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It is a general assumption in deep learning that more training data leads to better

performance, and that models will learn to generalize well across heterogeneous

input data as long as that variety is represented in the training set. Segmentation of

brain tumors is a well-investigated topic in medical image computing, owing primarily

to the availability of a large publicly-available dataset arising from the long-running

yearly Multimodal Brain Tumor Segmentation (BraTS) challenge. Research efforts and

publications addressing this dataset focus predominantly on technical improvements of

model architectures and less on properties of the underlying data. Using the dataset and

the method ranked third in the BraTS 2018 challenge, we performed experiments to

examine the impact of tumor type on segmentation performance. We propose to stratify

the training dataset into high-grade glioma (HGG) and low-grade glioma (LGG) subjects

and train two separate models. Although we observed only minor gains in overall mean

dice scores by this stratification, examining case-wise rankings of individual subjects

revealed statistically significant improvements. Compared to a baseline model trained on

both HGG and LGG cases, two separately trained models led to better performance

in 64.9% of cases (p < 0.0001) for the tumor core. An analysis of subjects which did

not profit from stratified training revealed that cases were missegmented which had

poor image quality, or which presented clinically particularly challenging cases (e.g.,

underrepresented subtypes such as IDH1-mutant tumors), underlining the importance

of such latent variables in the context of tumor segmentation. In summary, we found

that segmentation models trained on the BraTS 2018 dataset, stratified according to

tumor type, lead to a significant increase in segmentation performance. Furthermore, we

demonstrated that this gain in segmentation performance is evident in the case-wise

ranking of individual subjects but not in summary statistics. We conclude that it may
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be useful to consider the segmentation of brain tumors of different types or grades as

separate tasks, rather than developing one tool to segment them all. Consequently,

making this information available for the test data should be considered, potentially

leading to a more clinically relevant BraTS competition.

Keywords: magnetic resonance imaging, brain tumors, automatic segmentation, deep learning, training strategy,

data stratification

1. INTRODUCTION

Gliomas are primary brain tumors which arise from glial
cells. According to the World Health Organization (WHO)
classification of tumors of the central nervous system
(CNS) (Louis et al., 2016), they can be grouped into different
tumor grades based on the underlying histology and molecular
characteristics. Increasing tumor grade indicates the increasing
malignancy of the tumor. Glioma are managed depending
on grade, with treatment strategies ranging from tumor
resection followed by combined radio- and chemotherapy to
a “watch and wait” approach (Stupp et al., 2005; Grier, 2006).
Glioblastoma are the most aggressive type of glioma (WHO
grade IV) and make up 45% of all gliomas (Ostrom et al.,
2014). The prime imaging technique in brain tumor diagnostics
is Magnetic Resonance Imaging (MRI) (Essig et al., 2012).
Standard acquisition protocols used to perform initial diagnosis
and treatment monitoring include T1-weighted, T1-weighted
gadolinium-enhanced, T2-weighted, and T2-weighted with
fluid attenuated inversion recovery (FLAIR) sequences (Wen
et al., 2010; Ellingson et al., 2015). The typical radiological
appearance of a glioblastoma features a disrupted blood-brain
barrier causing ring-enhancing lesions with central necrosis and
peritumoral edema. In contrast, low-grade astrocytic tumors
exhibit typically no contrast enhancement and are missing
central necrosis (Pierallini et al., 1997).

In the case of glioblastoma, recent studies led to the discovery
of a profound genetic heterogeneity among, and even within,
tumors (Verhaak et al., 2010; Sottoriva et al., 2013). It has been
shown that the underlying genetic and molecular heterogeneity
can be associated with variations in imaging phenotype such
as changes in tumor compartment volumes (Lai et al., 2013;
Grossmann et al., 2016), contrast enhancement (Carrillo et al.,
2012; Treiber et al., 2018), radiomic signatures (Gevaert et al.,
2014), and tumor location (Carrillo et al., 2012; Ellingson et al.,
2012). The imaging appearance of glioblastoma can further be
altered by treatment causing radiation necrosis (Mullins et al.,
2005) and pseudoprogression and -response (Hygino da Cruz
et al., 2011), respectively. As a consequence, a machine learning
segmentation algorithm needs to be capable of generalizing
across this heterogeneity of glioblastoma imaging phenotypes.

