related to Diet
and Metabolites on a Global Level
We ran a global analysis using distance correlation t-test to
obtain an integrated view of the relationships and relative
importance of dietary measures (short-term and long-term
diet), microbiome body site samples (stool and saliva), and
metabolites (stool and plasma). As shown in Figure 2,
there were considerable inter-relationships, with particularly
strong associations between the gut microbiome and the gut
metabolome (p = 2.2 × 10−10), and between long-term diet
and the gut microbiome (p = 7.8 × 10−4). Short-term diet was
significantly associated with the gut and plasma metabolome
(p < 1 × 10−3), but not the microbiome. We found no global
associations between the saliva-derived oral microbiome and
other data types. Within data types, there was very strong global
correlation between short- and long-term diet (p < 1 × 10−15),
and between stool and plasma metabolites (p = 2.1 × 10−8),
but not between the gut and oral microbiome (p = 0.7).
Based on the evidence in the global analysis, we decided to
focus our remaining analyses on the gut microbiome and
long-term diet, and to evaluate their interplay with gut and
circulating metabolites.

Dietary Nutrients Are Associated With
Gut Microbes
We hypothesized that gut microbiome composition would
vary based on the intake of specific nutrients. From the
sparse log-contrast model, we identified 61 (67%) long-term
dietary nutrients associated with at least one bacterial genus
(Figure 3). Several nutrients associated with three or more
genera, as shown in Table 1. These dietary nutrients were
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FIGURE 1 | Overview of Study design, subject characteristics, and multi-omic sample availability.

predominately found in plant-derived foods and dairy products,
suggesting that inclusion or exclusion of these food groups in
the diet may be particularly important in the modulation of gut
microbiome composition.

Circulating and Gut Metabolites Are
Associated With Gut Microbes
We hypothesized that gut microbiome composition would
associate with specific metabolites in the gut and circulation,
reflecting taxon-specific metabolism. We identified 123 (66%)
circulating metabolite variables and modules and 34 (71%)
gut metabolite variables and modules that associated with at
least one bacterial genus (Figures 4, 5). Several metabolites
were associated with multiple genera, as shown in Table 2. Of
these highly bacterial-related metabolites, many have known
functions in bile acid metabolism, lipid and amino acid
metabolism, or metabolism of xenobiotics, highlighting the
important role of microbes in modulating host metabolism
in key pathways.

Gut Bacterial Taxa Mediate the
Association Between Dietary Nutrients
and Metabolites
We were interested in whether gut bacterial taxa mediate the
relationship between diet and metabolites. Mediation analysis
revealed multiple taxa influencing the association between
dietary intake and metabolites in plasma or stool. Given the inter-
relationships between metabolic variables, we were interested in
which pathways were most affected by microbiome mediation.
We identified metabolic pathways with evidence for strong diet-
microbiome effects, defined as having 3 or more metabolites in
a sub-pathway with significant diet associations mediated by the
microbiome, or association with a metabolite module (Table 3).
These included amino acid metabolism (histidine, phenylalanine,
and tyrosine), lipid metabolism (fatty acids, bile acids, and

FIGURE 2 | Overview of global relationships between microbiota, diet, and
metabolites. Thick line: distance correlation t-test p-value < 10−5; thin line:
distance correlation t-test 10−5 < p-value < 10−1.

steroids), and xenobiotics (benzoate, and food components).
Of the dietary variables, plant-derived nutrients (vitamins and
phytochemicals) and metals were strongly represented. Our
data suggest that metabolic flux through these pathways is
particularly susceptible to interaction between dietary intake and
microbiome composition.

Differences in Abundance of Metabolites
by Gut Microbial Enterotype
We identified two gut microbiome enterotypes in our sample,
with good separation of the sub-groups by Principal Coordinates
Analysis (PCoA) using the Jaccard distance (see Supplementary
Figure S1). There were 54 individuals categorized as Enterotype
1, and 82 individuals categorized as Enterotype 2. There was
no difference in age or race distribution across enterotypes,
or in sequencing batch, although there was a trend toward a
higher proportion of women in enterotype 2 (52% vs. 69%
female, chi-square test p = 0.054). Individuals in enterotype 2 had
lower BMI (26.9 vs. 24.5, p = 0.01). The primary differentiating
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FIGURE 3 | Associations between habitual dietary nutrient intake and gut microbiome. Color intensity reflects the magnitude of the association coefficients between
dietary variables and taxa.
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TABLE 1 | Long term intake of dietary nutrients associated with at least three gut microbial taxa.

