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Abstract 

Background:  Asian Chinese are more susceptible to deposition of visceral adipose tissue (VAT) and type 2 diabetes 
(T2D) development than European Caucasians when matched for gender, age and body mass index (BMI). Our aims 
were: (i) characterise the ethnicity-specific metabolomic signature of visceral adiposity measured by dual energy X-ray 
absorptiometry (DXA) and fasting plasma glucose (FPG), and (ii) identify individuals susceptible to worse metabolic 
health outcomes.

Methods:  Fasting plasma samples from normoglycaemic (n = 274) and prediabetic (n = 83) participants were 
analysed with liquid chromatography–mass spectrometry using untargeted metabolomics. Multiple linear regression 
adjusting for age, gender and BMI was performed to identify metabolites associated with FPG and VAT calculated as 
percentage of total body fat (%VATTBF) in each ethnic group. Metabolic risk groups in each ethnicity were stratified 
based on the joint metabolomic signature for FPG and %VATTBF and clinically characterised using partial least squares-
discriminant analysis (PLS-DA) and t-tests.

Results:  FPG was correlated with 40 and 110 metabolites in Caucasians and Chinese respectively, with diglyceride 
DG(38:5) (adjusted β = 0.29, p = 3.00E−05) in Caucasians and triglyceride TG(54:4) (adjusted β = 0.28, p = 2.02E−07) in 
Chinese being the most significantly correlated metabolite based on the p-value. %VATTBF was correlated with 85 and 
119 metabolites in Caucasians and Chinese respectively, with TG(56:2) (adjusted β = 0.3, p = 8.25E−09) in Caucasians 
and TG(58:3) (adjusted β = 0.25, p = 2.34E−08) in Chinese being the most significantly correlated. 24 metabolites 
associated with FPG were common to both ethnicities including glycerolipid species. 67 metabolites associated with 
%VATTBF were common to both ethnicities including positive correlations with dihydroceramide, sphingomyelin, 
glycerolipid, phosphatidylcholine, phosphatidylethnolamine, and inverse correlations with ether-linked phosphatidyl‑
choline. Participant re-stratification found greater total and central adiposity, worse clinical lipid profiles, higher serum 
glucoregulatory peptides and liver enzymes in normal fasting glucose (NFG) individuals with a prediabetic metabo‑
lomic profile than NFG individuals with a normoglycaemic metabolomic profile in both ethnicities.
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Background
The prevalence of type 2 diabetes (T2D) has witnessed 
a drastic surge in China over recent decades. There are 
now 110 million people with T2D in China [1], reach-
ing epidemic proportions and predicted to continue on 
this trajectory [2]. Whilst the accelerated rise of the T2D 
prevalence is likely due to a rapid transition to a west-
ernised diet and lifestyle [3, 4], striking observations of 
younger and outwardly slimmer individuals with dia-
betes in South and East Asia highlights the role of eth-
nicity in T2D risk [5]. Although high BMI has been a 
well-established risk factor for T2D [6], it is evident that 
even modest weight gain greatly increases T2D risk in 
Asians compared to modest increases in other ethnici-
ties [7]. The mechanisms underpinning the greater risk 
of poor metabolic health in Asian populations have not 
yet been elucidated, but it is clear that site of fat depo-
sition plays an important role [8–10], and Asian popula-
tions are more prone to abdominal and visceral adiposity 
as well as ectopic fat deposition into key organs including 
pancreas and liver [9, 11, 12]. Excess visceral adipose tis-
sue (VAT) and ectopic fat deposition are associated with 
higher risks of cardiometabolic diseases and complica-
tions [13–15]. It has been hypothesised that poor adipose 
expandability in ‘safer’ subcutaneous sites may promote 
this ‘lipid overspill’ and ectopic storage [16–18]. The 
TOFI (Thin-on-the-Outside-Fat-on-the-Inside) profile 
has been coined for these individuals who may have hid-
den risks of cardiometabolic disease [19].

Current measurements of VAT and ectopic organ fat 
rely on imaging techniques which are expensive and 
time-consuming. Whilst blood glucose and HbA1c both 
provide simple and cost-effective markers of prediabe-
tes, predicting individuals who remain in the prediabetic 
state for many years vs those progressing rapidly to T2D 
is difficult from these single markers. Metabolomics pro-
vides a useful means to advance the understanding of 
disease pathophysiology, and may facilitate the identifi-
cation of at-risk individuals before dysglycaemia occurs 
and/or predict those who will rapidly worsen to T2D 
[20, 21]. For example, metabolic shifts in branched-chain 
amino acids (BCAAs) are the most prominent changes 
associated with insulin resistance (IR) and predictive of 
future T2D development to date [22]. Increased levels 
of circulating BCAAs can be due to increased protein 
degradation in IR [23], while evidence for higher levels 

