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ABSTRACT

Circular permutation (CP) is a protein structural
rearrangement phenomenon, through which nature
allows structural homologs to have different loca-
tions of termini and thus varied activities, stabilities
and functional properties. It can be applied in many
fields of protein research and bioengineering.
The limitation of applying CP lies in its technical
complexity, high cost and uncertainty of the viability
of the resulting protein variants. Not every position
in a protein can be used to create a viable circular
permutant, but there is still a lack of practical
computational tools for evaluating the positional
feasibility of CP before costly experiments are
carried out. We have previously designed a compre-
hensive method for predicting viable CP cleavage
sites in proteins. In this work, we implement that
method into an efficient and user-friendly web
server named CPred (CP site predictor), which is
supposed to be helpful to promote fundamental
researches and biotechnological applications of
CP. The CPred is accessible at http://sarst.life
.nthu.edu.tw/CPred.

INTRODUCTION

The protein structural rearrangement phenomenon
termed circular permutation (CP) can be viewed as if the
amino- and carboxyl-termini of a protein were relocated
along the circularized sequence of the protein. Although
the mechanisms underlying natural CP cases are not fully
understood (1–5), many CPs have been observed in
well-known protein families [see (6) for summaries of
proposed mechanisms for CP and natural CP cases].

To study CP, many artificial circular permutants have
been generated. The outcomes of these previous studies
have indicated that as long as the CP site, i.e. the
position for creating new termini, is not at a residue
essential for protein folding or function, circular
permutants usually retain native structures and biological
functions (1,3,7–9), although the structural stabilities,
folding mechanisms and enzymatic activities might be
changed (10–15). These discoveries have made CP a new
mutagenesis method for studying protein structure and
function (16–18) and a bioengineering technique to
modify the stability, solubility and activities of proteins
(13,19–21). Moreover, the CP technique allows two
proteins to be covalently linked at positions other than
their native termini, facilitating the creation of several
useful protein switches, molecular biosensors and fusion
proteins (22–24). Despite these interesting applications,
the implementation of CP is much more difficult, expen-
sive and time-consuming compared with traditional muta-
genesis. Most importantly, not all positions in a protein
structure are permissible for CP. However, since practical
software for predicting viable CP sites (i.e. positions
leading to correctly folded and stable permutants) is still
unavailable, researchers interested in CP-based protein
engineering may rely on uneconomic trial-and-error for
finding appropriate CP sites. To facilitate fundamental
researches based on CP and biotech applications of the
CP-based mutagenesis, we aim to develop an effective
web-based tool for predicting viable CP site in this work.

CPs tend to occur at positions with high solvent acces-
sibility (25), low sequence conservation and low ‘closeness’
(26), a structure-derived residue feature describing the
amount of residues with which a given residue may
interact directly or indirectly (27). However, predicting
viable CP sites based on these properties yielded only
marginal performance; the area under the receiver
operating characteristic curve (AUC) values were all
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�0.7 (26). The major difficulty in developing CP viability
predictors was the insufficiency of data, particularly the
data of inviable CP sites (i.e. negative cases). In fact, the
aforementioned predictors were developed and assessed
with a data set composed of only one protein—dihydro-
folate reductase (DHFR)—the entire 159-residued
polypeptide of which had been subjected to systematic
CPs (25). Although large data sets of CP-related protein
structural homologs, such as the CP Database (CPDB)
(28) and the database of GANGSTA+ Internet Services
(GIS) (29), have been available since 2009, there is still
a lack of negative cases. This is because most wet-lab
researches only reported viable CP sites and bioinfor-
matics CP-detecting methods could only identify existent
(meaning viable) circular permutants. The DHFR data
set contained only 73 negative cases, far from enough
for developing reliable predictors.

Recently, we have established several highly different
data sets for developing viable CP site prediction
methods (30). Among them, nrCPDB-40 and nrGIS-40
contained thousands of proteins with machine-identified
viable CP sites, whereas Data set T consisted of six
proteins other than DHFR with both experimentally
verified viable and inviable CP sites, expanding the
number of negative cases by 2.4-fold (30). Based on
these data sets, the sequence and structural preferences
of CP were extensively examined (30). The identified pref-
erences were quantified into numerous features to develop
a CP viability prediction method that combined four
machine learning algorithms: artificial neural networks,
the support vector machine, a random forest and a
hierarchical feature integration procedure (30). As
trained with Data set T, this method achieved an AUC
of 0.91 for the DHFR data set and a large-scale prediction
sensitivity of �0.72 for either nrCPDB-40 or nrGIS-40.
However, this effective CP site prediction method is not
efficient. Due to heavy computational loads caused by
several structural features and the time-consuming data
flow through numerous prediction models, it took
minutes to deal with one protein.

