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Abstract 17 

Interpreting function and fitness effects in diverse plant genomes requires transferable models. 18 

Language models (LMs) pre-trained on large-scale biological sequences can learn evolutionary 19 

conservation and offer cross-species prediction better than supervised models through fine-tuning 20 

limited labeled data. We introduce PlantCaduceus, a plant DNA LM based on the Caduceus and 21 

Mamba architectures, pre-trained on a curated dataset of 16 Angiosperm genomes. Fine-tuning 22 

PlantCaduceus on limited labeled Arabidopsis data for four tasks, including predicting translation 23 

initiation/termination sites and splice donor and acceptor sites, demonstrated high transferability 24 

to 160 million year diverged maize, outperforming the best existing DNA LM by 1.45 to 7.23-25 

fold. PlantCaduceus is competitive to state-of-the-art protein LMs in terms of deleterious mutation 26 

identification, and is threefold better than PhyloP. Additionally, PlantCaduceus successfully 27 

identifies well-known causal variants in both Arabidopsis and maize. Overall, PlantCaduceus is a 28 

versatile DNA LM that can accelerate plant genomics and crop breeding applications. 29 
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Main 30 

Over 1,000 plant genomes have been published during the past 20 years, and this number will 31 

continue to increase significantly in the coming decades 1–3. Understanding the functional elements 32 

and fitness effects of these genomes at both transcriptional and translational levels is crucial for 33 

advancing plant genomics and crop breeding. Unlike biomedical applications that primarily focus 34 

on a few key species, plant genomics must account for the vast diversity of hundreds of crop 35 

species, each with unique variations in size, composition, and complexity 4. Extensive genomic 36 

resources have been generated for model plants, such as Arabidopsis 5, rice 6 and maize 6, 37 

significantly advancing plant genomics research. However, generating analogous genomic 38 

resources experimentally for all plant genomes is time-consuming, costly, and impractical. This 39 

highlights the need for developing cross-species models capable of capturing evolutionary 40 

conservation across diverse plant species. 41 

 42 

Supervised deep learning (DL) sequence models are successful in understanding DNA sequence 43 

functions such as transcription initiation 7, alternative splicing 8 and gene expression 9. However, 44 

supervised DL models typically require large-scale labeled data, such as ENCODE-scale datasets 45 
10,11, to achieve robust performance. Such extensive labeled data is often scarce in plant genomics. 46 

Moreover, training supervised models on model species, such as Arabidopsis, presents challenges 47 

when transferring to other plant species. However, the success of self-supervised language models 48 

(LMs) offers a promising alternative. In this paradigm, a foundation model is pre-trained on vast 49 

amounts of unlabeled biological sequences to learn evolutionary conservation. Pre-trained models 50 

are then fine-tuned on limited labeled data, enabling better performance on downstream tasks and 51 

enhancing generalizability across species relative to existing methods. For example, protein LMs, 52 

pre-trained on diverse protein sequences spanning the evolutionary tree, have shown successful 53 

applications in predicting atomic-level protein structure 12 and disease-causing variants 13 as well 54 

as in engineering protein design 14. These models provide valuable tools for understanding protein 55 

function and facilitating innovative solutions in biotechnology and medicine 15. 56 

 57 

Unlike protein LMs that are limited to coding regions, DNA LMs enable a comprehensive 58 

understanding of the entire genome, offering deeper insights into gene regulation and evolution. 59 

Protein LMs have shown success in identifying pathogenic missense mutations in human genetics 60 
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13,16, but increasing evidence shows that mutations in noncoding regions, including both intergenic 61 

and intronic regions, contribute significantly to both agronomic traits 17 and human diseases 18,19. 62 

Additionally, training multi-species DNA LMs can capture evolutionary conservation at the DNA 63 

level, enhancing our understanding of genetic variation across different species. 64 

 65 

However, DNA LMs face significant challenges compared to protein LMs. Firstly, eukaryotes, 66 

especially plants 20, contain varied percentages of repetitive sequences, complicating the pre-67 

training task. Given that LMs are pre-trained to either predict the next token or tokens are masked 68 

arbitrarily in a sequence, repetitive sequences that are easier to predict but do not necessarily 69 

improve downstream applications can reduce overall model quality 21. Additionally, noncoding 70 

regions are less conserved than coding regions, leading to potential biases if entire genomes are 71 

included in pre-training. Lastly, unlike protein sequences, modeling double-stranded DNA 72 

requires consideration of reverse complementary base pairing 22 and a bi-directional model that 73 

accounts for both upstream and downstream sequences. 74 

 75 

To tackle these challenges, we introduce PlantCaduceus, a DNA language model pre-trained on a 76 

curated dataset consisting of 16 angiosperm genomes (Fig. 1A-1B). PlantCaduceus employs 77 

single-nucleotide tokenization, enabling precise modeling at the base-pair-resolution across 78 

diverse plant genomes. By down-sampling noncoding regions and down-weighting repetitive 79 

sequences, we generated an unbiased genomic dataset for pre-training. In contrast, other publicly 80 

available DNA LMs, such as AgroNT 23 and Nucleotide Transformer 24, use entire genomes for 81 

pre-training, potentially introducing biases toward certain genomes and repetitive sequences. 82 

Additionally, both models use non-overlapping kmer tokenizers that disrupt the genome into 83 

arbitrary segments. Unlike the unidirectional HyenaDNA 25 or Evo 26, PlantCaduceus offers bi-84 

directional context, providing a more comprehensive understanding of DNA interactions. 85 

Furthermore, to handle double-stranded DNA, we used the Caduceus architecture 27, which builds 86 

on the Mamba architecture 28 and supports reverse complement equivariance, unlike GPN 21, which 87 

uses convolutional neural network and manually augments reverse complement sequences. By 88 

evaluating the pre-trained PlantCaduceus model on five cross-species tasks, including translation 89 

initiation/termination sites, splice donor and acceptor sites, and evolutionary conservation 90 

prediction. We found that our model demonstrated the best performance compared to baseline 91 
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models for all five tasks. Notably, downstream classifiers fine-tuned on PlantCaduceus with 92 

limited labeled data in Arabidopsis maintained the best performance on other crop species such as 93 

maize, improving the PRAUC from 1.45-fold to 7.23-fold as compared to the best existing DNA 94 