of C3- and C5-acylcarnitine, the catabolic intermedi-
ates of BCAAs, associated with IR and T2D have also 
been reported, suggesting that higher levels of circulating 
BCAA may also be due to an impaired catabolism result-
ing from mitochondrial overload and metabolic inflex-
ibility [24]. Higher levels of medium-chain acylcarnitines 
(MCAC) were reported in T2D patients, which has been 
postulated as a consequence of incomplete fatty acid oxi-
dation (FAO) [25]. However, higher levels of long-chain 
AC (LCAC), which may be indicative of an excessive lipid 
load and FAO flux, were found to be predictive of inci-
dent T2D [26]. Mechanistic investigation suggested accu-
mulation of LCAC and MCAC was due to mitochondrial 
overload and discordant FAO and citric acid cycle 
(TCA) activity [27, 28]. Other metabolites such as those 
involved in sugar metabolism, purine metabolism and 
the urea cycle have been occasionally reported [29], and 
the identification and understanding of metabolite mark-
ers for T2D is ongoing. There are few studies investigat-
ing the metabolomic profile associated with increased 
VAT. To date, several AAs, organic acids, ether-linked 
phosphatidylcholines (PCs), lysoPCs-to-PCs ratio have 
been reported as markers for VAT [30–33].

Given that increased VAT deposition is a risk factor 
for T2D development and may underlie an increased 
propensity for poor metabolic health in specific popu-
lations such as Asians, a major gap in the field remains 
as to how characteristic plasma signatures for VAT and 
glycaemia are related to each other, and whether the 
metabolite markers for these two metabolic traits are 
common or unique to different ethnic groups. Herein, we 
simultaneously profiled the plasma samples from non-
diabetic individuals across a range of FPG and VAT con-
tent calculated as percentage of total body fat (%VATTBF) 
from 2 ethnic groups (Asian Chinese and age- and BMI-
matched Caucasian Europeans). FPG was focused on in 
this study as it is one of the 3 measurements (along with 
HbA1c and oral glucose tolerance test) for prediabetes/
T2D diagnosis according to the American diabetes asso-
ciation (ADA) criteria [34]. FPG and HbA1c are conveni-
ent and less time-consuming to obtain thus are suitable 
for large-scale studies. The level of FPG is less subject 
to haemoglobin variants or certain conditions e.g. sickle 
cell disease or recent blood transfusion as opposed to 
HbA1c [34], hence was chosen as an outcome variable to 
be investigated in this study. The goals of this study were 

Conclusions:  Untargeted metabolomics identified common and disparate metabolites associated with FPG and 
%VATTBF, with an ethnic-dimorphic signature for these metabolic traits. These signatures could improve risk stratifica‑
tion and identify NFG individuals with an adverse cardiometabolic and T2D risk profile.
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(1) to determine whether plasma metabolomic profiles 
measured using an unbiased untargeted approach dif-
fered between ethnicities; (2) to characterise the metab-
olomic signatures associated with %VATTBF and FPG 
in each ethnic group; (3) to predict FPG state using the 
metabolomic signature (i.e. metabolic FPG state) and 
characterise the clinical profiles of the metabolic FPG 
state.

Methods
Study cohort
The TOFI-Asia study is a cross-sectional study con-
ducted at the Human Nutrition Unit (HNU), University 
of Auckland, New Zealand. All participants self-reported 
both parents of the same ethnic descent, i.e. European 
Caucasian or Asian Chinese according to ethnic group 
profiles by Stats New Zealand, Tatauranga Aotearoa) 
[35]. Participants were recruited for both genders across 
a wide range of ages (20–70 years) and BMI (20–45 kg/
m2), and were either normoglycaemic or prediabetic 
based on ADA criteria [36]. They had no significant 
weight gain or loss (> 10%) in the previous 3 months, no 
prior bariatric surgery, were not pregnant, breastfeeding, 
or currently taking glucose-related medications (e.g. glu-
cocorticoids) or had a significant current or prior history 
of disease including T2D. A detailed description of the 
study population and protocol can be found elsewhere 
[37]. In total, 199 Asian Chinese and 158 European Cau-
casian participants were enrolled in the study. All partici-
pants attended the study visit following an overnight fast.

Phenotypic Characterisation and Laboratory 
Measurements
Body weight, height, waist and hip circumference, and 
blood pressure were recorded at HNU. Fasting venous 
blood samples were collected, separated, and stored 
at −80  °C until analysis. FPG was measured using the 
hexokinase method. HbA1c was determined by capillary 
electrophoresis. Plasma glucoregulatory peptides (insu-
lin, C-peptide, glucagon, total amylin, gastric inhibitory 
polypeptide (GIP) and glucagon-like peptide-1 (GLP-
1)) were analysed by multiplex immunoassay. Serum 
liver enzymes (alanine transaminase (ALT), aspar-
tate transaminase (AST), alkaline phosphatase (ALP), 
gamma-glutamyltransferase (GGT)) and lipids (total 
cholesterol, total triglyceride (TG), HDL-cholesterol) 
were analysed using internationally accredited methods. 
Details of sampling procedures and blood measurements 
have been reported elsewhere [37].