In our present work, we have implemented the
developed CP viability prediction method into a user-
friendly and quick response web server named CPred.
Distributed computation techniques are used to accelerate
the whole procedure, which now takes only seconds to
make predictions. CPred is currently the most accurate
method and is the only web server for predicting viable
CP sites. We hope that it can be a good assistant for
scientists and bioengineers to study and apply CP.

MATERIALS AND METHODS

The flowchart of CPred is illustrated in Figure 1a. After
receiving the query protein structure from the input
module, the main program distributes to several proces-
sors the computation tasks of feature values, which are
collected again by the main program. The main program
then creates four threads running different machine
learning predictors, the results of which are integrated
and processed by the main program and are finally

delivered to the output interface. If the protein structure
is input by specifying a PDB [Protein Data Bank (31)] or
a Structural Classification of Proteins (32) entry identifier,
the calculated feature values and final results will be
cached to ensure a quick response once the same protein
is queried again in the future.

Experimental data sets

Literature-derived data sets: Data set T and the DHFR
data set
Information of inviable CP sites is rare, and it is extremely
difficult to find a protein with both experimentally verified
viable and inviable CP sites. Before our previous work
(30), DHFR was the only data set for training and
evaluating CP site predictors. By screening the literature,
we had additionally collected six such proteins and estab-
lished Data set T. Collectively, Data set T (76 viable and
100 inviable CP sites) and the DHFR data set (86 viable
and 73 inviable CP sites) are the largest CP site data set
currently available with both viable and inviable sites.
Data set T and the DHFR data set shared very low
sequence identities (<9%); the former was used to train
and test our prediction system and the latter was used as
an independent evaluation data set. These data sets are
available in (30).

Database-extracted data sets: nrCPDB-40 and nrGIS-40
CPDB (28) and GIS (29) are the largest protein structural
databases providing information about CP-related
structural homologs. Previously, we had reduced these
databases to 40% sequence identity non-redundant
subsets, nrCPDB-40 and nrGIS-40 (30). Any protein in
these two data sets that shared sequence identities >40%
with any protein in the Data set T or DHFR were further
eliminated. Finally, the nrCPDB-40 and nrGIS-40 data
sets contained 1059 and 2814 proteins, respectively, and
any two data sets among nrCPDB-40, nrGIS-40, Data set
T and the DHFR data set shared <40% sequence
identities [see (30) for details].

Non-redundant data set of CP site: nrCPsitecpdb-40
All CP sites of the proteins in nrCPDB-40 had been
extracted (30). Each CP site was represented by a
20-residued segment. These 20-residued CP site represen-
tative segments were reduced to a 40% sequence identity
non-redundant subset named nrCPsitecpdb-40 (1087 CP
sites). Note that a protein may possess more than one
viable CP site, and thus the number of non-redundant
CP sites (1087) in the nrCPsitecpdb-40 data set is larger
than the number of proteins (1059) in the nrCPDB-40
data set. The aforementioned data sets had been released
as a part of the supporting data of (30).

Computation of feature values

The CPred system extracts 46 features from an input PDB
file (see Supplementary Table S1). Based on a statistical
significance test known as the permutation test (33), we
had previously examined the sequence and secondary
structural propensities of CP by comparing the compos-
itions of single-, oligo- and coupled-residue patterns of
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amino acid sequence and several secondary structural
strings between the CP site segments of nrCPsitecpdb-40
and the whole protein sequences of nrCPDB-40 (30).
A secondary structural string, for instance, a
Ramachandran structural string (34), is a text description
of the secondary structure or backbone conformation
of a protein. In CPred, these propensities are quantified
by using the propensity scoring algorithm proposed in
(30). Before CPred extracts tertiary structural features,
the reduce program (35) is used to restore hydrogen

atoms to the PDB file. Structure-derived residue
measures and properties, e.g. the closeness (26), relative
solvent accessibility, centroid distance measure (36),
weighted contact number (37), farness (30) and the
Gaussian Network Model-derived mean-square fluctu-
ation (38–40), are then computed. All the obtained pro-
pensity scores and residue measures are standardized
based on the conventional Z-score method (30) into real
number features suitable for applying machine learning
methods.