LM, indicating that PlantCaduceus effectively captures broad evolutionary conservation. 95 

Additionally, deleterious mutations identified with the zero-shot strategy of PlantCaduceus 96 

showed a three-fold enrichment of rare alleles when compared to the most commonly used 97 

evolutionary-based methods such as phyloP and phastCons 29. For missense mutations, 98 

PlantCaduceus matches the performance of state-of-the-art protein LMs, suggesting that 99 

PlantCaduceus can be effectively used for genome-wide deleterious mutation identification. 100 

Furthermore, PlantCaduceus successfully identifies well-known causal variants in both 101 

Arabidopsis and maize. These results indicate that PlantCaduceus can serve as a foundational 102 

model to accelerate plant genomics and crop breeding applications. 103 

Results 104 

PlantCaduceus: a pre-trained DNA language model with 16 Angiosperm genomes 105 

Caduceus 27 is a DNA LM architecture that builds upon the recently introduced Mamba 28 106 

architecture, a selective state space sequence model that has demonstrated competitive 107 

performance to transformers 30 in various natural language processing tasks, with more efficient 108 

scaling for longer range sequences. Unlike Mamba, Caduceus is specifically designed for DNA 109 

sequences, taking into account the bi-directional nature of DNA and introducing reverse 110 

complement (RC) equivariance. Here, we trained PlantCaduceus using the Caduceus architecture 111 

on 16 Angiosperm genomes (Fig. 1A-1B; Supplemental Table 1), spanning 160 million years of 112 

evolutionary history (METHODS). PlantCaduceus takes 512 base pair (bp) windows of input 113 

sequences, tokenizing them into single nucleotides, and is pre-trained using a masked language 114 

modeling objective (Fig. 1B; METHODS). To address the substantial variation in genome sizes 115 

and the high proportion of repetitive sequences in these genomes, we emphasized non-repetitive 116 

sequences by down-weighting and down-sampling repetitive sequences during pre-training 117 

(METHODS). To scale Caduceus, we trained a series of PlantCaduceus models with parameter 118 

sizes ranging from 20 million to 225 million (Table 1). The training and validation losses for each 119 

model are detailed in Supplemental Table 2. After pre-training, we conducted a preliminary 120 
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assessment to verify the model's learning capabilities. Taking the sorghum genome as an example, 121 

we employed Uniform Manifold Approximation and Projection (UMAP) 31 to visualize the 122 

embeddings generated by the four pre-trained PlantCaduceus models. By segmenting the genome 123 

into 512 bp windows, we observed distinct clustering in the UMAP visualization, corresponding 124 

to different genomic regions (Fig. 1C). Due to the high proportion of repetitive intergenic 125 

sequences in the sorghum genome, the embedding spaces appeared dispersed in the UMAP 126 

visualization (Fig. 1D; Supplemental Fig. 1). Even without any supervision, PlantCaduceus was 127 

able to differentiate between coding and noncoding regions with high clarity. 128 

Improving the accuracy and cross-species transferability of modeling transcription and 129 

translation through fine-tuning PlantCaduceus 130 

Transcription and translation are two key processes in the central dogma of molecular biology, and 131 

the precise identification of junction sites during these processes is essential for comprehensive 132 

gene annotation. To assess PlantCaduceus’s performance in modeling these processes, we 133 

designed four gene annotation tasks: predicting the translation initiation site (TIS), translation 134 

termination site (TTS), and splice donor and acceptor sites (METHODS). We employed a feature-135 

based approach to fine-tune PlantCaduceus by keeping the pre-trained model weights frozen while 136 

training XGBoost models using embeddings extracted from the last hidden state of PlantCaduceus 137 

(Fig. 2A). Compared to full fine-tuning, this approach allows us to leverage the rich 138 

representations learned by PlantCaduceus while minimizing the usage of computational resources. 139 

Previous LMs focus on evaluation within the same species 24,25,32–34. However, given that the DNA 140 

LM model is pre-trained on multiple species, we wanted to investigate whether a model fine-tuned 141 

with limited labeled data in Arabidopsis could be used for prediction in other species. Therefore, 142 

we trained and validated XGBoost models in Arabidopsis and tested their performance on both 143 

species included (Oryza sativa and Sorghum bicolor) and not included (Gossypium hirsutum, 144 

Glycine max and Zea mays) in the pre-training (Fig. 2B; Supplemental Table 3). We 145 

benchmarked the performance of PlantCaduceus against three DNA LMs: GPN 21, AgroNT 23, and 146 

Nucleotide Transformer 24, as well as a supervised hybrid model comprising a convolutional neural 147 

network (CNN) and a long short-term memory (LSTM) network 35, hereafter referred to as 148 

CNN+LSTM. For DNA LMs, we used the same feature-based approach as PlantCaduceus (Fig. 149 
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2A) to train XGBoost models using embeddings extracted from the last hidden state of each DNA 150 

LM (Fig. 2C). The CNN+LSTM model was trained from scratch in a supervised manner. 151 

 152 

First, focusing on within species evaluation on Arabidopsis hold-out test set, PlantCaduceus (32 153 

layers) showed consistently superior performance across the four tasks of predicting TIS (Fig. 2C), 154 

TTS (Fig. 2D), splice donor site (Fig. 2E), and splice acceptor site (Fig. 2F). Other DNA LMs 155 

like GPN and AgroNT also performed well, particularly in predicting splice donor and acceptor 156 

sites. Additionally, for splice donor and acceptor site prediction, even the supervised CNN+LSTM 157 

model achieved near perfect PRAUC values, indicating that within-species prediction is a 158 

relatively straightforward task.  159 

 160 

We then assessed the cross-species generalization ability of these models by testing them on O. 161 

sativa and S. bicolor, which were included in pre-training, as well as G. hirsutum, G. max, and Z. 162 

mays, which were not (Fig. 2B; Fig. 1A). When tested across these five species, all models except 163 