Body composition
Dual energy X-ray absorptiometry (DXA) (iDXA, GE 
Healthcare, WI, USA) scanning was used to obtain total 

body fat (TBF), abdominal adipose tissue (AAT) and VAT 
mass as previously described [37]. One participant did 
not attend DXA scanning therefore 356 body composi-
tion profiles were available.

Region-specific percentage measures were obtained;

Visceral adipose tissue was calculated in 2 ways:

i	 %VATTBF = 100% × VAT mass / TBF mass
j	 %VATAAT​ = 100% × VAT mass /AAT mass

%VATTBF is used as a measure of visceral adiposity in 
this manuscript and the dependent variable to be charac-
terise by metabolomics. This is because it considers both 
total body fat mass (i.e. outside the viscera) and VAT 
mass (i.e. inside the viscera), and hence is representative 
of the “TOFI” phenotype of interest to the present study.

Sample preparation for LC–MS untargeted metabolomics
Samples were randomised into 4 batches and extracted 
on 4 consecutive days. The protocol for metabolite 
extraction was adapted from a previously reported 
method [38]. Briefly, 100 µL plasma was mixed with 800 
µL pre-chilled (−20  °C) CHCl3:MeOH (50:50, v/v) con-
taining internal standard compounds (detail provided in 
Additional file 2: Table S1), agitated for 30 s and placed 
in a −20 °C freezer for 60 min to allow protein precipita-
tion, followed by addition of 400 µL H20, vortex-mixing 
for 30  s and centrifugation (Eppendorf Centrifuge 5427 
R, Eppendorf, Hamburg, Germany). Centrifuge parame-
ters were set at 11,000 rpm, 4 °C, 10 min. Two blank sam-
ples were prepared following the same protocol replacing 
plasma with H20. 200 µL of the upper aqueous layer and 
200 µL of the lower organic layer were transferred into 
two 2  mL microcentrifuge tubes separately, dried down 
under a nitrogen stream and stored at −80 °C. To account 
for intra- and inter-batch variation, pooled QC samples 
were prepared by combining an aliquot of the upper or 
lower phase from every sample extracted on the same 
day in a clean glass tube and stored at −80 °C. At the end 
of all sample extractions, the pooled samples on each 
day were then combined, dispensed into separate 200 µl 
aliquots and dried down under the nitrogen stream and 
stored at −80  °C. On the day of instrumental analy-
sis, dried polar and lipid extracts were reconstituted in 
200 µL acetonitrile:H2O (50:50, v/v) and modified Folch 
solution (CHCl3:MeOH:H2O, 66:33:1, v/v/v) containing 
pre-dissolved 0.01% 16:0 d31-18:1-PE internal standard 
[0.01% (%w/v)] for polar metabolite and lipid analysis 

%TBF = 100% × TBF mass/
(

total body lean mass + TBF mass
)

;

%AAT = 100% × AAT mass/(abdominal lean mass + AAT mass)
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respectively. The reconstitution volume was determined 
using a previously described workflow [39].

Ultra‑performance liquid chromatography (UPLC)‑mass 
spectrometry analysis of lipids
Lipid analyses were performed using an Accela 1250 qua-
ternary UHPLC system coupled to a Q Exactive hybrid 
quadrupole-Orbitrap mass spectrometer (Thermo Fisher 
Scientific, Waltham, MA, USA) with a heated electro-
spray ionisation source set to 370 °C. An Acquity CSH™ 
C18 column 1.7 µm, 2.1 mm × 100 mm (Waters, Milford, 
MA, USA) was used for lipid separation with a column 
temperature of 65  °C and mobile phase flow rate at 600 
µL/min. The mobile phases consisted of acetonitrile/H2O 
(60:40) with 10  mM ammonium formate and 0.1% for-
mic acid (A), and isopropanol/acetonitrile (90:10) with 
10  mM ammonium formate and 0.1% formic acid (B). 
Analytes were eluted from the column with the follow-
ing gradient program: 15–30% B (0.0–2.0 min), 30–48% 
B (2.0–2.5  min), 48–82% B (2.5–11.0  min), 82–99% B 
(11.0–11.5 min), 99% B was maintained for 3.5 min fol-
lowed by re-equilibration with 15% B for 3  min. Two 
microliter reconstituted samples were injected. External 
mass calibration of the Orbitrap prior to sample analysis 
was performed by flow injection of the calibration mix 
solution according to the manufacturer’s instructions. 
High resolution data (resolution 70,000) was acquired 
by full scan from m/z 200–2000 with source voltage of 
3500  V electrospray ionisation positive mode (ESI +) 
or − 3600  V ESI negative mode (ESI −), capillary tem-
perature of 275  °C, and sheath, auxiliary and sweep gas 
flow rates of 40, 10 and 5 arbitrary units, respectively. 
Data-dependent MS2 data were collected with a mass 
resolution set to 35,000 recording a mass range of m/z 
200–2000 and maximum trap fill time of 250  ms (full 
scan mode) or 120  ms (MS2 scan mode). The isolation 
window of selected MS1 scans was ± 1.5 m/z with a nor-
malised collision energy of 30 units.