Dietary nutrient Primary food source Bacterial taxon∗

Positive association Negative association

Alpha Carotene Plants Bacteroides, Coprococcus 2 Bilophila, Ruminiclostridium 5,
Ruminiclostridium 6, Oscillibacter

Beta Carotene Bacteroides, Butyricimonas Bilophila, Odoribacter, Ruminiclostridium 5,
Oscillibacter

Lutein and Zeaxanthin Bacteroides, Ruminococcaceae NK4A214,
Butyricimonas

Bilophila, Ruminiclostridium 5

Vegetables Bacteroides, Lachnospira Prevotella 9, Bilophila, Ruminiclostridium 5

Vitamin E Bacteroides, IncertaeSedis, Ruminococcaceae
NK4A214, Butyricimonas

Bilophila, Prevotella 2, Ruminiclostridium 5,
Oscillibacter

Vitamin C Subdoligranulum, Ruminococcaceae NK4A214 Bilophila

Vitamin B12 Parabacteroides, Bilophila, Dialister,
Bifidobacterium

Ruminococcaceae NK4A214, Oscillibacter

Folate Bacteroides, Incertae Sedis, Ruminococcaceae
NK4A214

Bilophila, Ruminiclostridium 5, Megasphaera

Dietary Fiber Bacteroides, Ruminococcaceae NK4A214 Parabacteroides,
[Eubacterium]coprostanoligenes, Bilophila,
Megasphaera

Milk Dairy products Dialister, Ruminococcaceae UCG-013, f
Prevotellaceae

Bacteroides, Paraprevotella, Desulfovibrio

Cheese Parasutterella, Erysipelotrichaceae UCG-003 Prevotella 7

Calcium Dietary Metals Dialister Prevotella 7, Prevotella 2

Zinc Faecalibacterium, Megasphaera, Oscillibacter

Sodium Parasutterella, Lachnoclostridium Oscillibacter

Magnesium Bacteroides Bilophila, Ruminiclostridium 5, Megasphaera

Potassium Bacteroides, Faecalibacterium,
Ruminococcaceae NK4A214

Bilophila, Dialister, Megasphaera

Aspartame Processed foods Prevotella 9, Parasutterella, Paraprevotella

Mannitol Lachnospira, Lachnoclostridium Parabacteroides, Bilophila, Megasphaera

Trans Fat Megasphaera Subdoligranulum, f Bacteroidales S24-7

∗Bacterium reported as genus, unless otherwise specified (f, family; c, class; o, order; p, phylum; k, kingdom).

characteristic between the two gut enterotypes was in the
abundance of family Ruminococcaceae, with significantly higher
proportion of Ruminococcaceae in enterotype 2 (Supplementary
Figure S2). Analysis of metabolites by enterotype revealed
striking differences between the groups: 112 plasma metabolites
and 122 stool metabolites were significantly different by
enterotype (unadjusted p < 0.05, Supplementary Tables S5,
S6). Unadjusted p-values are reported in the enterotype
analysis because the analysis used individual metabolites rather
than metabolite modules and many metabolites are highly
correlated. While the enterotype-associated metabolites spanned
many biological pathways, they were enriched in certain
categories. We selected all nominally associated metabolites
for pathway enrichment analysis. Plasma metabolites that
differed by enterotype were significantly enriched for amino
acid metabolism (p < 0.05), particularly the essential amino
acids phenylalanine, tryptophan, and tyrosine, the essential
branched-chain amino acids valine, leucine and isoleucine,
as well as arginine and proline. Stool metabolites differing
by enterotype were enriched in taurine and niacin (vitamin
B3) metabolism (p < 0.05). Individuals in Enterotype 1
had slightly higher alcohol and cholesterol consumption than
Enterotype 2 (p < 0.05), but there were otherwise limited

differences in dietary intake by enterotype, suggesting that
the metabolite differences were not solely attributable to
differences in diet.