PlantCaduceus exhibited a significant drop in average PRAUC, decreasing from 0.789 in A. 164 

thaliana to 0.237 in these species (Fig. 2C-2F). For instance, transferring the supervised 165 

CNN+LSTM model to Z.mays—which diverged 160 million years ago—resulted in a PRAUC 166 

drop from 0.713 to nearly zero for the TIS task.  This significant drop was expected, as the 167 

supervised model had never seen sequences from these species, making cross-species 168 

generalization challenging. Although GPN maintained decent cross-species predictions, it still 169 

showed significant performance drops, with the average PRAUC decreasing from 0.944 in A. 170 

thaliana to 0.509 in other species (Fig. 2C-2F; Supplemental Table 4). As expected, the non-171 

plant DNA NT-v2 model performed poorly on these tasks due to the significant divergence 172 

between plant and animal genomes. Even though AgroNT was pre-trained on 48 plant genomes, 173 

its performance fell short of expectations in cross-species evaluations. In contrast, PlantCaduceus 174 

consistently maintained high PRAUC values across all species, with an average PRAUC of 0.764, 175 

regardless of whether the species were included in pre-training, demonstrating its superior 176 

generalization ability across diverse plant species (Fig. 2C-2F; Supplemental Table 4). 177 

 178 

GPN, as the second-best DNA LM, was not pre-trained on any of the five testing species. To ensure 179 

a fairer comparison with GPN and to understand why PlantCaduceus achieved superior 180 
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performance on these cross-species tasks, we conducted an ablation test by re-training a custom 181 

GPN model (METHODS) using the same datasets as PlantCaduceus and scaling it to 130 million 182 

parameters, on the same order of magnitude as PlantCaduceus. We observed that including more 183 

genomes in the pre-training and scaling model size significantly improved GPN’s cross-species 184 

predictability (Supplemental Fig. 2; Supplemental Table 4), especially for TIS and TTS tasks. 185 

This indicates that when more genomes are included during pre-training, the embeddings learned 186 

by DNA LMs are more general across species. However, PlantCaduceus still exhibited the best 187 

performance, indicating that its architecture is superior to that of GPN. Moreover, even with a 188 

parameter size of 20 million—6.5 times smaller than the custom 130 million GPN and 3.25x times 189 

smaller than the original GPN—PlantCaduceus still outperformed all models in predicting TIS, 190 

TTS, splice donor, and splice acceptor sites. These results demonstrate that PlantCaduceus not 191 

only captures broader evolutionary conservation features but also is more parameter-efficient than 192 

other DNA LMs. 193 

Cross-species evolutionary constraint prediction through fine-tuning PlantCaduceus 194 

Genome-wide association studies (GWAS) have identified thousands of variants associated with 195 

complex traits 36. However, identifying causal variants is complicated by linkage disequilibrium 196 

(LD), as significant SNPs identified by GWAS are usually in LD with causal variants 37. In contrast, 197 

evolutionary constraint, as evidenced by DNA conservation across species, can identify potential 198 

causal mutations by revealing their fitness effects 38. Given that PlantCaduceus is pre-trained on 199 

16 Angiosperm genomes, we hypothesize that it can be fine-tuned to predict evolutionary 200 

constraint using DNA sequences alone. Maize and sorghum are both members of the 201 

Andropogoneae clade, descended from a common ancestor approximately 18 million years ago 39. 202 

To generate evolutionary constraints in the sorghum genome, we aligned 34 genomes from the 203 

Andropogoneae clade, with rice as an outgroup (Supplemental Table 5), to the Sorghum bicolor 204 

reference genome (Supplemental Fig. 3). We focused on the 277 million sites with nearly 205 

complete coverage and defined those sites with an identity threshold of 15 as conserved versus 206 

neutral with an identity threshold of 15 (Fig. 3A). We used sites chromosomes 1 to 9 to train an 207 

XGBoost model and evaluated it on sorghum chromosome 10. As mentioned above, we 208 

benchmarked this task against GPN, AgroNT, NT-v2, and the supervised CNN+LSTM model. On 209 

the validation set, PlantCaduceus achieved the best performance, with an AUC of 0.896 (Fig. 3B) 210 
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and a PR-AUC of 0.876 (Fig. 3C). In comparison, the best AUC and PR-AUC for other DNA 211 

LMs were 0.778 and 0.790, respectively. As expected, the supervised CNN+LSTM model 212 

performed the worst, with an AUC of 0.638, as it had only seen sequences from sorghum (Fig. 213 

3B-3C). This demonstrates that PlantCaduceus enables predicting evolutionary constraint without 214 

multiple sequence alignment. 215 

 216 

To further explore the cross-species predictive power of the model fine-tuned on sorghum 217 

evolutionary constraint data, we generated an analogous testing dataset for maize (METHODS). 218 

Remarkably, when our PlantCaduceus model, originally fine-tuned on sorghum, was applied to 219 

the maize dataset, it demonstrated strong cross-species prediction performance, achieving an AUC 220 

of 0.829 (Fig. 4D) and a PR-AUC of 0.797 (Fig. 4E). In contrast, all other models consistently 221 

showed poor performance on maize (Fig. 4D-4E). We also evaluated the performance of our 222 

custom GPN model which was trained on the same dataset as PlantCaduceus. While the custom 223 

GPN model showed improved performance with an AUC of 0.833 and a PR-AUC of 0.814, 224 

PlantCaduceus, with only 20 million parameters, outperformed both the original GPN and the 225 

custom GPN models (Supplemental Fig. 4). These results highlight the robustness and 226 

effectiveness of our DNA LM for cross-species predictions of evolutionary constraints using only 227 

sequence data as input. The transferability of our model across different species within the 228 

Andropogoneae clade suggests that it captures fundamental evolutionary patterns and can be 229 

readily adapted to predict evolutionary constraint in related species with limited additional training 230 

data. 231 

Zero-shot variant effect prediction identifies deleterious mutations in different species 232 