Liquid chromatography (LC)‑mass spectrometry analysis 
of polar metabolites
Polar metabolites were analysed with an Accela 1250 
quaternary UHPLC pump coupled to an Exactive Orbit-
rap mass spectrometry (Thermo Fisher Scientific, USA). 
Chromatographic separation was carried out at 25  °C 
on a SeQuant® ZIC®-pHILIC 5  µm, 2.1  mm × 100  mm 
column (Merck, Darmstadt, Germany) with the follow-
ing solvent system: A = 10  mM ammonium formate in 
water, B = 0.1% formic acid in acetonitrile. A gradient 
program was used at a flow rate of 250 µL/min: 3–3% A 
(0.0–1.0 min), 3–30% A (1.0–12.0 min), 30–90% A (12.0–
14.5  min), 90% A was maintained for 3.5  min followed 
by re-equilibration with 3% A for 7  min. An injection 

volume of 2 µL was used. The electrospray probe was 
operated unheated at room temperature (20 °C) to avoid 
degradation of thermally labile compounds. External 
mass calibration of the Orbitrap prior to sample analysis 
was performed by flow injection of the calibration mix 
solution according to the manufacturer’s instruction. 
High resolution data (resolution 25,000) were acquired 
by full scan from m/z 55 to 1100 with source voltage of 
4000 V for ESI + and − 4000 V for ESI − , capillary tem-
perature of 325  °C, and sheath, auxiliary, and sweep gas 
flow rates of 40, 10, and five arbitrary units, respectively.

Data processing
Raw data files were converted to mzXML format with 
MSconvert (v 3.0.1818) and pre-processed. Three lipid 
datafiles were corrupted and excluded from analysis. 
Lipid data were preprocessed with the XCMS pack-
age (v3.0.2) in the R programming environment (v3.2.2) 
[40], whereas polar metabolite data were preprocessed 
with the ADAP algorithm in mzMINE (v2.31) (process-
ing parameters provided in Additional file  2: Table  S2) 
[41, 42]. Features not detected in 100% of the QC sam-
ples were excluded. For polar metabolite data, features 
detected in at least one blank sample before peak filling 
step were removed. For lipid data, blank features were fil-
tered out based on tstat and p-values (sample vs. blank 
tstat < 1 or those with tstat > 1 but p value ≥ 0.05) gen-
erated by the diffreport function from the XCMS pack-
age. Manual examination of EIC was conducted to filter 
out poorly integrated peaks, using build-in function in 
mzMINE for the polar metabolite data and the EICs 
generated by the diffreport function in the XCMS pack-
age for lipid data. After data cleaning, signal drift and 
batch effects were corrected by LOESS in the W4M Gal-
axy environment [43], and features with QC %CV > 30 
were removed. Lipid identification was performed using 
LipidSearch software v4.1.16 on MS2 datafiles (Thermo 
Fisher Scientific, USA) as previously described to gen-
erate a MS2-annotated lipid ID library and matched 
against the processed lipid data matrices based on par-
ent mass and retention times [44]. Lipid features without 
an MS2-annotated lipid ID were searched against online 
database including HMDB (https​://www.hmdb.ca/), Met-
lin (https​://metli​n.scrip​ps.edu/) and Lipid Maps (https​://
www.lipid​maps.org/) based on m/z with less than 10 ppm 
mass error. Polar metabolites were annotated using an in-
house library based on authentic standards (AgResearch) 
analysed through HILIC LCMS analysis under conditions 
identical to the current study. Metabolic features without 
a hit in the library were searched against online database 
including HMDB and Metlin based on m/z with less than 
15 ppm error.

