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The combination of docetaxel, cisplatin, and S-1 (DCS) is a common chemotherapy reg-
imen for patients with gastric cancer (GC). However, studies on long noncoding RNAs
(lncRNAs) associated with the chemotherapeutic response to and prognosis after DCS re-
main lacking. The aim of the present study was to identify DCS mRNAs-lncRNAs asso-
ciated with chemotherapy response and prognosis in GC patients. In the present study,
we identified 548 lncRNAs associated with these 16 mRNAs in the TCGA and GSE31811
datasets. Eleven lncRNAs were used to construct a prognostic signature by least ab-
solute shrinkage and selection operator (LASSO) regression. A model including the 11
lncRNAs (LINC02532, AC007277.1, AC005324.4, AL512506.1, AC068790.7, AC022509.2,
AC113139.1, LINC00106, AC005165.1, MIR100HG, and UBE2R2-AS1) associated with the
prognosis of GC was constructed. The signature was validated in the TCGA database,
model comparison, and qRT-PCR experiments. The results showed that the risk signature
was a more effective prognostic factor for GC patients. Furthermore, the results showed
that this model can well predicting chemotherapy drug response and immune infiltration of
GC patients. In addition, our experimental results indicated that lower expression levels of
LINC00106 and UBE2R2-AS1 predicted worse drug resistance in AGS/DDP cells. The ex-
perimental results agreed with the predictions. Furthermore, knockdown of LINC00106 or
UBE2R2-AS1 can significantly enhanced the proliferation and migration of GC AGS cells
in vitro. In conclusion, a novel DCS therapy-related lncRNA signature may become a new
strategy to predict chemotherapy response and prognosis in GC patients. LINC00106 and
UBE2R2-AS1 may exhibit a tumor suppressive function in GC.

Introduction
Gastric cancer (GC) remains the third most common cause of death among malignancies worldwide [1].
Although many treatments are available for GC, the prognosis after treatment is not optimistic, partic-
ularly for patients with advanced GC [2,3]. Many studies have confirmed that chemotherapy resistance
is one of the reasons for unsatisfactory treatment results [4,5]. Accordingly, exploring the new molecular
mechanism of chemotherapy resistance targets is urgently needed to improve outcome.

The number of studies focusing on long noncoding RNAs (lncRNAs) is increasing continuously
[6]. One study found that the lncRNA maternally expressed gene 3 (MEG3) can inhibit GC cell pro-
liferation and metastasis [7]. In addition, the lncRNA cancer susceptibility candidate 11 (CASC11)
was found to not only inhibit GC cell apoptosis in vitro [8] but also promote growth and metastasis
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Figure 1. Graphical flowchart of this work
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in colorectal cancer [9]. Furthermore, the lncRNA plasmacytoma variant 1 (PVT1) reportedly to promote gastric
tumour growth in vivo by activating the STAT3/VEGFA axis [10]. These studies indicate that lncRNAs play pivotal
roles in GC tumorigenesis.

More importantly, some lncRNAs are not only involved in GC development but also related to the resistance
to various chemotherapy drugs [11,12]. Recent studies have that lncRNA colorectal neoplasia differentially ex-
pressed (CRNDE) could combat the growing threat of chemotherapy resistance in GC by regulating autophagy
[13]. The lncRNA urothelial cancer associated 1 (UCA1) enhances cisplatin resistance via the miR-513a-3p/CYP1B1
axis [14]. The lncRNA forkhead box D1 antisense RNA 1 (FOXD1-AS1) exacerbates GC cell chemoresistance via
PIK3CA/PI3K/AKT/mTOR signaling [15]. Therefore, lncRNAs play crucial roles in the chemotherapy resistance of
GC. However, integrated studies on lncRNAs in GC-associated chemoresistance remain limited. In particular, no
studies have investigated the targeting docetaxel, cisplatin, and S-1 (DCS) therapy-related lncRNAs.