The training objective of PlantCaduceus is to predict masked nucleotides based on sequence 233 

context; if a pre-trained multi-species DNA LM can accurately predict masked tokens, it suggests 234 

that similar sequence patterns, conserved across different species, were frequently observed during 235 

pre-training. We hypothesize that the predicted likelihood of the reference allele versus the 236 

alternate allele can identify deleterious mutations, as mutations in conserved regions across species 237 

are likely deleterious 40–43. To test this hypothesis, we employed the same zero-shot strategy as 238 

GPN 21 to estimate the effect of each mutation (Fig. 4A). Specifically, for each mutation, we 239 

calculated the log-likelihood difference between the reference and alternate alleles, where a more 240 
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negative value indicates higher conservation. We generated 1.1 million sites from sorghum 241 

chromosome 8 (included in pre-training) and 1.3 million sites from maize chromosome 8 (not 242 

included) through in silico mutagenesis of SNPs. We then calculated zero-shot scores for these 243 

mutations to assess how PlantCaduceus performs on both seen and unseen genomes. As expected, 244 

mutations in highly conserved functional regions—such as stop-gained, splice acceptor, splice 245 

donor, and start-lost sites—exhibited the most negative zero-shot scores, underscoring their 246 

potential deleterious effects (Fig. 4B; Supplemental Fig. 5A). Missense mutations also showed 247 

notably negative zero-shot scores. In contrast, intergenic regions and introns displayed scores 248 

closer to zero, indicating lower evolutionary constraint and a reduced likelihood of deleterious 249 

effects (Fig. 4B; Supplemental Fig. 5A). However, we observed that a subset of mutations in 250 

repetitive regions still received very low zero-shot scores, suggesting that repetitive regions may 251 

be too easy for the model to predict the masked tokens. Overall, the zero-shot score of 252 

PlantCaduceus aligns with established concepts of deleteriousness 44,45. 253 

 254 

Besides in silico mutagenesis, we also evaluated if zero-shot score can be used to identify 255 

deleterious mutations in natural populations. Deleterious mutations tend to have lower frequencies 256 

within a population due to selective constraints 38, we therefore used minor allele frequency (MAF) 257 

to quantify the deleteriousness of mutations predicted by different methods. Despite the potential 258 

for low MAF in neutral/beneficial alleles, we believe this approach provides useful signals for 259 

assessing deleterious mutations 38. We benchmarked PlantCaduceus against two evolutionary-260 

informed methods, phyloP and phastCons 29, as well as GPN 21. Both phyloP and phastCons assess 261 

evolutionary constraint using multiple sequence alignments and phylogenetic models 262 

(METHODS), assigning higher scores to conserved regions. We analyzed 4.6 million SNPs in the 263 

sorghum TERRA population 42 and 9.4 million SNPs from maize Hapmap 3.2.1 population 46 and 264 

observed that most of the SNPs had neutral zero-shot score, while there was still a heavy tail with 265 

negative zero-shot scores (Fig. 4C; Supplemental Fig. 5B). By defining the top 0.1% as the most 266 

deleterious mutations, we observed a significant enrichment in coding regions, as reflected by the 267 

high odds ratios in both sorghum (40.70) and maize (42.42) with p-values less than 2.2e-16 268 

(Supplemental Fig. 6). We then categorized SNPs into four percentiles based on zero-shot scores: 269 

the top 50%, 10%, 1%, and 0.1% most deleterious mutations and observed that all models showed 270 

a decreasing average MAF of SNPs in higher percentiles for missense, nonsynonymous, and 271 
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noncoding SNPs in both sorghum (Supplemental Fig. 7) and maize (Fig. 4D). Notably, the 272 

putative deleterious mutations identified by PlantCaduceus exhibited the lowest average MAF 273 

across all percentiles, outperforming GPN and significantly surpassing phyloP and phastCons 274 

(Supplemental Fig. 7; Fig. 4D). Given the success of protein LMs in predicting deleterious 275 

missense mutations 13,16, we also incorporated ESM 12 as a benchmark. For missense mutations, 276 

we found that PlantCaduceus matches the performance of the state-of-the-art protein LM ESM 12. 277 

At the top 50%, 10%, and 1% percentiles, PlantCaduceus even slightly outperforms ESM in 278 

sorghum (Supplemental Fig. 7).  279 

 280 

However, since GPN is only pre-trained with genomes from eight Brassicales species and 281 

specifically designed for mutation effect prediction in Arabidopsis, we further validated 282 

PlantCaduceus by analyzing over 10 million mutations from the Arabidopsis 1001 Genomes 283 

Project 47. Being pre-trained with a broader range of evolutionarily distant genomes, 284 

PlantCaduceus effectively captured deleterious mutations in Arabidopsis and slightly 285 

outperformed GPN (Supplemental Fig. 8). For missense mutations, PlantCaduceus consistently 286 

matched the performance of the state-of-the-art protein language model ESM and was nearly 287 

competitive with GPN for noncoding mutations.  288 

 289 

We further verified if PlantCaduceus could pinpoint known causal deleterious mutations. We 290 

collected 19 candidate phenotype-impacting and potentially deleterious mutations identified in 291 

homozygous EMS mutants in Arabidopsis 48. Among these, 15 mutations were ranked in the top 292 