Gut Microbial Enterotype Modulates the
Relationship Between Diet and
Metabolites
As observed in the mediation analysis for individual taxa,
microbiome composition mediates the association between
dietary nutrients and metabolites. We hypothesized that gut
enterotype, as a composite measure of microbiome differences,
would modify the relationship between dietary nutrient intake
and downstream metabolism. We found evidence for significant
interaction between habitual dietary intake and gut enterotype
on plasma and stool metabolites across many classes of nutrients
and metabolites. Of diet-metabolite pairs that were enterotype-
dependent, the most frequent dietary components, which
associated with >100 metabolites each, included plant-derived
nutrients (fiber, carotenoids, and isoflavones) and artificial
sweeteners (saccharin, mannitol, aspartame, and xylitol), as
well as animal protein, trans fatty acids, caffeine, and alcohol.
The diet- and enterotype-dependent metabolites spanned many
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FIGURE 4 | Associations between gut microbiome and metabolites in plasma. Color intensity reflects the magnitude of the association coefficients between
metabolites and taxa.
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FIGURE 5 | Associations between gut microbiome and metabolites in stool. Color intensity reflects the magnitude of the association coefficients between
metabolites and taxa.

pathways, but the metabolites with the most frequent associations
with dietary variables (>30 dietary variables each) were
predominately bile acids and xenobiotic metabolites in plasma,
and xenobiotic and amino acid metabolites in stool.

Given the importance of bile acids in both gut metabolism
and cardiometabolic disease risk, we were particularly interested
in the observed microbiome-mediated effects of diet on bile
acid signaling. As shown in Figure 6, habitual intake of dietary
fiber was associated with higher plasma ursodeoxycholate in
individuals with enterotype 1, but there was no relationship
between diet and ursodeoxycholate in enterotype 2. Conversely,
high dietary fiber was associated with decreased plasma
taurodeoxycholate in individuals with enterotype 1, and slightly
increased levels in enterotype 2. Many of the circulating
bile acids were highly correlated with each other, and as
such the results for taurodeoxycholate represent similar
significant associations for dietary fiber with taurocholate,
taurolithocholate 3 sulfate, glycolithocholate, glycolithocholate
sulfate, taurochenodeoxychlate, glycodeoxycholate, glycocholate,
and glycodeoxycholate sulfate, (Spearman correlation > 0.5 for

metabolite pair, and p< 0.05 for enterotype-mediated association
with diet). Of note, dietary choline was highly correlated with
dietary fiber (Spearman correlation 0.7), reflecting some
overlapping food sources and dietary patterns, and similar
patterns of association with bile acids were also observed for
choline. Interestingly, there was a modest positive relationship
between plasma ursodeoxycholate (p < 0.05), but not plasma
taurodeoxycholate, and plasma C-Reactive Protein (CRP) and
BMI in individuals with enterotype 2, but not in enterotype 1
(Figure 7). These data suggest that individuals with enterotype 1
have bile acid metabolism that is highly diet-responsive, whereas
individuals with enterotype 2 have bile acid production which is
less sensitive to differences in dietary intake, but may be more
likely to relate to poor metabolic health.

DISCUSSION

The gut microbiome is recognized as a key intermediate between
environmental inputs and host metabolism, however, the specific
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TABLE 2 | Plasma and stool metabolites associated with three or more gut microbial taxa.

Metabolite Metabolic
function

Bacterial Taxon∗

Positive association Negative association

Plasma metabolites

Chenodeoxycholate Primary bile acid Parasutterella, Incertae Sedis Phascolarctobacterium, Faecalibacterium,
Ruminococcus 1

Glycolithocholate sulfate Secondary bile acid Alistipes, Parasutterella, Ruminococcaceae
NK4A214

Acidaminococcus

7-ketolithocholate Parasutterella, Ruminococcaceae UCG-013 Alloprevotella

Taurolithocholate 3-sulfate Ruminococcaceae NK4A214 Acidaminococcus, Ruminiclostridium 5

Ursodeoxycholate Parasutterella, Dialister, Megasphaera

4-cholesten-3-one Lipid Parabacteroides, Odoribacter Parasutterella

5alpha-pregnan-3(alpha or beta),
20beta-diol disulfate

Parasutterella, Dialister, Faecalibacterium,
[Eubacterium]hallii

Acidaminococcus, f Bacteroidales S24-7

Cortisone Subdoligranulum, Lachnospira,
[Eubacterium]hallii

Ruminococcus 1, Ruminiclostridium 5

4-hydroxy-2-oxoglutaric acid Paraprevotella, Odoribacter,
Erysipelotrichaceae UCG-003

Prevotella 7, Butyricimonas

Phenol sulfate Amino acid Butyricimonas, Lachnoclostridium Bifidobacterium, Megasphaera, f Prevotellaceae