The main objective of the present study was to explore the lncRNAs associated with DCS treatment using the
Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Moreover, a prognostic model
composed of lncRNAs was constructed to predict long-term outcomes in patients with GC, and an assessment scheme
for individual chemotherapy therapeutic strategies was established.

Methods
Cell culture
The human gastric adenocarcinoma cell lines AGS and AGS/DDP were purchased from KeyGEN Biotechnology
Company (Nanjing, Jiangsu, China). The cells were cultured in RPMI-1640 medium containing 10% FBS and placed
in an incubator with a constant temperature of 37◦C and 5% carbon dioxide. AGS/DDP cells were cultured in complete
medium containing 500 ng/mL DDP (Sigma, St. Louis, MO, U.S.A.) in RPMI-1640 to maintain cell drug resistance.

Quantitative real-time polymerase chain reaction (qRT-PCR)
TRIzol (Invitrogen; Thermo Fisher Scientific, Inc., Waltham, M, U.S.A.) was used for the extraction of total RNA
from cells. cDNA was synthesized using cDNA Synthesis Kit (TransGen Biotech, Inc., Beijing, China) according
to the manufacturer’s instruction. qRT-PCR was performed using the PowerUp SYBR Green Master Mix (Trans-
Gen Biotech, Inc., Beijing, China) according to the manufacturer’s instruction. The data were collected using an
ABI Prism 7500 Sequence Detection system (Applied Biosystems; Thermo Fisher Scientific, Inc). GAPDH was
used as normalization control for relative quantification in the qRT-PCR analysis. Relative quantitative analysis was
performed with the 2−��Ct method. The primer sequences were amplified using the following primers: Human
LINC00106 (F, GGTCACCTGAGATGGAGCAG; and R, CGTCTGTCTTACGGCACGAA), Human UBE2R2-AS1
(F, ACTCGTTCCACCCTTTGTGG; and R, TAGGACGCTGCAGTGAATCC), and Human GAPDH (F, GGAGC-
GAGATCCCTCCAAAAT; and R, GGCTGTTGTCATACTTCTCATGG).

siRNAknockdown
Cells were seeded in six-well plates at a density of 3.0 × 105/well. Lipofectamine 2000 Reagent (Invitrogen, Carls-
bad, CA, U.S.A.) was used for the transfection of predesigned human LINC00106/UBE2R2-AS1 siRNAs and the
siRNA negative control (GenePharma, Suzhou, China) into AGS cells. The primer sequences used were as fol-
lows: si-LINC00106 sequence, sense 5′-GGGAAGACUUCAGGCUUCATT-3′ and antisense 5′-UGAAGCCUGA
AGUCUUCCCTT-3′; and si-UBE2R2-AS1 sequence, sense 5′-GGAAGCUAUCAGUCUCCCUTT-3′ and antisense
5′-AGGGAGACUGAUAGCUUCCTT-3′. The nontargeting control siRNA was used as a negative control (si-NC).
All steps were performed following the manufacturer’s protocol.

Cell proliferation assays
Cell proliferation was determined using the Cell Counting Kit-8 (Sigma, St. Louis, MO, U.S.A.) based on the manu-
facturer’s instructions. During CCK-8 detection, 1 × 104 cells/well were inoculated in 96-well plates. After 72 h, 10 μl
of Cell Counting Kit solution was added to each well, and the plates were incubated at 37◦C for 4 h. The absorbance
values at 450 nm were then measured using a microplate reader (Thermo, U.S.A.). The experiments were repeated at
least three times.

Transwell migration assay
The treated AGS cells (2.0 × 105/ml) were added to the upper chambers of a Transwell (BD Biosciences, NY, U.S.A.).
FBS (10%) was added to the lower chambers. After incubation for 48 h, the nonmigrated cells were removed, and
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the migrated cells were stained with 0.1% Crystal Violet solution. The sections were visualized under an inverted
fluorescence microscope (magnification at ×100).

Preparation of data
Transcriptome and clinical data were obtained from The Cancer Genome Atlas (TCGA) (https://tcga-data.nci.nih.
gov/tcga/) database, and the expression microarray dataset GSE31811 was obtained from The Gene Expression Om-
nibus (GEO) (https://www.ncbi.nlm.nih.gov/geo) database.