1% or top 10% by the zero-shot score (Table 2), highlighting the zero-shot score of PlantCaduceus 293 

can be used for pinpointing causal deleterious mutations. Additionally, PlantCaduceus 294 

successfully identified a well-studied causal sweet corn mutation, which derives its characteristic 295 

sweetness from the W578R mutation at the sugary1 (Su1) locus 49. This mutation disrupts starch 296 

metabolism, leading to the accumulation of phytoglycogen, which lowers seedling vigor and 297 

reduces germination, ultimately decreasing fitness 50. Although GWAS revealed numerous 298 

significantly sweet-trait-associated variants on chromosome 4, identifying the exact causal 299 

mutations is challenging due to high LD in this low recombination region (Fig. 5A). By integrating 300 

zero-shot scores from PlantCaduceus with GWAS data (Fig. 5B-5C), we successfully identified 301 

the W578R mutation as the sole causal variant in this QTL region (Fig. 5D). Taken together, these 302 
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results demonstrate that the PlantCaduceus model effectively pinpoints known causal deleterious 303 

mutations, highlighting its potential as a powerful tool for identifying causal variants underlying 304 

important agronomic traits. 305 

Discussion 306 

Functional annotation of plant genomes is crucial for plant genomics and crop breeding but 307 

remains limited by the lack of functional genomic data and accurate predictive models. Here, we 308 

introduced PlantCaduceus, a multi-species plant DNA LM pretrained on a curated set of 16 309 

evolutionarily distant Angiosperm genomes, enabling cross-species prediction of functional 310 

annotations with limited data. PlantCaduceus leverages Mamba 28 and Caduceus 27 architectures 311 

to support bi-directional, reverse complement equivariant sequence modeling. We demonstrated 312 

the superior cross-species performance of PlantCaduceus on five tasks involving transcription, 313 

translation, and evolutionary constraint modeling. These results highlight the potential of 314 

PlantCaduceus to serve as a foundational model for comprehensively understanding plant genomes. 315 

 316 

PlantCaduceus has the potential to accurately annotate any newly sequenced Angiosperm 317 

genomes. Unlike supervised deep learning models that easily overfit on limited labeled data, 318 

PlantCaduceus demonstrates robust cross-species performance in modeling transcription, 319 

translation, and evolutionary constraints, even for species not included in pre-training (Fig. 2; 320 

Supplemental Fig. 2). This indicates that through self-supervised pre-training on large-scale 321 

genomic datasets, PlantCaduceus has captured broad evolutionary conservation and DNA 322 

sequence grammar. The cross-species prediction ability of PlantCaduceus can significantly 323 

accelerate plant genomics research, aiding initiatives such as the 1000 Plant Genomes Project 1 by 324 

providing accurate annotations and insights across diverse plant species. 325 

 326 

PlantCaduceus offers a more effective approach to estimate deleterious mutations without relying 327 

on multiple sequence alignments (MSAs). Deleterious mutations are considered as the genetic 328 

basis of heterosis, where hybrids yield more due to the suppression of deleterious recessives from 329 

one parent by dominant alleles from the other 51. Historically, deleterious mutations have been 330 

estimated by generating MSAs 38,52,53 and using evolutionary methods such as phyloP and 331 

phastCons 29. However, the prevalence of transposable elements and polyploidy in plant genomes 332 
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complicates the genome-wide MSA generation 54,55. PlantCaduceus overcomes these challenges 333 

by using a masked language modeling strategy to learn conservation from large scale genomic 334 

datasets of diverse species. Promisingly, the deleterious mutations prioritized by PlantCaduceus 335 

with the zero-shot strategy showed three-fold rare allele enrichment compared to phyloP and 336 

phastCons, and our approach is competitive with state-of-the-art protein LM for missense 337 

mutations. Furthermore, PlantCaduceus enables pinpointing causal variants from significant 338 

GWAS signals, which are usually confounded by LD. These results suggest that PlantCaduceus 339 

can be utilized as a powerful tool in crop breeding, enhancing genome-wide deleterious mutation 340 

identification, optimizing parental line selection, and promoting hybrid vigor 51. 341 

 342 

In future work, we plan to incorporate additional plant genomes from diverse lineages, such as 343 

gymnosperms, to capture broader evolutionary conservation. Additionally, we plan to pre-train 344 

PlantCaduceus with longer context windows, enabling it to capture long-range DNA interactions 345 

and better handle tasks benefiting from long-range cis-effects, such as allele-specific expression, 346 

chromatin state prediction, and chromatin interaction mapping. Furthermore, it would also be 347 

interesting to explore how to better tokenize repetitive sequences in plant genomes. We envision 348 

that these approaches will allow us to push the boundaries of what PlantCaduceus can achieve, 349 

establishing it as an even more powerful and versatile foundation model for advancing genomic 350 

research and facilitating crop improvement.  351 
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Methods 352 

 Pre-training dataset 353 

The pre-training dataset comprises 16 genomes from two distinct clades: eight genomes from the 354 

family Poaceae and eight genomes from the order Brassicales (Supplemental Table 1). To 355 

visualize their relatedness, we subset these taxa from a large phylogeny of seed plants 56. The 356 

Poaceae species displayed substantial variation in genome size and repetitive sequence content, 357 

with the hexaploid wheat genome exhibiting a size of 15 Gbp. For each Poaceae genome, except 358 

for Tripsacum, we obtained the genome and corresponding genome annotation and repeat-masked 359 

annotation from the Joint Genome Institute (JGI). For the Tripsacum genome, the genome FASTA 360 

and annotation files were downloaded from MaizeGDB 361 

(https://maizegdb.org/genome/assembly/Td-FL_9056069_6-DRAFT-PanAnd-1.0), and the 362 

EDTA tool 57 was used to identify repetitive sequences within the genome. Based on the repeat-363 

masked annotation, each genome was softmasked with bedtools 58 and subsequently divided into 364 

genomic windows of 512 bp with a step size of 256 bp. Each window was assigned to a unique 365 

class based on the genome annotation, and all coding sequence regions were selected for pre-366 

training. The remaining genomic regions were then down-sampled to ensure an equal number of 367 

CDS regions and noncoding regions. It is important to note that for the hexaploid wheat genome, 368 

only subgenome A was utilized to avoid species bias. The Brassicales genomes datasets were 369 

acquired from a Hugging Face repository (https://huggingface.co/datasets/songlab/genomes-370 

brassicales-balanced-v1). The validation and testing datasets were randomly selected and 371 

constituted 5% of the total dataset. 372 

Caduceus model architecture and pre-training 373 

We use the recently proposed Caduceus architecture 27, which is tailored to DNA sequence 374 

modeling. Caduceus is based on the Mamba architecture 28, a model which scales to long sequences 375 

more efficiently than attention-based methods while maintaining accuracy. Mamba stems from the 376 

class of structured state space models (SSMs) 59, which are defined by a pair of linear differential 377 

equations: 378 

 379 

ℎ̇(𝑡) = 𝐴!ℎ(𝑡) + 𝐵!𝑥(𝑡),    380 
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 𝑦(𝑡) = 𝐶!ℎ(𝑡) + 𝐷!𝑥(𝑡), 381 

where 𝑥, 𝑦 ∈ ℝ  represent the input and output, respectively, ℎ	 ∈ 	ℝ"  is the state’s hidden 382 

representation, and the (potentially time dependent) parameters 𝐴 ∈ ℝ"×", 𝐵 ∈ ℝ"×$, 𝐶 ∈383 