https://www.hmdb.ca/
https://metlin.scripps.edu/
https://www.lipidmaps.org/
https://www.lipidmaps.org/
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Statistical analyses
Multivariate analysis using partial least squares-discri-
minant analysis (PLS-DA) was initially applied to inves-
tigate differences in baseline profiles of the two ethic 
groups (SIMCA version 16, Umeå, Sweden). Logistic 
regression was subsequently performed to allow for 
adjustment for age, gender, HDL-C, insulin, FPG, HbA1c, 
BMI and %VATTBF in identifying discriminatory lipids 
and metabolites between the two ethnicities (with Cau-
casian as reference level and Asian Chinese as level 1). To 
characterise the metabolomic and lipidomic signatures 
for FPG or %VATTBF (as the outcome variable), multiple 
linear regression was performed on every feature adjust-
ing for age, gender and BMI in an ethnicity-specific man-
ner. All univariate statistical analyses were carried out in 
R (v3.5.1) and subjected to FDR correction (Benjamini 
Hochberg procedure) [45]. Up till this point the lipid pro-
files and polar metabolites profiles were analysed sepa-
rately due to different number of available profiles (3 lipid 
profiles were corrupted), but the list of associated metab-
olites (both lipids and polar metabolites) were combined 
into a single table for each trait of interest for reporting 
purpose.

The prediction model of FPG state by a panel of metab-
olites associated with FPG and %VATTBF in each ethnicity 
was built using random forest (RF) [46] in MetaboAnalyst 
v4.0 [47]. In detail, the datamatrix containing intensities 
of all metabolites associated with FPG and/or %VATTBF 
in each ethnicity identified by the aforementioned mul-
tiple linear regression, were extracted and imported 
to MetaboAnalyst for biomarker analysis. Three sam-
ples were excluded from the re-stratification due to the 
absence of their lipidomic profiles. RF analysis was per-
formed on the 100 most important variables ranked by 
decreases in accuracy through 30 repeats of threefold 
random sub-sampling cross-validation. Individuals who 
were predicted as NFG by the metabolomic-based RF 
model were designated as “mNFG”, whereas those pre-
dicted as IFG were designated as “mIFG”. The predicted 
FPG state was further combined with their actual FPG 
state as determined by the ADA FPG criteria to create 
a new stratification system consisted of 4 groups: NFG-
mNFG (NFG individuals predicted to be NFG based on 
their metabolomic profile), NFG-mIFG (NFG individuals 
predicted to be IFG), IFG-mNFG (IFG individuals pre-
dicted to be NFG) and IFG-mIFG (IFG individuals pre-
dicted to be IFG). The clinical profile (including HbA1c, 
HOMA2-IR, BMI, age, waist-to-hip ratio, SBP, DBP, ALT, 
AST, ALP, GGT, total cholesterol, HDL-C, total TG, 
LDL-C, amylin, C-Peptide, GIP, GLP-1, glucagon, insulin) 
of the metabolic FPG state and the 4 sub-phenotype were 
then characterised using multivariate PLS-DA (SIMCA 
16, Umetrics) and univariate t-test (R (v3.5.1)).

Results
Characteristics of the study population are summarised 
in Table 1. Asian Chinese had higher body weight, DBP, 
%AAT, %VATTBF, %VATAAT​, HbA1c, FPG, fasting insu-
lin, total TG, ALT, GGT, amylin, GLP-1 and glucagon, 
and lower HDL-cholesterol than Caucasians.

Characterisation of fasting plasma profile associated 
with ethnicity differences
The score plots from the PLS-DA models for both 
lipid and polar metabolite profiles showed clear and 
robust separation between Asian Chinese and Cauca-
sian cohorts (Q2 values of 0.502 for lipids and 0.593 
for polar metabolites, confirming that the models had 
acceptable validity), indicating ethnicity influences the 
fasting plasma metabolome (Fig. 1).

Logistic regression was applied to identify metabo-
lites associated with ethnicity independent of potential 
covariates. Of the 629 lipid features measured by LC–
MS, 170 identified lipid species over 15 lipid subclasses 
in addition to 25 unknowns were significantly associ-
ated with ethnicity, independent of potential covariates 
(BH adjusted p < 0.05) (Additional file  2: Table  S3 and 
Fig. 2). Levels of lipid species belonging to lipid classes 
lysophosphatidylcholine (lysoPC), lysophosphatidyle-
thanolamine (lysoPE), phosphatidylethanolamine (PE), 
phosphatidylinositol (PI), ceramide (Cer), glycosphin-
golipids (GCer), sphingomyelin (SM) and choles-
teryl ester (CE) were exclusively higher in Caucasians, 
whereas those belonging to free fatty acid (FFA) and 
diacylglycerol (DG) classes were exclusively higher in 
Asian Chinese (Fig. 2a). Although triacylglycerol (TG), 
phosphatidylcholine (PC), ether-linked PC and ether-
linked PE did not display unidirectional association 
with either ethnic group, some characteristic patterns 
were observed. TGs containing carbon chains between 
C12-C18 and with a higher degree of saturation were 
associated with Caucasians whereas TGs enriched in 
long and very long chains between C16–C22 and with 
a higher degree of unsaturation were associated with 
Asian Chinese (Fig. 2b). The majority of discriminatory 
PCs and ether-linked PCs were at higher levels in Cau-
casians with the exception of PC(40:6), PC(p-38:6) and 
PC(p-40:6) which were higher in Asian Chinese, which 
again, contained a polyunsaturated fatty acid (PUFA). 
Ether-linked PEs associated with Asian Chinese also 
tended to contain more PUFA (Fig.  2b and Additional 
file 2: Table S3). Despite significantly higher total fast-
ing TG as measured by biochemical assay in Asian 
Chinese (see Table  1), lipidomics indicates that the 
molecular makeup of plasma glycerolipid is discrimina-
tory between the two ethnic groups.
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A number of endogenous and exogenous polar 
metabolites were discriminatory between Caucasians 
and Asian Chinese (Additional file  2: Table  S4). These 