Brain tumor segmentation is a well-investigated topic with a
vast amount of available methods and yearly organized MICCAI
Brain Tumor Segmentation (BraTS) Challenges since the year
2012 (Menze et al., 2015; Bakas et al., 2017c), serving as a
public platform for algorithm comparison. With the rise of
deep learning, brain tumor segmentation methods experienced
significant gains in performance (Bakas et al., 2018). One of the

central promises of deep learning methods is that they can be
fed with raw data and are capable of automatically uncovering
the underlying representation relevant for the task at hand
(e.g., segmentation) from that data (LeCun et al., 2015). As
a consequence, the time-consuming and error-prone manual
engineering of features traditionally used in machine learning
has been rendered obsolete. Recently, it was shown for vision
tasks that model performance increases logarithmically based
on volume of training data (Sun et al., 2017). This aligns with
the general notion that more training data leads to a better
generalization of a machine learning algorithm. Within the
context of BraTS Challenges, deep learning methods are usually
trained ad hoc on all of the available data, disregarding underlying
latent factors such as genetic characteristics or even tumor
grades. Although the tumor type is available to the challenge
participants for the training data, this information is withheld
for the validation and test data. Since part of the BraTS dataset
is coming from The Cancer Imaging Archive (TCIA) (Bakas
et al., 2017a,b,c), additional relevant information such as e.g.,
patient’s gender, mutation subtypes [Isocitrate dehydrogenase
(IDH), 1p19q co-deletion] and methylation status of MGMT-
promotor could potentially be added as well.

The metric of choice for algorithm comparison in biomedical
image segmentation challenges is the Dice coefficient, which was
used in 92% of the 383 segmentation tasks reported in Maier-
Hein et al. (2018). Predominantly, the Dice coefficient is reported
in terms of summary statistics (mean/median) over patient
cases and model comparison is performed on the basis of
such summary statistics (metric-based ranking). Recently, the
BraTS Challenge adopted a case-based ranking scheme. While
metric-based rankings lead to more robust rankings than case-
based rankings (Maier-Hein et al., 2018), it can be argued that
distinct performance differences for individual patients may
be obfuscated.

We hypothesize that deep learning methods for brain tumor
segmentation can be significantly improved by taking into
account latent factors along with tumor image appearance during
model training. The purpose of this study is to demonstrate
the impact of including prior knowledge of a particular latent
factor (tumor grade) on the performance of a recently published,
top-ranked deep learning method (McKinley et al., 2019a).
Furthermore, the impact is studied employing both a metric-
based and case-based rank analysis.

The idea of leveraging prior information about tumor grades
to improve segmentation has been presented as an extended
abstract to the International Conference on Medical Imaging with
Deep Learning (MIDL) along with preliminary results (Meier
et al., 2019).
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2. MATERIALS AND METHODS

2.1. Study Data
The study is based on publicly-available data of the BraTS 2018
Challenge (Menze et al., 2015; Bakas et al., 2017c). In particular,
the training dataset was used, which includes 75 patients with
low-grade glioma (LGG) and 210 patients with high-grade
glioma (HGG). The imaging data encompasses four MR image
sequences (T1-weighted, T1-weighted with contrast agent, T2-
weighted, and T2-weighted FLAIR sequences), which are part of
the consensus recommendations for a standardized brain tumor
imaging protocol in clinical trials (Ellingson et al., 2015). The
imaging data stem from 19 different institutions, which relied
on different MR scanners and acquisition protocols. Manual
segmentations of three tumor compartments were available:
contrast-enhancing tumor, non-enhancing/necrosis combined,
and edema. The regions which were considered for evaluation in
the BraTS 2018 challenge as well as in the study at hand were:
contrast-enhancing tumor, tumor core (all compartments except
edema), and whole tumor (all compartments). More details on
the preprocessing and the evolution of the BraTS dataset can be
found in Bakas et al. (2017c).

2.2. Automatic Segmentation
The network architecture used for the automatic segmentation
is equivalent to the model ranked third in the BraTS 2018
challenge (McKinley et al., 2019a). In brief, it is a U-net-style
structure with densely connected blocks of dilated convolutions.
The segmentation is performed slice-wise where the input data
includes the two neighboring slices from below and above from
all four image modalities (i.e., input dimension is batch× 4× 5×
192×192). The final segmentation is the result of ensembling the
predictions from all three directions (sagittal, axial, and coronal).