ℝ$×", 𝐷 ∈ ℝ govern the system dynamics. For multi-dimensional inputs and outputs 𝑥, 𝑦 ∈ ℝ%, a 384 

separate linear system is applied to each of the 𝑑 channels. In practice, using some discretization 385 

scheme that is a function of a discrete time parameter Δ,  the system is discretized in time, yielding 386 

the following: 387 

ℎ!&$ = 𝐴!444ℎ! + 𝐵!444𝑥! 388 

  𝑦!&$ = 𝐶!ℎ!&$ + 𝐷!𝑥! 389 

Much of the SSM literature relies on parameters that are fixed in time, allowing for efficient 390 

computation during training by means of the convolutional perspective of linear time invariant 391 

systems 60. In contrast to previous SSMs, Mamba enables more expressive models that are time 392 

dependent, by making the parameters functions of the inputs. This time dependence is crucial in 393 

allowing Mamba to overcome the limitations of previous SSMs and rival Transformers 30 on 394 

sequence modeling tasks across domains. For efficient computation, Mamba employs a parallel 395 

algorithm to compute the recurrence relation defined above and an IO-aware implementation that 396 

limits potentially bottlenecking memory transfer operations incurred on modern GPU hardware. 397 
 398 

To account for upstream and downstream gene interactions, Caduceus employs weight sharing to 399 

enable memory-efficient bi-directionality. Finally, Caduceus is designed to consider the reverse 400 

complement (RC) symmetry of DNA sequences. This is accomplished by encoding RC 401 

equivariance as an inductive bias: the Caduceus language model commutes with the RC operation. 402 

Combining these three design decisions, Caduceus has shown promising results when applied to 403 

human genome modeling 27.  404 

 405 

The implementation of RC equivariance in Caduceus entails doubling the number of channels for 406 

intermediate representations. At a high level, half the channels are used to encode information 407 

about a sequence and the other half are used to encode information about its RC. For downstream 408 

tasks in which we fine-tuned a classifier on top of learned embeddings, the labels were invariant 409 

to the RC operation, since both DNA strands carry the same label. To account for this, we therefore 410 

split embeddings of the Caduceus model along the channel dimension and averaged. This ensures 411 
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that both a sequence and its RC will have the same final embedding, i.e., we render the embeddings 412 

invariant to the RC operation as well.  413 

 414 

For the pre-training of PlantCaduceus, each model was trained for 240,000 steps using a 415 

Decoupled AdamW optimizer 61 with the global batch size of 2,048. The learning rate is 2E-4 with 416 

a cosine decay scheduler, and 6% of the training duration was dedicated to warm up. The learning 417 

rate decayed to 4E-6 by the end of training. The default BERT 62 masking recipe was used with a 418 

masking probability of 0.15. For each masked token: (i) there is an 80% probability it will be 419 

replaced by a special token ([MASK]), (ii) a 10% probability it will be replaced by a random token, 420 

and (iii) a 10% probability it will remain unchanged. Unless otherwise specified, all models were 421 

trained using a sequence length of 512 base pairs. A weight decay of 1E-5 was applied throughout 422 

the training process. 423 

TIS, TTS, splice donor and acceptor training, validation and testing dataset generation 424 

To generate high-quality training datasets for translation initiation sites (TIS), translation 425 

termination sites (TTS), splice donor sites, and splice acceptor sites, we used the well-annotated 426 

model plant genome of Arabidopsis with Araport 11 annotation 63. To accurately reflect the 427 

inherent imbalance in junction sites prediction, all annotated junction sites were considered as 428 

positive observations, while a randomly selected subset of sites (5%) that matched specific 429 

appropriate motifs (e.g., ATG for TIS, UAA, UAG, and UGA for TTS, GT for donor splice sites, 430 

and AG for acceptor splice sites) were used as negative observations. For each task, the pre-trained 431 

model weights were frozen, and XGBoost models (n_estimators=1000, max_depth=6, 432 

learning_rate=0.1) were trained using embeddings extracted from the last hidden state of the pre-433 

trained model. To ensure robust model training and validation, chromosome 5 was used for hold-434 

out testing, and the rest of the Arabidopsis genome was used for training.  435 

 436 

Given the relatively poor annotation in other species compared to Arabidopsis, we used the 437 

BUSCO tool 64 to identify 3,236 orthologous genes specific to monocotyledons in O. sativa, S. 438 

bicolor and Z. mays and 2,326 orthologous genes specific to eudicotyledons in G. hirsutum and G. 439 

max to generate reliable testing datasets in other species. This approach ensures that the selected 440 

annotated genes are highly conserved and likely to be correctly annotated, mitigating the issue of 441 
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inaccurate performance evaluations. Specifically, BUSCO was utilized to scan the annotated 442 

protein isoforms, and only complete BUSCO genes were considered as true positives. For those 443 

BUSCO genes with multiple transcripts, we selected the longest transcript to avoid sequence 444 

redundancy in the testing dataset. Subsequently, BUSCO gene/transcript-supported junction sites 445 

were used as positive examples for their respective tasks. To generate negative sites, all sites within 446 

the BUSCO genes that matched appropriate motifs (e.g., ATG for TIS, TAA, TAG, and TGA for 447 