metabolites spanned a wide range of biological functions 
and pathways such as AA metabolism, carbohydrate 
(CHO) metabolism, energy production, fatty acid (FA) 

Table 1  Metabolic risk factors in  Caucasian European (N = 158) and  Asian Chinese (N = 199) enrolled in  the  TOFI_Asia 
Study

Results are mean ± SD. Numbers were as stated above each column except for bracketed values
a  Systolic and diastolic blood pressure were measured in 198 Asian Chinese
b  Body composition was assessed in 157 Caucasian European
c  HbA1c was measured in 157 Caucasian European
d  Lipid profile and d liver function were assessed in 198 Asian Chinese. Nonstandard abbreviations: DXA, dual energy X-ray absorptiometry; HbA1c, haemoglobin A1c; 
HOMA2-IR, Homeostasis Model Assessment of insulin resistance; HOMA2-β: Homeostasis Model Assessment of β-cell function

Caucasian European Asian Chinese P value

n 158 199

% female 59 54

Age (year) 41.7 ± 16.1 40.5 ± 13.3 0.47

Anthropometry

Weight (kg) 79.9 ± 15.7 75.6 ± 14.4 0.007

Height (m) 1.72 ± 0.09 1.66 ± 0.08  < 0.0001

BMI (kg/m2) 26.9 ± 4.6 27.2 ± 3.9 0.53

Waist circumference (cm) 90.3 ± 14.1 90.0 ± 10.8 0.79

Hip circumference (cm) 101.1 ± 11.8 99.1 ± 10.2 0.07

 Systolic blood pressure (mmHg)a 120 ± 15 122 ± 17 0.23

 Diastolic blood pressure (mmHg)a 66 ± 8 69 ± 11 0.002

Body composition—b DXA

Total body fat (TBF) mass (kg) 26.6 ± 11.4 25.5 ± 7.8 0.33

%TBF 33.8 ± 10.2 35.0 ± 7.2 0.21

Abdominal adipose tissue (AAT) mass (kg) 2.3 ± 1.4 2.4 ± 1.0 0.65

AAT (% of abdominal tissue mass) 36.8 ± 14.1 40.8 ± 9.1 0.003

Visceral adipose tissue (VAT) mass (kg) 0.9 ± 0.8 1.0 ± 0.6 0.07

%VATTBF 2.86 ± 2.19 3.73 ± 1.98 0.0001

%VATAAT​ 32.2 ± 19.9 39.7 ± 16.4 0.0002

Blood biochemistry

 HbA1c
c 33.3 ± 3.6 35.8 ± 3.9  < 0.0001

Fasting plasma glucose, FPG (mmol/L) 5.0 ± 0.6 5.3 ± 0.5  < 0.0001

Fasting plasma insulin (pg/ml) 430.4 ± 316.5 570.6 ± 359.9 0.0001

HOMA2-IR 1.8 ± 2.0 1.9 ± 1.2 0.8

HOMA2-β 140.4 ± 122.7 126.2 ± 61.4 0.18

 Total cholesterol (mmol/L)d 5.0 ± 1.0 4.8 ± 0.9 0.19

 Triglycerides (mmol/L), TAG​d 1.1 ± 0.6 1.4 ± 0.9 0.0001

 HDL-Cholesterol (mmol/L)d 1.6 ± 0.4 1.4 ± 0.4  < 0.0001

 LDL-Cholesterol (mmol/L)d 2.9 ± 0.9 2.8 ± 0.8 0.49

 Alanine amino transferase, ALT (U/L)e 15.8 ± 10.4 19.3 ± 14.0 0.008

 Aspartate amino transferase, AST (U/L)e 20.9 ± 8.7 19.9 ± 6.4 0.23

 Alkaline phosphatase, ALP(U/L)e 97.2 ± 27.2 96.2 ± 23.5 0.68

 Gamma glutamyl transferase, GGT (U/L)e 23.6 ± 18.2 30.2 ± 23.8 0.003

Amylin (pg/ml) 28.8 ± 15.2 33.8 ± 17.4 0.005

C-peptide (pg/ml) 939.7 ± 554.5 935.3 ± 460.7 0.94

Gastric inhibitory peptide, GIP (pg/ml) 72.4 ± 58.2 79.0 ± 48.0 0.25

Glucagon like peptide – 1, GLP-1 (pg/ml) 146.6 ± 62.0 165.4 ± 87.6 0.02

Glucagon (pg/ml) 59.2 ± 35.3 71.1 ± 35.1 0.002
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metabolism, nucleotide metabolism, protein metabo-
lism and modification and the methyl transfer pathway 
(Fig. 3).

Ethnicity‑specific metabolomic signatures of FPG 
and %VATTBF
Metabolic features associated with FPG that are com-
mon to both ethnic groups or unique to each ethnic 
group were summarised in Fig. 4a and Additional file 2: 
Table  S5. After adjusting for gender, age and BMI, FPG 
in Caucasians was associated with 40 non-redundant 
features yielding 33 identified metabolites, includ-