Identification of DCS therapy-associated mRNAs-lncRNAs
Ninety up-regulated DCS-associated mRNAs were identified from GSE31811 (P value <0.01 and fold-change >

2.0). Sixteen differentially expressed mRNAs and 548 lncRNAs related to these mRNAs were obtained from TCGA
differential expression data (P value <0.001 and calculated Pearson correlation coefficient > 0.4).

Establishment of the DCS therapy-associated lncRNAs prognostic risk
model
A total of 370 patients with GC from TCGA were randomly divided at a 1:1 ratio into a training group and test group to
validate the DCS-related lncRNA signature. Univariate Cox regression analysis was performed to screen the prognos-
tic lncRNAs in the training group. A total of 25 prognostic lncRNAs were identified (Figure 2). The selected differen-
tially expressed prognostic lncRNAs were then identified as candidate lncRNAs for the model. A model incorporating
11 lncRNAs with optimal GC correlation and prognosis was constructed based on LASSO Cox regression. The prog-
nostic signature risk score was as follows: Risk Score = e sum (expression of each lncRNA × corresponding regression coefficient). The
details are shown in Figure 1.

Analysis of the clinicopathological characteristics associated with
survival
The significance of clinicopathological features and overall survival (OS) in the training and test groups was analyzed
by univariate and multivariate Cox regression analyses. A differential survival analysis of clinically relevant character-
istics in the high- and low-risk groups was performed. We performed receiver operating characteristic (ROC) analysis
and calculated the area under the curve (AUC) to assess the accuracy of the model. The consistency index (C-index)
was used to compare the predictive performance of the different models.

Nomogram
Nomograms were used to calculate the total scores and predict the 1-, 3-, and 5-year survival probabilities. Calibration
curves and DCA were used to compare net benefits with different predictions. Details of the methodology were
previously described [16–18]

Functional enrichment analysis
The annotated c2.cp.kegg.v7.2.symbols.gmt gene set in the ‘Molecular Signature Database’ in GSEA version 3.0
(http://software.broadinstitute.org/gsea/downloads.jsp) was selected [19]. Whole-transcriptome data from all tumor
samples were used for GSEA. The critical criteria are as follows: normalized enrichment score >1.0 and P<0.05.

Chemosensitivity prediction
We used the ‘pRRophetic’ software package in R software (4.1.0) to obtain IC50 values for common chemotherapeutic
and targeted drugs. The methods and strategies are derived from previous studies [20–22]. The Mann–Whitney U
test was used to compare the IC50 values between the two groups.

Different models and immune infiltration analysis
We used the restricted mean survival (RMS) package [23] to calculate the Concordance index (C-index) of different
prognostic signatures. In addition, the ssGSEA method of the R software Gene Set Variation Analysis (GSVA) package
[24] was used to analyze the infiltration level of different immune cells and immune functions in the high- and
low-risk groups.
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Figure 2. The risk scores analysis of the prognostic signature model in the training group and test group

(A) The distributions of risk score and OS status in the training group. (B) The distributions of risk score and OS status in the

test group. (C) The distribution of the risk scores in the training group. (D) The distribution of the risk scores in the test group. (E)

Prognostic signature signal heatmaps in the training group. (F) Prognostic signature signal heatmaps in the test group.

Common transcription factor prediction
The 11 lncRNAs and promoter regions of Homo sapiens were analyzed with the NCBI gene browser (https://www.
ncbi.nlm.nih.gov/gene/) [25]. The potential transcription factors that bound to the promoter region were then pre-
dicted using PROMO 3.0 (http://alggen.lsi.upc.es/cgi-bin/promo v3/promo/promoinit.cgi?dirDB=TF 8.3) [26].

Statistical analysis
R statistical software 4.1.0 and GraphPad Prism 8.0 were used for all statistical analyses. The Mann–Whitney U test
and Spearman correlation were used to analyze the correlations between the high- and low-risk groups. P values
for the differences between two groups were calculated by Student’s t-test (two tailed). A P value less than 0.05 was
considered to indicate statistical significance.