TTS, GT for donor splice sites, and AG for acceptor splice sites) but were not part of any annotated 448 

gene models were used as true sites. Sites belonging to alternate transcripts were excluded to avoid 449 

ambiguity. Furthermore, to expand the negative observations and capture a broader range of non-450 

junction sites, we included sites in the intergenic regions flanking the BUSCO genes that matched 451 

the appropriate junction motifs. By incorporating both genic and intergenic sites from the BUSCO 452 

gene set as negatives, we created an extremely imbalanced testing dataset to reflect the real-world 453 

scenario of junction site prediction (Supplemental Table 3). 454 

Evolutionary constraint estimation 455 

The evolutionary constraint was estimated primarily within the Andropogoneae tribe, a large clade 456 

of grasses comprising approximately 1,200 species that descended from a common ancestor 457 

approximately 18 million years ago 39. In this analysis, 34 genomes from Andropogoneae and the 458 

rice genome were used to estimate the evolutionary constraint. Due to the substantial transposable 459 

element (TE) content in these genomes, AnchorWave, a sensitive genome-to-genome alignment 460 

tool 54, was used to align the 35 genomes to the sorghum reference genome using the parameters 461 

"-R 1 -Q 1". Following the alignments to the sorghum reference genome, we counted the number 462 

of identities, SNPs, and coverages (Supplemental Fig. 3). Then the fine-tuned labels were 463 

generated based on per-site identity and coverage (Fig. 3A). Conserved sites were defined as 464 

having an identity greater than 34, while neutral sites were defined as having an identity of 15 or 465 

less and coverage of at least 34. Sites with low coverage were excluded due to their potential 466 

ambiguity. Given the large size of the training dataset, only 5% of conserved sites were randomly 467 

selected for training, and an equivalent proportion of neutral sites was also randomly selected. 468 

Sites from chromosomes 1 to 9 were used for training, while those from chromosome 10 were 469 

used for validation. To generate the testing dataset in maize, the maize reference genome B73 was 470 

used. Then, using the same approach, genome-wide evolutionary constraints were generated by 471 
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aligning 35 genomes to the maize reference genome with AnchorWave, using the parameters "-R 472 

1 -Q 2," except for Tripsacum clades. For Tripsacum and maize, which share the most recent whole 473 

genome duplication, we used "-R 1 -Q 1". 474 

phyloP and phastCons calculation 475 

With the same 34 genomes from Andropogoneae, we generated pairwise genome-to-genome 476 

alignments using Cactus 65, a multiple genome alignment tool that uses a progressive alignment 477 

strategy. The neutral model was calculated from fourfold degenerate coding sites across the entire 478 

genome. The resulting alignments were then analyzed using PHAST 29 to quantify evolutionary 479 

conservation with phyloP conservation scores – using the SPH scoring method (--method SPH) 480 

and CONACC mode (--mode CONACC) – and phastCons scores. 481 

In silico mutagenesis. 482 

All potential mutations in the genic regions and 1 kb flanking regions of maize and sorghum 483 

chromosome 8 were generated and annotated using the Ensembl Variant Effect Predictor (VEP) 484 

local API 44, with the upstream/downstream parameter set to 1,000 to classify variants as either 485 

upstream or downstream. For intergenic variants, we randomly sampled 100,000 SNPs from the 486 

intergenic regions across chromosome 8 to ensure more even coverage of the entire chromosome. 487 

For each variant type, we randomly sampled 100,000 mutations and calculated zero-shot scores.  488 
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Genome-wide association study for sweet phenotype 489 

To perform a GWAS for the sweet phenotype, we used a subset of genotypes from the Hapmap 490 

3.2.1 population 46, where sweet phenotype data is available 66. This subset consists of 272 diverse 491 

inbred lines with recorded sweet phenotype data. We coded starchy corn as 0 and sweet corn as 1, 492 

with 266 entries in the first category and 6 in the second. To map the sweet phenotype, we utilized 493 

a model specifically designed to account for population structure: y = Xβ1 + 5 global PCs + e. The 494 

methods for GWAS followed those outlined in Kpaipho-Burch et al 67. Briefly, the five global 495 

principal components (PCs) were derived from 66,527 SNPs across 3,545 diverse inbred lines, and 496 

the SNPs from 272 inbred lines were then rotated to such PCs. The selected SNPs had no missing 497 

data across three maize populations, ensuring effective control for population structure and kinship. 498 

This approach also reduced computational time compared to mixed linear models while 499 

maintaining consistent trait mapping across populations. 500 

 501 

GPN, custom GPN, AgroNT and NT-v2 baselines 502 

To comprehensively evaluate our foundation model’s performance, four foundation models 503 

including GPN 21 (https://huggingface.co/songlab/gpn-brassicales), custom GPN, AgroNT 23 504 

(https://huggingface.co/InstaDeepAI/agro-nucleotide-transformer-1b) and NT-v2 24 505 

(https://huggingface.co/InstaDeepAI/nucleotide-transformer-v2-500m-multi-species) were used 506 

as baselines for various tasks. GPN is a convolutional DNA LM pre-trained on eight genomes of 507 

Arabidopsis and seven other species from the Brassicales order. However, since GPN was pre-508 

trained with only eight evolutionarily close species and has only 65M parameters and most of the 509 

tasks in this paper focus on evaluation in crops, we re-trained a custom GPN with 130M parameters 510 

using 50 convolutional layers and the same dataset as PlantCaduceus for a fair comparison. The 511 

other hyperparameters were kept identical to the original GPN (Supplemental Table 6). In 512 

contrast, AgroNT 23 is a transformer-based 30 language model with 1 billion parameters, pre-trained 513 

on 48 plant genomes. NT-v2 24, is a non-plant multi-species transformer model pre-trained on 850 514 

genomes excluding plant species. These models employ different tokenization strategies: GPN 515 

uses single-nucleotide tokenization, while AgroNT and NT-v2 use 6-mer tokenization. To ensure 516 

a fair comparison, we extracted the middle token embeddings for GPN and the middle k-mer token 517 

embeddings for AgroNT and NT-v2. 518 
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Supervised CNN+LSTM baseline 519 

To establish a fair comparison between our DNA LM and existing supervised models, which are 520 

primarily trained on human data, we used the DanQ model architecture 35 as the supervised 521 

baseline. DanQ is a hybrid convolutional and recurrent neural network specifically designed for 522 

predicting the function of DNA sequences. It has demonstrated impressive performance in 523 

predicting chromatin states in plant species, making it a suitable choice for our comparative 524 

analysis 68. For each task, the CNN+LSTM model was trained from scratch using one-hot encoded 525 