ing positive correlations with 4 DG species, 17 TGs, 2 
ether-linked PCs, 4 ether-linked PEs, 3 PCs, 2 hexoses 
(both likely to be glucose peaks as confirmed by internal 

standard, Additional file  1: Figure S1) and erythronic 
acid. The phospholipids and ether-linked phospholipids 
notably contained an arachidonic acyl chain n20:4 (con-
firmed with MS2 spectral data). The strongest marker 
for FPG other than the MS-measured glucose (in terms 
of having the lowest raw p-value) in Caucasians was 
DG(38:5) (adjusted beta-coefficient = 0.29 [95% CI 
0.16–0.42], p = 3.00E−05). FPG in Asian Chinese was 
associated with 110 non-redundant features yielding 
101 identified metabolites, including positive correla-
tions with 6 ceramides, 10 DGs, 59 TGs, 4 PCs, 3 PEs, 
2 hexoses (MS-measured glucose) and an unknown hex-
ose, and negative correlations with 2 CE, 2 FFAs, 8 SMs, 
2 ether-linked PCs, HexCer(d42:2) and L-acetylcarni-
tine. The strongest marker was TG(54:4) (0.28 [95% CI 

Fig. 1  PLS-DA analysis for metabolomics differences between Caucasians and Asian Chinese. PLS-DA score plot (top) and 100 permutation tests 
(bottom) showing good separation and robust model for: a lipid profile and b polar metabolite profile, between Asian Chinese and Caucasian

Fig. 2  Association of lipid profile with ethnicity. Lipids associated with ethnicity at the level of a lipid subclasses and b individual lipid species 
following adjustment for age, gender, HDL-C, Insulin, FPG, HbA1c, BMI and %VATTBF. All the displayed lipids have statistically significant p value 
(BH-corrected p < 0.05). FA: fatty acid; DG: diacylglycerol; TG: triacylglycerol; LPC: lysophosphatidylcholine; LPE: lysophosphatidylethanolamine; 
PC: phosphatidylcholine; PC(O-/P-): ether-linked (plasmenyl/plasmanyl) PC; PE: phosphatidylethanolamine; PE(O-/P-): ether-linked (plasmenyl/
plasmanyl) PE; PI: phosphatidylinositol; Cer: ceramide; Lac: lactosylceramide; HexCer: glucosylceramide; SM: sphingomyelin; CE: cholesteryl ester; 
CDCA sulfate: Chenodeoxycholic acid sulfate

(See figure on next page.)
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Fig. 3  Association of polar metabolite profiles with ethnicity. Differentially expressed polar metabolites in Caucasian and Asian, after adjusting for 
age, gender, HDL-C, Insulin, FPG, HbA1c, BMI and %VATTBF. All the displayed metabolites have statistically significant p value (BH-corrected p < 0.05). 
AAMU: 5-Acetylamino-6-amino-3-methyluracil; DMGV: (alpha-keto-dimethyl-delta-N,N-Dimethylguanidynol) valeric acid
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Fig. 4  Metabolites significantly associated with FPG and %VATTBF, after adjusting for gender, age and BMI. The Venn diagram showed the number of 
variables common or unique to Caucasian and Asian Chinese, including both annotated metabolites and unknowns; the adjusted beta-coefficient 
of every annotated metabolites in Caucasian (blue) and Asian Chinese (orange), were displayed in the coefficient plot
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0.18–0.38], p = 2.02E−07). Only MS-measured glucose, 4 
DG species, 16 TG species plus 2 unknowns were com-
mon makers for FPG in both ethnic groups (19% over-
lapped), and many of them contained an oleate moiety 
(Fig. 4a).