Results
Identification of prognostic DCS therapy-associated mRNAs-lncRNAs in
GC
Of the patients in the GSE31811 dataset, 13 and 8 patients were identified as DCS-sensitive and DCS-resistant pa-
tients, respectively. Sixteen differentially expressed mRNAs and 548 differentially expressed mRNAs-lncRNAs were
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obtained from GEO data and TCGA data (Figure 1). Further univariate Cox analysis was performed, and 25 lncRNAs
associated with DCS were preliminarily screened and found to be significantly related to the OS of patients with GC
(Supplementary Figure S1a). The details are shown in Supplementary Table S1 and Supplementary File S1.

Construction a DCS therapy-associated lncRNA prognostic signature
A total of 370 patients with GC from TCGA were enrolled in 1 of 2 cohorts (training group [n=186] and test group
[n=184]). Eleven lncRNAs were identified and used for model construction: LINC02532, AC007277.1, AC005324.4,
AL512506.1, AC068790.7, AC022509.2, AC113139.1, LINC00106, AC005165.1, MIR100HG, and UBE2R2-AS1 (Sup-
plementary Figure S1c).

Relationship between prognostic model risk score and
clinicopathological features
A risk score dot plot was constructed, and the results for both the training and test groups indicated that the high-risk
group was characterized by more deaths (Figure 2A–D). The expression of 11 DCS therapy-related lncRNAs (Figure
2E,F) is shown in the heatmap. A Kaplan–Meier (K-M) survival curve analysis was conducted to assess OS in GC
patients. We found significantly lower OS rates in the high-risk group (P<0.001 and P<0.003; Figure 3A,B). We also
performed ROC curve analysis to assess the prognostic model at 1, 2, and 3 years. The AUC values of the training
group were 0.776 for 1 year, 0.775 for 2 years, and 0.770 for 3 years, and those of the test group were 0.714 for 1 year,
0.641 for 2 years, and 0.697 for 3 years (Figure 3C,D).

Clinical prognostic value of the DCS therapy-associated lncRNA signature
The Univariate Cox regression analysis indicated that the risk score was significantly associated with OS in both the
training group (HR = 1.599, 95% CI: 1.378–1.855, P<0.001) and the test group (HR = 1.165, 95% CI: 1.038–1.307,
P=0.008) (Figure 4A,C). The multivariate Cox regression analysis results revealed that the signature risk score re-
mained a significant independent predictor of OS (training group: HR = 1.499, 95% CI: 1.265–1.749, P<0.001;
test group: HR 1.159, 95% CI: 1.033–1.301, P=0.012; Figure 4B,D). The ROC curve analysis indicated that the
DCS-related lncRNA signature prediction attained AUC values of 0.776 (training group) and 0.714 (test group). The
AUC value of the signature was greater than that of other clinical prognostic factors (Figure 4E,F). Furthermore, a
K-M survival analysis was performed for each subgroup isolated based on clinicopathological features, including age,
sex, N stage, M stage, and clinical grade and stage (Figure 5A–L). The results showed that the high-risk group had
a significantly worse OS than the low-risk group, as revealed after stratification by age, sex, N stage, M stage, and
clinical grade and stage.

Prognostic nomogram
In the present study, a nomogram based on clinicopathological features and the 11 DCS treatment-related lncRNA
prognostic signature was used to evaluate the clinical utility of the model (Figure 6A). Higher risk scores denote
worse performance. The DCA results (Figure 6B) indicated that these nomogram predictions agreed well with clin-
ical applicability for predicting the prognosis of patients with GC treated with DCS. Finally, calibration curves were
constructed to evaluate the agreement between the actual observed OS rate and the OS rate predicted by the nomo-
gram. The results showed that the predicted probability of OS at 1, 3, and 5 years was relatively good (Figure 6C–E).