Asparagine Parabacteroides,
[Eubacterium]coprostanoligenes, Dialister

N-acetyl-aspartyl-glutamate
(NAAG)

Phascolarctobacterium, Subdoligranulum Ruminococcus 1

3-methylglutaconate Paraprevotella, f Bacteroidales S24-7 f Lachnospiraceae

Indolepropionate Sutterella f Prevotellaceae, Lachnoclostridium

Phenylacetylglutamine k Bacteria Lachnospira, Lachnoclostridium

N-acetylglucosaminylasparagine Odoribacter, Ruminococcaceae UCG-003 Bifidobacterium, Faecalibacterium, f
Bacteroidales S24-7

Phosphate Energy k Bacteria, f Bacteroidales S24-7 Ruminiclostridium 5

Fumarate Megasphaera, Lachnoclostridium o Bacteroidales

N6-succinyladenosine Nucleotide Coprococcus 2, Oscillibacter,
Lachnoclostridium

Bifidobacterium, f Prevotellaceae

3-ureidopropionate Sutterella Parabacteroides, Erysipelotrichaceae UCG-003

4-ethylphenylsulfate Xenobiotic Acidaminococcus, Ruminococcaceae
NK4A214

Parabacteroides, Faecalibacterium,
Ruminococcus 1, Lachnoclostridium

4-allylphenol sulfate Paraprevotella, Sutterella f Lachnospiraceae, Parabacteroides,
Megasphaera

4-hydroxychlorothalonil Parasutterella, f Bacteroidales S24-7 Prevotella 7, Megasphaera

Retinal Paraprevotella, Erysipelotrichaceae UCG-003 o Bacteroidales, Prevotella 7

2,3-dihydroxyisovalerate Oscillibacter Bifidobacterium, Ruminiclostridium 5

2-piperidinone Acidaminococcus Ruminiclostridium 6, Ruminococcaceae
NK4A214

Gamma-CEHC Ruminococcaceae UCG-013 Incertae Sedis, Sutterella

Salmon module Parasutterella, Phascolarctobacterium,
Paraprevotella

f Bacteroidales S24-7, Coprococcus 2

Brown module Bilophila, Acidaminococcus f Bacteroidales S24-7

Pink module Alistipes, Phascolarctobacterium,
Acidaminococcus

Red module Odoribacter, Acidaminococcus Prevotella 2

Stool metabolites

Hexadecanedioate Lipid Lachnospira, [Eubacterium]hallii Ruminococcus 2, Ruminococcaceae
NK4A214, Erysipelotrichaceae UCG-003

Undecanedioate Barnesiella Ruminococcus 1, Lachnoclostridium

3-hydroxyhexanoate k Bacteria Bacteroides, Lachnoclostridium

1-(1-enyl-stearoyl)-GPE (P-18:0) Subdoligranulum Bilophila, Megasphaera

Piperine Xenobiotic o Bacteroidales, Sutterella, Faecalibacterium Ruminococcaceae UCG-003

(Continued)

Frontiers in Genetics | www.frontiersin.org 10 May 2019 | Volume 10 | Article 454

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00454 May 16, 2019 Time: 14:40 # 11

Tang et al. Multi-Omic Analysis of Microbiome

TABLE 2 | Continued

Metabolite Metabolic
function

Bacterial Taxon∗

Positive association Negative association

Brown module Acidaminococcus, Lachnoclostridium Ruminococcaceae NK4A214, Butyricimonas

Green module o Clostridiales Bacteroides, Lachnospira, Lachnoclostridium

Red module Bacteroides, Lachnospira Megasphaera

∗Bacterium reported as genus, unless otherwise specified (f, family; c, class; o, order; p, phylum; k, kingdom).

relationship between dietary nutrients, microbiome composition,
and host metabolism remains poorly understood. We conducted
multi-omic profiling to probe the relationship between diet, the
microbiome, and metabolism in healthy adults. We identified
associations between diet, the gut microbiome and the gut and
plasma metabolome at a global level and identified specific
microbiome-mediated associations between diet and metabolites.
Our data suggest that gut microbiome composition, both at
the taxon and the enterotype level, modulates how dietary
nutrients are metabolized, impacting systemic host metabolism
with potential downstream consequences on metabolic health.