In a pre-processing step, the data are first normalized to
zero mean and unit variance. Data augmentation consists of a
combination of randomly flipping the images along the midline
and random rotations [angle ∼ U(−15,+15)] around all
principal axis. Additionally, the standardized voxel intensities are
randomly shifted [amount ∼ N(0, 0.5)] and scaled [factor ∼

N(1, 0.2)].
The networks were trained with a focal loss function, RMSprop

as optimizer with a cosine-annealing learning rate schedule, and
a batch-size of two.

2.3. Stratified Model Training
Three different models were trained independently, each with
a five-fold cross-validation: A baseline model with all available
training data (number of samples N = 285), an HGG-only
model (N = 210), and an LGG-only model (N = 75). Network
architecture and hyperparameters were the same for all models
which were trained on a Nvidia GeForce GTX 1080 Ti GPU with
11GBmemory over 80 epochs. Qualitatively, the performance on
the validation-set was saturating with no observable overfitting
(see Figure S1).

2.4. Statistical Analysis
The statistical analysis was performed using R with the stats
package version 3.5.1 (R Core Team, 2018). For comparison of

spatial overlap of estimated tumor segmentations with manual
ground truth data, the Dice coefficient was used. Segmentation
performance in terms of Dice coefficient of the different
deep learning models was summarized by descriptive statistics
(median, interquartile range). Case-based rank analysis included
computation of percentage of improved patient cases for given
pairing of deep learning models. The stratified models were
compared to the baseline by means of paired difference tests:
differences between the cross-validated classifiers were examined
on HGG cases only, on LGG cases only, and on the whole dataset
(using the combined results of the stratified LGG and HGG
classifiers). Non-parametric tests were employed due to the rank-
based form of the data. The significance level of the analysis was
set to α=0.05.

3. RESULTS

3.1. Quantitative Analysis
Summary statistics for the segmentation performance in terms
of Dice coefficient are shown in Figure 1. The baseline model
reached a median Dice of 0.841 (1.5 × IQR = 0.465–1.000) for
the contrast enhancing compartment, 0.899 (0.554–1.000) for the
core, and 0.920 (0.786–1.000) for the whole tumor. Comparable,
the combined results from the separately trained HGG/LGG
models were 0.838 (0.415–1.000) for contrast enhancing, 0.902
(0.584–1.000) for core, and 0.916 (0.800–1.000) for tumor.

The combined results of the two separately trained models
showed an improvement for the segmentation of the tumor
core in 64.9% (p < 0.0001) of the subjects compared to the
baseline model (Table 1). No statistically significant changes
were observed for the other compartments. This performance
gain originates primarily from the HGG cases where 70.3% of
the subjects showed an improved segmentation for the tumor
core and 58.5% of the subjects also for the contrast enhancing
compartment. From the 183 subjects that showed an improved
segmentation of the core, 26 increased by a Dice of 0.1 or more.
Conversely, from the 99 subjects with a declined performance, 21
decreased by a Dice of−0.1 or more (Figure 2).

3.2. Qualitative Analysis of Selected Cases
From Table 1 it is evident that, especially for high-grade glioma,
stratified training leads to improved segmentation performance.
In order to further investigate this aspect, a visual review
of selected cases was performed. To identify cases mostly
affected by the stratified training, Dice coefficients between
the segmentations of the two models (baseline vs. HGG) were
calculated. Cases with a Dice agreement < 0.8 of the tumor
core between the baseline and stratified models were selected
for a qualitative manual inspection followed by a review with
a board-certified neuroradiologist with more than 8 years of
experience in brain tumor diagnostics. In order to render the
visual review more systematic, we define three categories of
causes for variability in tumor segmentation performance: 1.
The input data generated by the imaging process, which is
affected by the idiosyncrasies of the MR scanner, potential
image artifacts and patient motion, and image preprocessing.
2. The manual ground truth segmentation. 3. The tumor
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FIGURE 1 | Summary statistics for the segmentation of the three compartments by means of a Tukey boxplot. p-values indicate statistically significant (p < 0.05)

improvements determined by a one-sided Wilcoxon signed rank test.

phenotype (e.g., IDH-mutant tumor, presence of intratumoral
hemorrhage, or cystic components) which causes distinctively
different image appearances.