Kyoto Encyclopedia of Genes and Genomes enrichment analysis
To further analyze the differences in biological functions between the high- and low-risk groups, a Kyoto Encyclopedia
of Genes and Genomes pathway enrichment analysis was conducted. The top 10 enrichment pathways in the high-
and low-risk groups are listed in Supplementary Figure S2, and detailed parameters are provided in Supplementary
Table S3.

Responses to chemotherapy and immune infiltration
The pRRophetic algorithm was subsequently used to predict the IC50 values of the different chemotherapeu-
tic agents tested in the present study, including cisplatin, paclitaxel, vinblastine, dimethyloxalylglycine (DMOG),
5-aminoimidazole-4-carboxamide riboside (AICAR), all-trans retinoic acid (ATRA), axitinib, pazopanib, and ima-
tinib (Supplementary Figure S3). Significant differences in sensitivity to nine chemotherapy drugs were found be-
tween the high- and low-risk groups (Supplementary Figure S3c and S3i). More interestingly, the analysis of immune
infiltration results found that neutrophils, mast cells, and Treg cells had significantly higher immune cell scores in
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Figure 3. K-M survival and ROC curve analysis

(A) Survival curve of the patients classified in high- and low-risk training group. (B) Survival curve of the patients classified in high-

and low-risk test group. (C) AUC of time-dependent ROC curves verified the prognostic accuracy of risk scores in the training

group. (D) AUC of time-dependent ROC curve verified the prognostic accuracy of the risk score in the test group.

the high-risk group than in the low-risk group (Figure 7A–C). In addition, the immune function scores of APC coin-
hibition, Check point, and T-cell coinhibition obtained for the high-risk group were significantly higher than those
found for the low-risk group (Figure 7D–F).

Comparison of five prognostic risk models
To compare the predictive performance of our 11 lncRNA markers with other models, we selected four other reported
risk models: 5 gene markers [27], 5 gene markers [28], 12 LncRNA markers [29], and 6 LncRNA markers [30]. Notably,
a comparison of the predicted values of the AUC models from 1 to 3 years revealed that our DDP model had the
highest predicted value (Figure 8A–E). In addition, our model had the highest C-index with 0.685 (Figure 8F).
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Figure 4. K-M survival and ROC curve analysis

(A) Univariate cox regression analysis results of OS in training group. (B) Univariate cox regression analysis results of OS in test

group. (C) Multivariate cox regression analysis results of OS in training group. (D) Multivariate cox regression analysis results of OS

in test group. (E) The AUC of ROC curve was used to compare the prognostic accuracy of risk scores and related clinical factors

in the training group. (F) The AUC of ROC curve was used to compare the prognostic accuracy of risk scores and related clinical

factors in the test group.
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Figure 5. K-M survival curves were analyzed for clinical prognostic factors

(A) Age >65 years and (B) ≤65 years. (C) Women and (D) men. (E) G1+G2 and (F) G3. (G) Stage I+II and (H) Stage III+IV. (I) N1 and

(J) N2. (K) M0 and (L) M1

Common transcription factors
We predicted a total of 20 common transcription factors on the promoters of the 11 lncRNAs by bioinformatics
methods. Among these common transcription factors, the transcription factor interferon regulatory factor-1 (IRF-1)
can reverse chemoresistance by down-regulating the expression of P-glycoprotein in GC [31]. Abacavir induces the
transcriptional activity of the transcription factor Yin Yang 1 (YY1) in GC cells [32]. Furthermore, drugs capable
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Figure 6. Prognostic nomogram with patients with GC

(A) Nomogram of the prognostic model. (B) Decision curve analysis of the 1- (C), 3- (D), and 5-year. (E) The accuracy of assessing

the prediction nomogram.

of inhibiting YY1-mediated transcription have been identified as suitable targeted therapeutic candidates for gastric
tumors [33]. The expression of miR-100 induced by the transcription factor CCAAT/enhancer-binding protein beta
(C/EBPα) suppresses tumor metastasis and growth by targeting ZBTB7A in GC [34]. In addition, C/EBPβ regulates
homeostatic and oncogenic gastric cell proliferation [35]. These findings confirm that these transcription factors play
an important role in the progression of GC. These transcription factors are provided in Supplementary File S2.