Figure 1. The flowchart and output of CPred. (a) CPred is a viable circular permutation cleavage site prediction web server, which is working based
on distributed computation techniques. After receiving the query protein data, the main program of CPred will extract feature values, execute
machine learning subroutines, integrate the prediction results and deliver the final results to the output interface. The computation loads of many
steps are distributed to several processors, as indicated by the radical arrow lines. Some structural features and machine learning methods require
much more computation power than others; subroutines responsible for them, as represented by multicelled boxes, are designed by applying
distributed techniques as well. (b) The output interface of CPred provides a list (lower right) and a graphic profile (lower left) of the probability
scores of all residues in the input protein. The structure, along with predicted viable CP sites, is presented by an interactive Jmol (33) object (upper
left), which allows the user to change the display mode (cartoon, spacefilled, etc.) and to rotate, resize and dissect the structure. A downloadable text
version of the CPred results is provided as well (upper right). The structures shown in panel (a) and (b) were respectively rendered using PyMol (45)
and Jmol (33).
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Application of machine learning methods

Four machine learning methods are applied in the CPred
system: (i) a three-layered and back propagation-based
(41,42) artificial neural network; (ii) a support vector
machine established with the LIBSVM (43); (iii) a
random forest of 500 decision trees generated by the
C4.5 package (44); and (iv) a hierarchical feature integra-
tion procedure, in which features are hierarchically
classified into a rooted tree that directs how the feature
values are integrated into a single value (30). To efficiently
integrate the prediction results from these methods, the
output of every method for each residue has been
designed to be a real number score between 0 and 1 [see
(30) for algorithms]. Because of the range of value of these
scores and their being conceptually in direct proportion to
the chance that a case is a positive case, we have termed
them ‘probability scores’ for convenience (30). Since these
scores have the same range of values, to integrate the
prediction power of various methods, we simply average
their probability scores into an integrated score, based on
which predictions are made. The feasibilities of these in-
dividual and integrated methods for predicting viable CP
sites had been well established in (30), where the detailed
algorithms, parameter settings and performance data are
available. In the current work, a major problem in
applying these methods lies in the fact that the data flow
through the 500 decision trees of the random forest is very
time-consuming. To solve this problem, as illustrated in
Figure 1a, distributed computation techniques are used.

PERFORMANCE

Evaluations of the prediction system with cross-validation
techniques and independent data sets

Before our work, the best viable CP site prediction method
was developed based on the closeness measure, which
achieved an AUC of 0.7 on the DHFR data set (26) and
sensitivity values of 0.62 and 0.61 on the nrCPDB-40 and
nrGIS-40 data sets, respectively (30). In our previous
study (30), in which the core method of the current
CPred system was developed, Data set T was used to
establish the prediction model and the 10-fold cross-
validated AUC, sensitivity, specificity and Matthews
correlation coefficient values for this training data set
were 0.91, 0.86, 0.79 and 0.63, respectively. Evaluating
the established model with the independent data set
DHFR, the aforementioned four performance measures
were 0.91, 0.71, 0.92 and 0.64, respectively. A large-scale
prediction test on this system registered sensitivity values
0.75 and 0.72 for nrCPDB-40 and nrGIS-40, respectively
[refer to (30) for details]. These data indicated that the
core method of CPred outperformed previous methods
with little data set dependence or overfitting. Since the
CPred server is running the same core programs, its
performance measures assessed with these data sets are
the same with the values listed earlier in the text. In the
actual CPred web server, the prediction model is trained
with a combined data set of Data set T and DHFR.
Evaluations made based on this combined data set with

10-fold cross-validation and based on independent data
sets nrCPDB-40 and nrGIS-40 show that accuracy of
the actual server is improved as the amount of training
data has increased (Table 1).

Evaluations of the developed probability score with
information retrieval techniques

To help users interpret the results obtained with CPred,
here we examine the average precisions of predictions at
various decision thresholds of the probability score by
performing 10-fold cross-validated information retrieval
experiments. Table 2 demonstrates that a high threshold
of probability score would retrieve fewer residues (i.e. a
lower recall rate) but obtain a higher proportion of correct
positive predictions (i.e. a higher precision) than a low
threshold would. In the combined data set of Data set T
and DHFR, any residue with a probability score
�0.85 was an actual CP site (precision=1). Since 82%
of the residues predicted as viable CP sites (i.e. probability
scores �0.5) were actual CP sites, this system is quite
reliable. Experimenters expecting a high certainty about
the viability of the created permutants may choose
residues with probability scores �0.85 to apply CP; at
this threshold, only 16% of all residues in a protein will
be predicted as viable CP sites (i.e. the predicted positive
fraction=0.16).