In Figure 3 the obtained Dice coefficients between the
segmentation results of the HGG model for the tumor core
and the ground truth were plotted against the Dice coefficients
between the results of the HGG model and the segmentation of
the baseline model, which was trained on all available data. We
can broadly define four different territories in the scatterplot: The
upper right corner which contains cases for which both models
achieved high segmentation performance. If we move to the
upper left corner, we encounter cases for which the HGG model
achieved high segmentation performance with discrepancies
when compared to the results of the baseline model. If we
move from the upper right corner to the lower right corner,
we encounter cases for which the HGG model agreed with the
segmentation result of the baseline model but did not agree with
the ground truth result. Finally, the lower left corner contains
cases for which the segmentation results of the HGG model did
neither agree with the ground truth nor with the segmentation
of the baseline model. The corresponding scatterplots for the
other two compartments can be found in Figures S2, S3. The
identified outlier cases are listed in Table 2with the segmentation
performance of the two models and an assessment category.
Below we present the observations based on a visual review
for a selection of the identified outliers. Visualizations for the
remaining outliers can be found in Figures S4–S14.

Brats18_2013_21_1 (Figure 4). The baseline model provided
superior performance for segmenting the tumor core in this
HGG example. The lesion exhibits a large non-enhancing tumor
mass (typically seen in LGG) and we speculate that the presence

TABLE 1 | Ratio in % of better performing subjects compared to baseline.

CE Core Tumor

% Subjects p % Subjects p % Subjects p

LGG vs. Baseline 41.7 0.877 49.3 0.454 54.7 0.208

HGG vs. Baseline 58.4 0.005 70.3 5.659e-09 46.7 0.877

HGG/LGG vs.

Baseline

54.6 0.127 64.9 1.441e-05 48.8 0.725

Statistical significance is determined by a one-sided Wilcoxon signed rank test. Bold

numbers indicate statistically significant (p < 0.05) results. CE: contrast enhancing.

of LGG cases in the baseline model led to the improved
tumor core segmentation performance when compared to the
HGG model’s result. The appearance of the tumor is further
complicated by the presence of cystic components, which exhibit
a homogeneous signal that is strongly hypointense in T1-
weighted and hyperintense in T2-weighted images.

Brats18_2013_25_1 (Figure 5). Both models failed to
segment the tumor core for this HGG case. The tumor core
contains strongly hypointense areas in the T2-weighted and
FLAIR images with corresponding heterogeneous signal
intensity in the T1-weighted image. When considering the
T1/T1c-weighted images, one can observe the presence of
recruited blood vessels. This image appearance may indicate the
presence of an intratumoral hemorrhage.

Brats18_CBICA_AXJ_1 (Figure 6). The segmentation of the
core from the HGG model is closer to ground truth. The
tumor was indicated to be an HGG. However, the provided
ground truth segmentation seems to be missing part of the
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FIGURE 3 | Performance of the HGG-only model for the tumor core (y-axis) and agreement with the baseline model (x-axis). Subjects with a label were visually

reviewed. Colors indicate the center (2013, CBICA, TCIA01-08).

tumor mass in the frontal lobe. Furthermore, we argue that
a large part of the lesion corresponds to non-enhancing
tumor rather than edema. We base this assumption on the
heterogeneous appearance in the T2-weighted images and more
importantly the strong cortical space-occupying effect together

with a distortion of the gray/white matter junction. In contrast,
edema would preserve the gray/white matter junction as well
as the cortical ribbon and propagate along the white matter
fiber tracts. A possible alternative for ground truth is shown
in Figure 6.
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TABLE 2 | Performance of selected cases for the two models.