DNA sequences as input. The Adam optimizer with a learning rate of 0.01 was employed for model 526 

optimization. The batch size was set to 2,048. Early stopping with a patience of 20 steps was 527 

implemented. 528 

Data availability 529 

The pre-training genomes are available at: https://huggingface.co/datasets/kuleshov-530 

group/Angiosperm_16_genomes. All datasets used for fine-tuning are available at Hugging Face: 531 

https://huggingface.co/datasets/kuleshov-group/cross-species-single-nucleotide-annotation 532 

  533 
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Code availability 534 

The pre-trained models, along with documentation on how to use them, are available at Hugging 535 

Face: https://huggingface.co/collections/kuleshov-group/plantcaduceus-512bp-len-536 

665a229ee098db706a55e44a.The pre-training and fine-tuning codes are available at GitHub: 537 

https://github.com/kuleshov-group/PlantCaduceus 538 
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Tables 699 

Table 1. PlantCaduceus model parameters 700 

Models # of layers Hidden size # of parameters (million) 

PlantCaduceus_l32 32 1024 225 

PlantCaduceus_l28 28 768 112 

PlantCaduceus_l24 24 512 40 

PlantCaduceus_l20 20 384 20 
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Table 2. The zero-shot score of deleterious mutations identified in homozygous EMS mutants 702 

Chr Position Change Mutation effect Phenotype 
Zero-shot 

score Percentile 

2 14297325 G>A Splice change Univalent chromosomes -10.344 Top 1% 
3 23443192 C>T Splice change Univalent chromosomes -10.219 Top 1% 
3 10277172 C>T Splice change Univalent chromosomes -9.820 Top 1% 
4 5820399 C>T Splice change Univalent chromosomes -9.547 Top 1% 
3 17827101 G>A Splice change Fragmentation -9.531 Top 1% 
3 3248339 C>T Premature stop Univalent chromosomes -9.125 Top 1% 
3 17823207 G>A Splice change Fragmentation -9.000 Top 1% 
1 1298121 C>T Splice change Univalent chromosomes -8.859 Top 1% 
3 17812658 G>A Splice change Fragmentation -8.719 Top 1% 
5 1625685 G>A Splice change Fragmentation -8.203 Top 10% 
3 3246364 G>A Splice change Univalent chromosomes -7.660 Top 10% 
3 3246274 G>A Splice change Univalent chromosomes -7.406 Top 10% 

5 23446256 G>A Premature stop 
All univalent 
chromosomes 

-6.203 Top 10% 

4 16868745 C>T Premature stop Univalent chromosomes -6.008 Top 10% 
3 17824467 G>A Missense Fragmentation -5.570 Top 10% 
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Fig 1. Overview of PlantCaduceus. (A) Phylogenetic tree of 16 Angiosperm species used for 
pre-training the PlantCaduceus model. (B) The input for PlantCaduceus consists of 512-bp DNA 
sequences with 15% of positions randomly masked. The pre-training objective is cross-entropy 
loss on the masked positions. The sequences are processed through the bi-directional Caduceus 
architecture, which is based on the Mamba sequence operator—a recently proposed structured 
state space model. Caduceus also contains a reverse complement equivariance inductive bias. (C) 
UMAP visualization of embeddings from PlantCaduceus (32 layers) averaged over non-
overlapping 100-bp windows along the sorghum genome without intergenic regions. (D) The same 
UMAP visualization as in (C) but with intergenic regions. 
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Fig 2. Modeling translation and transcription through fine-tuning PlantCaduceus. (A) Fine-
tuning strategy for PlantCaduceus: The weights of the pre-trained PlantCaduceus model are kept 
frozen during pre-training. The last hidden state of PlantCaduceus is then used as features for the 
XGBoost model. (B) Phylogenetic tree of species used for training, validation, and testing during 
the fine-tuning of PlantCaduceus. (C-F) Bar plots displaying the PRAUC scores for six species 
across four tasks: TIS (C), TTS (D), splice donor (E), and splice acceptor (F). The gene structures 
on the left illustrate how positive and negative samples are obtained for each classification task. 
Blue bars represent the PlantCaduceus model with 32 layers. Gray bars denote three DNA 
language models: NT-v2, AgroNT, and GPN. Light gray bars represent a traditional supervised 
model, a hybrid of CNN and LSTM. The gray dashed line in each panel indicates the baseline for 
each dataset, corresponding to the negative sample ratio. 
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Fig 3. Evolutionary constraint prediction. (A) Illustration of the evolutionary conservation data 
curation. (B) Receiver operating characteristic (ROC) and (C) precision-recall (PR) curves of 
different models in sorghum. (D) ROC and (E) PR curves of transferring different models trained 
in sorghum to unseen maize data. 
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Fig 4. Deleterious mutations identification in maize. (A) The zero-shot strategy of 
PlantCaduceus for identifying deleterious mutations. (B) The zero-shot score distribution of 
different types of variants generated by in silico mutagenesis in maize chromosome 8. (C) The 
zero-shot score distribution of 9.4M SNPs in the maize Hapmap3 population. (D) The MAF of 
putative deleterious mutations prioritized by different models in maize. 
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Fig 5. The causal mutation in Su1 locus. (A) Manhattan plot of the sweet corn trait in the region 
from 43.0 to 46.0 Mb on chromosome 4. (B) The zero-shot scores of SNPs in 43.0 to 46.0 Mb in 
chromosome 4, corresponding to the same region as in (A). (C) Scatter plot of zero-shot scores 
from PlantCaduceus versus -log10(P) values from GWAS result. The horizontal dashed line 
indicates the GWAS significance threshold (Bonferroni’s threshold: 0.05/N; N=2,072,522), and 
the vertical dashed line marks the top 0.1% percentile of zero-shot scores. (D) Zoomed-in view of 
the causal variant region and the Su1 gene structure. 
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