Validation of the expression of LINC00106 and UBE2R2-AS1 in AGS and
AGS/DDP cells
We assess the expression levels of the LINC00106 and UBE2R2-AS1 lncRNAs in GC cell lines by qRT-PCR. As shown
in ( Figure 9A,B), the expression of LINC00106 and UBE2R2-AS1 was decreased in AGS/DDP cells. Their expres-
sion levels were also lower in the high-risk group (Figure 9C,D). The expression results were consistent with the
bioinformatics analysis (Supplementary Figure S3a).

Effects of LINC00106 and UBE2R2-AS1 on GC cell proliferation and
migration
To understand the biological functions of LINC00106 and UBE2R2-AS1 in GC, we explored the effect of knocking
down the expression of LINC00106 and UBE2R2-AS1 on the biological behavior of AGS GC cells. The CCK-8 exper-
iment showed that the cell viability of AGS in the si-LINC00106 and si-UBE2R2-AS1 groups was significantly higher
than that in the si-NC group (Figure 10A,B), and the migration ability of the cells in both groups was also significantly
enhanced (Figure 10C,D). These results indicate that knockdown of LINC00106 or UBE2R2-AS1 can significantly
enhance the proliferation and migration of AGS GC cells.

10 © 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 7. Using the ssGSEA method to analyze the infiltration level of different immune cells and function between high-

and low-risk group

(A–C) Boxplot showed the different proportions of immune-infiltrating cells between high- and low-risk group. (D–F) Boxplot showed

the different proportions of immune-infiltrating function between high- and low-risk group; *P<0.05; **P<0.01; ***P<0.001.

Discussion
The DCS combination comprises chemotherapy drugs commonly used for patients with GC, and an increasing num-
ber of clinical studies have investigated these agents [36–38]. Thus, it is becoming more important to explore the
mechanism of DCS chemotherapy resistance in patients with GC Therefore, identifying prognostic biomarkers for
DCS chemotherapy resistance has become a focus of research.

Although many independent studies have investigated single lncRNAs in chemotherapeutic resistance [39–42],
studies on the effect and function of lncRNAs in predicting chemotherapeutic resistance, particularly studies on prog-
nostic models using DCS therapy-related lncRNAs, remain lacking. In the present study, the chip dataset GSE31811
for DCS-treated GC was mined using the GEO database. Data from samples of patients with chemotherapeutic
drug treatment-resistant and treatment-susceptible GC were analyzed. A lncRNA risk score model predicting the
chemotherapeutic resistance to DCS and prognosis in patients with GC was established.

A total of 548 lncRNAs related to these mRNAs were obtained from the TCGA expression database (Figure 1).
Then, 25 differentially correlated lncRNAs were selected by univariate Cox analysis of the training group (Supple-
mentary Figure S1). An 11 DCS therapy-related lncRNA prognostic model was constructed via LASSO regression
analysis (Figure 2). The accuracy of the model was then confirmed with the training group and test group. The prog-
nostic efficacy of the model for the OS status of patients with GC was evaluated (P<0.001 and P<0.003; Figure 3A,B).
The AUC values of the training group were 0.776 for 1 year, 0.775 for 2 years, and 0.770 for 3 years, and the AUC
values of the test group were 0.714 for 1 year, 0.641 for 2 years, and 0.697 for 3 years (Figure 3C,D). Furthermore, the
AUC value of the signature was greater than that of other clinical prognostic factors (Figure 4E,F). To further eval-
uate the value of this prognostic model for DCS treatment in the clinical application of various clinicopathological
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Figure 8. Comparison of prognostic risk models

(A–E) ROC curves of our DDP signature and four other published signatures. (F) Comparison of Concordance index (C-index) of

the five prognostic risk models.