Subject Assessment Dice Baseline-model Dice HGG-model

CE Core Tumor CE Core Tumor

Brats18_2013_11_1 1 0.14 0.45 0.90 0.17 0.61 0.89

Brats18_2013_21_1 3 0.80 0.83 0.94 0.76 0.68 0.94

Brats18_2013_25_1 3 0.18 0.10 0.90 0.25 0.06 0.90

Brats18_CBICA_ABN_1 2 0.84 0.41 0.82 0.79 0.84 0.83

Brats18_CBICA_ATF_1 3 0.69 0.73 0.69 0.65 0.51 0.63

Brats18_CBICA_AXJ_1 2 0.79 0.35 0.90 0.79 0.58 0.90

Brats18_CBICA_BHB_1 2 0.00 0.00 0.15 0.00 0.00 0.24

Brats18_CBICA_BHK_1 2 0.01 0.00 0.05 0.25 0.05 0.24

Brats18_TCIA01_221_1 2 0.76 0.88 0.95 0.48 0.82 0.95

Brats18_TCIA01_411_1 1 0.07 0.24 0.71 0.23 0.48 0.64

Brats18_TCIA01_425_1 – 0.26 0.58 0.75 0.68 0.76 0.78

Brats18_TCIA02_171_1 2 0.89 0.47 0.95 0.89 0.90 0.95

Brats18_TCIA04_343_1 2 0.69 0.73 0.74 0.59 0.61 0.66

Brats18_TCIA05_277_1 3 0.42 0.37 0.85 0.56 0.55 0.90

Brats18_TCIA05_444_1 3 0.39 0.96 0.94 0.54 0.30 0.89

Brats18_TCIA06_409_1 – 0.52 0.53 0.89 0.50 0.53 0.86

Brats18_TCIA08_113_1 1 0.91 0.36 0.97 0.79 0.52 0.92

Brats18_TCIA08_406_1 1 0.65 0.63 0.88 0.68 0.77 0.90

Assessment after a qualitative review with a neuroradiologist. Assessment 1: Issue with input image quality, 2: Possible problem with ground truth, 3: Special phenotype, GT: ground

truth, CE: contrast enhancing.

Brats18_CBICA_BHB_1 (Figure 7). Both models failed
completely to segment the lesion for this HGG case.
However, the provided ground truth segmentation seems
to overestimate the presence of edema. While we agree on
the whole tumor segmentation, we argue that the present
T2-weighted hyperintensity indicates the presence of non-
enhancing tumor rather than edema. Similarly to case
Brats18_CBICA_AXJ_1 the gray/white matter junction is
distorted. This is especially evident when considering the
unaffected contralateral hemisphere. The poor segmentation
performance of both models might be the result of an under-
representation of training samples with such a subtle tumor
core which is potentially ambiguously labeled in other cases
as well.

Brats18_TCIA01_221_1 (Figure 8). The baseline model
provided the better tumor core segmentation for this HGG case.
However, when comparing the segmentation of the contrast-
enhancing tumor of the HGG model, we argue that the ground
truth segmentation slightly undersegments it. This is clearly
visible for the enhancing rim next to the midline.

Brats18_TCIA01_425_1 (Figure 9). The baseline model
underestimated the subtle contrast-enhancement of this HGG
case. We can speculate that in the situation of subtle
enhancements the baseline model was biased more toward
segmenting a tumor core with small enhancing foci, whereas the
HGG model was capable of delineating the full extent of the
contrast-enhancement.

Brats18_TCIA05_444_1 (Figure 10). The baseline model
provided a better segmentation than the HGG model for this
case. The tumor was indicated to be an HGG. The location

of the tumor in the frontal lobe and its appearance exhibiting
focal contrast enhancements and a large non-enhancing tumor
mass are suspicious of a potential IDH-mutant glioblastoma.
This would imply that it initially emerged from an LGG (called
secondary glioblastoma). Applying the LGG model to the case
significantly outperforms the HGG model (Figure 10), which
would support the hypothesis of a mutated LGG.

While the previous analysis of cases was to some extent
speculation, we can nevertheless condense three main, factual
observations from it: First, individual segmentation results
are strongly affected by the composition of the segmentation
model’s training data. Second, depending on the underlying
factors that caused a given image appearance and segmentation
ground truth, a given subset of the training data can actually
improve the segmentation result compared to a baseline trained
on all data. Third, disagreement (or joint failure) among
segmentation models trained on different subsets of training
data (Figure 3) may actually help in the identification of
these underlying factors. Among the manually reviewed 18
cases with a large deviation between the two models, we
observed issues with the input images (4 cases), potentially
arguable ground truth (7 cases), and special imaging phenotypes
(5 cases). Arguable ground truth is often attributed to
edema that could be labeled as tumor core instead. Edema
typically propagates along white matter and spares cortical
ribbons as well as deep gray matter structures (Pope et al.,
2005), while non-enhancing tumor leads to a distortion of
the gray/white matter junction [cf. BRATS18_CBICA_BHB_1
(Figure 7) FLAIR with the case presented in Figure 3
of Lasocki and Gaillard, 2019].
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FIGURE 4 | Brats18_2013_21_1.

FIGURE 5 | Brats18_2013_25_1.