Table 2. Performance of CPred at various decision thresholds of the

probability score

Probability score PPFa Recall Precision

�0.90 0.06 0.13 1.00
�0.85 0.16 0.33 1.00
�0.80 0.26 0.52 0.99
�0.75 0.33 0.66 0.96
�0.70 0.39 0.74 0.92
�0.65 0.43 0.81 0.92
�0.60 0.49 0.88 0.87
�0.50 0.54 0.92 0.82
�0.40 0.61 0.97 0.77
�0.30 0.69 1.00 0.70
�0.20 0.78 1.00 0.62
�0.10 0.90 1.00 0.54
�0.00 1.00 1.00 0.48

aPPF: predicted positive fraction, meaning the proportion of residues
predicted as viable CP sites among all residues in the data set.

Table 1. Performance of CP viability prediction of CPred

Data set Performance measure Closeness CPred

Training set
(Data set T+DHFR
data set)a

AUC 0.753 0.940
Sensitivity 0.741 0.889
Specificity 0.687 0.898
Matthews correlation

coefficient
0.428 0.787

nrCPDB-40 Sensitivity 0.622 0.746
nrGIS-40 Sensitivity 0.614 0.719

aThese results were obtained with 10-fold cross-validation.
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Speed evaluations

Since some structural features used by CPred such as the
closeness (26) and the weighted contact number (37) have
a high time complexity in computation and the random
forest of CPred possesses many subpredictors, reducing
the running time is an important task for developing a
quick response server. By applying distributed computa-
tion techniques, the computation loads of several
time-consuming steps are shared by many processors,
greatly enhancing the efficiency of the server. As listed
in Supplementary Figure S2, CPred takes only �3.4 s to
make predictions for a protein with 150–200 residues; even
for proteins as large as 600 residues, the average running
time is <22 s. Without distributed computation, the
running time for proteins with 150–200 and approxi-
mately 600 residues is, respectively, around 48.8 and
513.6 s. These assessments were performed on the actual
CPred server machine, which is a Linux computer with
two 3.33GHz octa-core Intel Xeon CPUs and 128 GB
RAM.

WEB SERVER DESCRIPTION

The query interface of CPred accepts three types of input,
inclusive of a PDB entry, a Structural Classification of
Proteins entry or a PDB file. After the user submits the
query data, a notification page will appear to show the
status of computation and provide an URL through
which the results can be retrieved at a later time if the
user decides not to wait. The outputs of CPred include a
list of probability scores for all residues of the input
protein and an interactive Jmol (33) graphical display of
the protein structure that demonstrates the predicted CP
sites (Figure 1b). The list of results can be reordered
according to the residue number, amino acid type or the
probability score.

APPLICATIONS AND FUTURE WORKS

CPred is a user-friendly web server for predicting possible
cleavage sites for creating correctly folded and stable
circular permutants of proteins. It provides a convenient
probability score to help the user select suitable CP cutting
sites. An interesting application of CP is to create
fusion proteins with tethered sites different from the
native termini (22–24). To our knowledge, for every
CP-involved fusion protein that has been created, CP
was introduced into just one of the fused polypeptides.
This is perhaps because of the difficulty in generating
two viable circular permutants at the same time. The
convenient probability score of CPred may potentiate
the production of fusion circular permutants. CP has
long been applied to study protein folding. The ability
of CPred to predict CP sites implies that it can be used
in reverse to predict residues important to folding.
Improving protein function is also a useful application
of CP. Since residues with low probability scores are
unlikely to form viable—not to mention functionally
improved—permutants, CPred holds promise for bio-
engineering by screening out improbable cases.

To improve CPred, additional data will be continually
collected for training the prediction model. The current
CPred server requires protein structures for making
predictions. However, there are so many proteins
without determined structures. We supposed that a
sequence-based viable CP site predictor will further
facilitate the application of CP.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Table 1, Supplementary Figure 2 and
Supplementary References [34,46–50].
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