Diet, the microbiome, and the metabolome are complex,
composed of multiple inter-dependent variables, which have
independent and combinatorial effects. We first examined these
multi-omic datasets on a global level, to understand the inter-
relationships on a broad scale. Consistent with our hypothesis,
diet, the gut microbiome, and the metabolome were all related
to each other. We found minimal evidence of an association
between the gut and oral microbiota in the same individuals,
which is consistent with previous studies, which have also
reported limited overlap between different body sites (Caporaso
et al., 2011; Ding and Schloss, 2014). The salivary microbiome
in our sample was also not strongly related to diet, or to
metabolites. This may reflect both the smaller sample size for the
oral microbiome, and distal relationships between the mouth and
intestinal or whole-body metabolism.

We assessed subjects’ diet using two independent methods,
to identify the nutrients consumed shortly before microbiome
sampling, and to identify habitual long-term food consumption.
There was relatively high correlation between analogous dietary
variables from short and long-term estimates within subjects,
suggesting that participants’ diets at the time of sampling were
consistent with their longer-term dietary patterns. We were
interested in the relative importance of day-to-day fluctuations
in dietary intake compared with longer-term patterns. We found
that long-term diet as assessed by FFQ was more strongly
associated with the gut microbiome than the diet consumed
immediately prior to sampling (generally the 3 days prior to
stool elimination). This suggests a core gut microbial population,
shaped by habitual diet, that remains relatively constant despite
short-term dietary fluctuations. This is supported by findings
from others, who have observed relative stability in gut
microbiome profiles over time, particularly in adults (Yatsunenko
et al., 2012; Ding and Schloss, 2014; Dubois et al., 2017; Ruggles
et al., 2018). Although large shifts in diet acutely alter microbiome

composition (David et al., 2014), dietary habits over time appear
to be more influential in shaping the gut microbial community.
Short-term diet was more strongly associated with the gut
and plasma metabolome than long-term diet, independent
of the microbiome. This is consistent with a model where
recently-consumed nutrients are rapidly metabolized by the
host, influencing what is present in the gut and circulation at
any given time. However, whether these short-term dynamic
changes impact longer-term health outcomes is unknown. It is
likely that repeated exposures to diet and microbiome derived
metabolites over longer time frames have greater impact on
lifelong health status.

Of dietary variables associated with microbiome composition
and exhibiting microbiome-mediated relationships with
metabolites in our sample, a large proportion are derived
from plant-based foods. This is consistent with our knowledge
of microbiome-mediated digestion. Plants are complex food
sources, and contain many diverse nutrients, some of which
are already known to interact with the microbiome. Fiber is
metabolized by bacteria for production of short-chain fatty
acids, which not only provide energy and selective advantages
to microbes, but can affect host metabolism and immunity
(Furusawa et al., 2013; Vital et al., 2014; Koh et al., 2016; Maier
et al., 2017). Individuals consuming diets high in plant-derived
fiber have greater microbiome diversity (Schnorr et al., 2014),
while diets low in fiber lead to reduced bacterial diversity
(Sonnenburg et al., 2016). Many phytochemicals are selectively
metabolized by gut microbiota including isoflavones (Rowland
et al., 2000; Fernandez-Raudales et al., 2012), while plants are rich
sources of many vitamins, including those with known microbial
interaction such as Vitamin B3/Niacin (Singh et al., 2014).
Symbiotic relationships between the host and the microbiome,
and optimal functioning of the holobiont, are dependent on
environment, with diet being the archetypal environmental
variable (Postler and Ghosh, 2017). In addition to plant foods,
which have long been consumed by humans, we observed
inter-relationships with artificial sweeteners, which have entered
the human diet in relatively recent time. Our data do not resolve
whether these have positive or negative consequences on health,
but indicate that shifts toward higher consumption of processed
foods and lower consumption of complex plant-based foods,
common to the Western diet, have potential consequences on
the gut microbiota and metabolite production.

We identified many metabolites in plasma and stool that
differed by microbiome composition; indeed the majority of
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metabolites appeared to be influenced by diet, the microbiome, or
both. These spanned many biological pathways, but metabolites
that were particularly microbiome-sensitive were pathways
related to bile acid metabolism, amino acid metabolism, lipid
and steroid metabolism, and metabolism of xenobiotics. While
direct effects on diet or microbe-derived metabolites (e.g.,
xenobiotics) are to be expected, our data highlight that the
microbiome also modulates key host metabolic pathways of
importance not only for energy metabolism, but overall host
health status including immune function. The consequences of
alterations in these circulating metabolites are not fully known.
Microbiome metabolites have been shown to affect inflammation
and immune regulation (Levy et al., 2017; Haase et al., 2018),
and we observed some association between enterotype-mediated
metabolism and plasma CRP. However, further studies are
needed to establish consequences of chronic alterations in
metabolite signaling.