4. DISCUSSION

The title of the manuscript contains the phrase “Divide and
Conquer,” where “Divide” refers to the stratification of training
data. Data stratification and subsequent model training was
employed as a simple, straightforward technique to include prior
knowledge. We have proposed two ways of how to use data
stratification to “conquer” brain tumor segmentation: First, the
targeted application of a specialized model (HGG model) to
the respective data (HGG test case). Second, the utilization of

disagreement among specialized models’ outputs and ground
truth segmentations to identify outliers and possible latent factors
hampering generalization.

Implicitly adding prior information to the models by
stratifying the data by tumor type (HGG and LGG) seems to
be beneficial for the segmentation of the tumor core for high-
grade glioma. Yet, the LGG-only model, which was trained
with fewer samples (N = 75) compared to the baseline model
(N = 285), showed no statistically significant deterioration
of the segmentation performance. A statistically significant
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FIGURE 6 | Brats18_CBICA_AXJ_1.

FIGURE 7 | Brats18_CBICA_BHB_1.

improvement in 64.9% of the subjects for the tumor core is
accompanied by a non-significant improvement of 54.6% for
contrast enhancing and non-significant decrease (only 48.8%

better-ranked subjects) for the whole tumor. It has been shown
in multiple studies (Asari et al., 1994; Wiestler et al., 2016;
Hsieh et al., 2017) that HGG and LGG tend to exhibit different
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FIGURE 8 | Brats18_TCIA01_221_1.

FIGURE 9 | Brats18_TCIA01_425_1.

qualitative and quantitative imaging features in structural
MRI, involving heterogeneity of contrast enhancement, cystic
components, intratumoral hemorrhage, and necrosis, which in
context of tumor segmentation affect the definition of the tumor
core greatly. Therefore, the stratification of the training data
into HGG and LGG yields subsets with more homogeneous
and consistent definitions of the tumor core. However, we
presented also exceptions [e.g., BRATS18_2013_21_1 (Figure 4)
in section 3.2] which actually profit from training data of opposite
tumor grade.

In addition to improving segmentation performance, deep
learning models trained on stratified data can be used to drive
exploration of the training data. In section 3.2 we demonstrated
that the disagreement between such models in relation to the
ground truth data can assist in the identification of latent
factors (e.g., imaging phenotypes) which may pose significant
challenges in a deep learning model’s capability to generalize
across the complete problem domain. We argue that especially
in a pathology as complex as brain cancer, the identification of
such latent factors and their proper treatment in a deep learning
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FIGURE 10 | Brats18_TCIA05_444_1.

model is of utmost importance to guarantee robust segmentation
performance that satisfies clinical needs. In section 4.1 we provide
propositions on how latent factors such as the tumor type could
be treated in deep learning segmentation models beyond simple
data stratification.

Our results demonstrated the potential of summary statistics
(e.g., mean or median) to obfuscate significant differences
between distributions of segmentation performance measures
(e.g., Dice coefficient). These significant differences can be
revealed through the calculation of a case-based ranking.
Furthermore, case-based ranking enables the straightforward
application of nonparametric statistics to detect significant
differences with the advantage of more limited assumptions
regarding the distribution of the data when compared to
parametric statistics, and robustness to outliers. Case-based
ranking also follows the narrative of precision medicine in
which the identification of subpopulations of patients, who
benefit from a medical intervention, based on experimental
observations is central. It enables a more fine-grained analysis on
the level of the patient and potentially an identification of patient
subpopulations relevant for the task at hand.

Previously, Pereira et al. (2016) trained on data stratified into
HGG and LGG. They employed two different Convolutional
Neural Network architectures for patch-wise segmentation of
HGG and LGG. In contrast, we hypothesized and demonstrated
that a mere stratification of the training data into HGG and LGG
without any changes to architectures or hyperparameters can
lead to improved segmentation performance. Furthermore, their
focus was on an ablation study of methodological components
with respect to their two grade-specific architectures and their

results were based on the BraTS 2013 Leaderboard dataset (21
HGG, 4 LGG cases) and BraTS 2013 Challenge dataset (10
HGG cases).

4.1. Outlook
With the rise of precision medicine and tailored therapies,
the consideration of patient-specific information (e.g., genetics)
becomes ubiquitous (Giardino et al., 2017). Leveraging data from
multiple sources remains a challenge for the next generation
imaging technologies (Kim et al., 2016), potentially requiring to
rethink the one size fits all concept. For automatic brain tumor
segmentation, various architectural and conceptual changes are
imaginable beyond simple data stratification strategies.