features, a K-M survival analysis was performed for each subgroup isolated according to clinicopathological features.
The results indicated that the OS rates of age, sex, N stage, M stage, clinical grades, and stages in the high-risk group
showed poorer survival than those in the low-risk group (Figure 5). In the present study, the patients with higher risk
scores based on the nomogram had worse performance (Figure 6). Using the nomogram, risk prediction could be

12 © 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 9. Validation the expression of lncRNAs

(A) LINC00106, (B) UBE2R2-AS1 in AGS and AGS/DDP cells. (C) LINC00106, (D) UBE2R2-AS1 in high-risk group and low-risk

group. **P<0.01; ***P<0.001.

more tailored to patients. The results herein showed that we built a risk score model based on an 11-lncRNA signature
that had a powerful ability to predict the survival of patients with GC.

A KEGG enrichment analysis in the high- and low-risk groups showed that multiple signalling pathways, including
hypertrophic cardiomyopathy, dilated cardiomyopathy, focal adhesion, extracellular matrix receptor interaction, and
vascular smooth muscle contraction, might be involved. Several signaling pathways are closely associated with the
occurrence and development of tumors [43–45]. However, the clear mechanism remains unclear and is one focus of
our future efforts. Furthermore, we further analysed the correlation between prognostic characteristics and several
major current chemotherapy agents. We calculated the IC50 values of nine chemotherapy drugs and targeted drugs
(cisplatin, paclitaxel, vinblastine, DMOG, AICAR, ATRA, axitinib, pazopanib, and imatinib), and the results showed
that the IC50 values of cytotoxic chemotherapy drugs and targeted drugs were higher in the low-risk group. These
results further highlight the key role of this model in estimating the patient response to chemotherapy drugs (Supple-
mentary Figure S3). In terms of immune infiltration, both immune cells and immune function related indexes had
higher immune scores in the high-risk group than in the low-risk group (Figure 7). Interestingly, neutrophils [46],
mast cells [47], and Treg cells [48] have been shown to promote the progression of GC. In addition, APC coinhibition
[49], Check point [50], and T-cell coinhibition [51] are also important for the progression of GC. These results were
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Figure 10. The effects of LINC00106 and UBE2R2-AS1 on GC AGS cells proliferation and migration

(A,B) Effect of si-LINC00106 and si-UBE2R2-AS1 transfection on proliferation of AGS cells. (C–H) Effect of si-LINC00106 and

si-UBE2R2-AS1 transfection on migration of AGS cells.

in accordance with our finding. Taken together, our finding show that this model can well predict the chemotherapy
drug response and immune infiltration in patients with GC.

In addition, we found that multiple studies have confirmed that the common transcription factors of these lncRNAs
play an important role in the progression of GC. This finding further indicates that these lncRNAs may play a key role
in GC. Among the 11 lncRNAs included in the model, UBE2R2-AS1 was confirmed to have an oncogenic function
in hepatocellular carcinoma [52]. LINC00106 is indicated to promote stemness and metastasis in hepatocellular car-
cinoma cells [53]. In addition, we found lower expression levels of UBE2R2-AS1 and LINC00106 in AGS/DDP cell
lines and high-risk groups (Figure 9). These results indicate that the group with lower LINC00106 and UBE2R2-AS1
expression levels exhibited worse drug resistance and worse prognosis. More importantly, our DDP model exhibited
a higher C-index and predictive value than the other two gene models and two lncRNA models (Figure 8). Therefore,
these results show further evidence of accuracy and advantages of our model. To further verify the molecular mech-
anisms involving LINC00106 and UBE2R2-AS1, we conducted functional experiments with AGS cells. The in vitro
results showed that the down-regulation of LINC00106 and UBE2R2-AS1 markedly enhanced the proliferation and
migration of AGS GC cells (Figure 10).

14 © 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
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Conclusion
Our studies have uncovered a new DCS therapy-related lncRNA signature that could accurately predict outcomes for
patients with GC. More importantly, the knockdown of LINC00106 or UBE2R2-AS1 can significantly enhance the
proliferation and migration of GC AGS cells.
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