Because different bacteria can have overlapping functionality,
it can be helpful to collapse the taxonomic composition into
related clusters, or enterotypes, to identify individuals within sub-
groups of similar composition. We observed many enterotype-
mediated associations, amongst them, a significant effect of
gut enterotype on the relationship between dietary fiber and
plasma bile acids. Bile acids are key regulators of hepatic and
intestinal lipid metabolism, and have been linked to inflammation
and metabolic disease (Joyce and Gahan, 2016; Chávez-Talavera
et al., 2017). Microbiota contribute to bile acid metabolism,
transforming host-synthesized primary bile acids to secondary
bile acids, while microbiome composition may itself be shaped
by bile acids (Wahlström et al., 2016; Long et al., 2017).
While we present data for dietary fiber, very similar results
were found for dietary choline, with fiber and choline intake
strong correlated in our sample. Thus, it is not clear whether
the effect is specific to fiber, choline, or another phytonutrient
common to the same food source. Both fiber and choline
can act as substrates or inhibitors of bile acid metabolism
(Corbin and Zeisel, 2012; Dziedzic et al., 2015; Wang et al.,
2017), and both have been linked to microbial metabolism
(LeBlanc et al., 1998; Tang et al., 2013; Mayengbam et al., 2018;
Tuncil et al., 2018), suggesting that either or both plausibly
lie in a causal pathway linking diet to bile acid metabolism
through microbiota.

Our study had several key strengths, but also some limitations.
We recruited healthy adults, and conducted deep multi-omic
phenotyping, with the goal of identifying relationships between
diet, the microbiome and the metabolome independent of a
disease background. While this allowed for metabolic analysis
independent of disease confounding or reverse causation, it did
not allow us to directly assess relationships with cardiometabolic
disease. However, at least half of the participants in our
study are likely to develop cardiometabolic disease in later life
(Benjamin et al., 2018), suggesting that even mildly elevated
risk factors may predict future disease. We measured plasma
CRP, as a clinically-relevant marker of inflammation, which
predicts future disease risk (Ridker, 2003), and used BMI as a
proxy for obesity and future metabolic risk (Van Gaal et al.,
2006). Despite our modest sample size, this is one of the
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FIGURE 6 | Dietary Fiber has a gut enterotype-dependent association with plasma secondary bile acids including ursodeoxycholate and taurodeoxycholate.

FIGURE 7 | Plasma Ursodeoxycholate has a gut enterotype-dependent relationship with plasma C-Reactive Protein and BMI, with a positive association in
Enterotype 2, and no relationship in Enterotype 1.

largest studies of diet, the microbiome, and the metabolome
conducted in humans. A pervasive limitation in nutritional
studies is the difficulty in precise quantification of dietary intake
in free-living humans. We used two independent validated
dietary assessment methods, which were broadly consistent
with each other, while allowing us to assess diet over different
time frames. Because food is complex, and individual nutrients
often co-occur in the same foods, in many cases we can
not determine which food component is “causal” in a diet-
microbiome-metabolite relationship. Future detailed studies to
isolate individual nutrients will be required, while recognizing
that nutrients exist within a complex food structure, and that an
isolated nutrient (e.g., in a single supplement) may not behave
the same way as a nutrient derived in conjunction with other
nutrients in a food source. An important limitation of our study
is the use of a single time point for data collection. While we
were able to identify diet-microbiome-metabolite associations

in our cross-sectional analysis, we are unable to infer causality.
Future interventional studies with longitudinal sampling are
required to assess relationships over time, and to determine
whether changes in diet associate with microbiome-mediated
changes in metabolism.

CONCLUSION

Through multi-omic analysis in a deeply-phenotyped human
sample, we identified microbiome-mediated relationships
between diet and circulating metabolites. Both individual
microbial taxa, and microbial enterotype may relate to
how dietary precursors are metabolized within the gut,
and in the circulation. The potential mechanisms involved,
and any long-term consequences on health status remain
to be determined.
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