By completely separating the data, each of the individual
models has fewer data available for training, although with
the benefit of a less heterogeneous domain (only one tumor
type). Instead of implicitly adding the prior information of
the tumor to the data by stratification, an alternative approach
could be to explicitly add this information as input to the
network. Particularly the first layers of the network might be
less susceptible to the tumor type as filters for representation
learning could share commonalities between both domains. By
adding the information directly to the input layer or injecting
it into the latent feature space might allow the network to
intrinsically adapt the segmentation output according to the
given tumor type.

A different approach would be to regard the problem
of segmenting high-grade and low-grade glioma as a
multiple-source adaptation problem. In this setting, the
goal is to effectively combine base learners trained on
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multiple source domains in order to perform a prediction
on a target domain, which can be any mixture of the
source domains. In our case, the source domains would be
subclasses of gliomas: either high-grade and low-grade data,
or potentially a more fine-grained subdivision (e.g., WHO
grade or classification). The target domain constitutes of a
mix of different glioma cases. Recently, a number of theoretic
and algorithmic contributions were made in the area of
multiple-source adaptation (Hoffman et al., 2018; Zhao et al.,
2018), which could be applied in the scenario of learning
from multiple disease entities such as brain tumor types
or grades.

The clinical importance of brain tumor segmentation for
quantitative image analysis will only grow in the near future.
Recently, various segmentation methods have been proposed
which are capable of accurately delineating brain tumor
compartments longitudinally (Weizman et al., 2014; Meier et al.,
2016), perform assessment of treatment response (Huber et al.,
2017; Kickingereder et al., 2019), are used for the purpose
of radiomic analysis (Bakas et al., 2017c), and for performing
planning of radiation therapy (Sharp et al., 2014; Herrmann et al.,
2018; Agn et al., 2019; Lipkova et al., 2019). It is, therefore,
necessary to provide automatic segmentation methods which
are capable of robustly generalizing across different types or
grades of brain tumors. Our methodology of training deep
learning models on stratified training data is a straightforward
approach to potentially improve the segmentation performance
of already existing learning-based methods with regards to
different tumor types.

In the light of our results and the trend toward precision
medicine, we encourage challenge organizers to make
information on the tumor type or grade available as additional
input data, allowing teams to incorporate such prior information
into their models.

4.2. Limitations
The evaluation is based solely on the BraTS training dataset
(using cross-validation). Results for the official validation set
are unknown since the required tumor type is not available
for these data. Indeed we acknowledge that the tumor grade
is usually not yet available on the first admission. However,
we think automatic segmentation models will probably be
employed first for retrospective studies, to assess the extent of
resection in patients undergoing surgery (Meier et al., 2017),
or to assess tumor progression postoperatively (Kickingereder
et al., 2019) where tumor grades are usually known. First
attempts have been made to classify tumor grades from
MRI (Decuyper and Van Holen, 2019), which would
allow identification of the correct model from imaging
only. Alternatively, one might run such a segmentation
algorithm twice: first for a rough identification of the tumor
compartments and based on the result (e.g., presence of
CE, ratio of compartment volumes, or manual review of the
intermediate results by an expert) apply the specific model to get
a refined segmentation.

The benefit of stratifying the training data has been
shown with the model ranked third in the BraTS 2018

challenge (McKinley et al., 2019a). This particular model was
chosen, as it was a top-ranked method in the most recent BraTS
challenge (2018) that achieved its results using only a standard
GPU and data from the BRATS challenge. The method ranked
first (Myronenko, 2019) depended on a GPU with 32 GB of
memory (to which most research groups do not have access),
while the second-ranked method (Isensee et al., 2018) was co-
trained with additional data (not including information about
tumor grades). To what extent the proposed approach generalizes
to other architectures remains an open question. Other models
might suffer more from the reduction of training samples due
to the stratification. The proposed architecture is known to be
robust to fewer training samples (McKinley et al., 2019b).

5. CONCLUSION

Implicitly adding prior knowledge by dividing data into
distinct domains can improve the performance of deep
learning-based segmentation methods and compensate
for the smaller number of samples available for training
a model. The tumor grade has shown to be an important
latent factor in the segmentation of gliomas. Comparing
the performance of models by case-based ranking statistics
may reveal significant differences that are otherwise
concealed in summary statistics such as the mean
Dice coefficient.
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