%VATTBF was associated with many lipid species in 
both Caucasians and Asian Chinese, whilst no polar 
metabolites measured by HILIC remained significantly 
associated with %VATTBF after multiple testing correc-
tion (BH-corrected p < 0.05). The %VATTBF-associated 
lipid features, either unique to each, or common to both 
ethnic groups, have been provided in Fig. 4b and Addi-
tional file  2: Table  S6. Independent of gender, age and 
BMI, %VATTBF in Caucasians was associated with 85 
non-redundant features (96% identified), including posi-
tive correlations with Cer(d40:0), SM(d36:0), 8 DGs, 4 
PCs, 4 PEs and 60 TGs, and negative correlations with 
2 ether-linked PCs and 2 SMs. The most strongly asso-
ciated lipid species based on p-value was TG(56:2) (0.3 
[95% CI 0.2–0.4], p = 8.25E−09). %VATTBF in Asian Chi-
nese was associated with 119 non-redundant features 
(92% identified), including positive correlations with 
PC(38:3), SM(d36:0), SM(d40:0), 4 ceramides, 10 DGs, 8 
PEs and 59 TGs, and negative correlations with PC(38:7), 
PE(P-36:1), 2 CEs, 13 ether-linked PCs and 9 SMs, with 
TG(58:3) being the most significantly correlated marker 
(0.25 [95% CI 0.17–0.34], p = 2.34E−08). 67 lipid spe-
cies were common markers for %VATTBF in both ethnic 
groups, encompassing lipid species of ceramide, SM, PC, 

PEs, ether-linked PCs, DGs and TGs (48.9% overlapped), 
and many of them notably contained a linoleate moiety 
(Fig. 4b).

Among the 105 variables associated with either FPG or 
%VATTBF in Caucasians, 20 were common markers for 
both FPG and %VATTBF (19% overlap) after adjusting for 
age, gender and BMI. These included DG(36:2), DG(38:2) 
and 17 TG species plus one unknown lipid species 
(m/z = 933.8665) (Fig. 5a and Additional file 2: Table S7). 
Whereas in Asian Chinese, 69 out of 160 variables asso-
ciated with either trait were common markers for FPG 
and %VATTBF (43.9% overlap) independent of age, gen-
der and BMI, including CE(22:4), Cer(d40:1), Cer(d42:1), 
PE(36:1), PE(36:2), SM(d42:3), SM(d43:2), SM(t34:1) in 
addition to 10 DG and 50 TG species plus one unknown 
lipid species (m/z = 924.8006) (Fig.  5b and Additional 
file 2: Table S8).

Predicting FPG state using the metabolomic signature
We have identified individual metabolite significantly 
associated with FPG and/or %VATTBF. Next, a random 
forest model for predicting IFG state from these metabo-
lites as a set of predictors was constructed. To do so, we 
combined the list of metabolites associated with FPG or 
%VATTBF from the previous step but removed the two 
MS-measured glucose features (i.e. 160–2 = 158 variables 
for Asian Chinese and 105–2 = 103 variables for Cauca-
sians), and built RF based on 100 top-ranked metabolites 
for each ethnicity (Additional file  2: Tables S7, S8). The 

Fig. 5  Overlaid metabolomic signature for FPG and %VATTBF in Caucasians and Asian Chinese. The Venn diagram showed the number of variables 
common or unique to FPG and %VATTBF, including both annotated metabolites and unknowns; the overlaid coefficient plot on the right displayed 
adjusted beta-coefficient of all metabolic features, with those being significantly associated with FPG (red) or VA (yellow) highlighted (BH-corrected 
p < 0.05)
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reason for excluding the MS-measured glucose from the 
re-stratification step is that it is of interest to determine 
the metabotype using biologically relevant information 
other than glucose itself, and including glucose may con-
found the variable selection and sample re-stratification. 
The RF models achieved a prediction accuracy with an 
area under receiver operating characteristic (ROC) curve 
of 0.79 (95% CI 0.704–0.882) in Caucasians and 0.76 (95% 
CI 0.646–0.847) in Asian Chinese (Additional file 1: Fig-
ure S2). These models were then used to define mFPG 
state, the predicted FPG state based on the metabolomic 
signature.

Characterisation of clinical profiles of the metabolic FPG 
state
After establishing a model to predict metabolic FPG 
state using the metabolomic signature (i.e. designated as 
either mNFG or mIFG), participants were stratified into 
4 groups for each ethnicity: 2 had predicted FPG states 
concordant to the actual state (NFG-mNFG, IFG-mIGF), 
and 2 had a discordant metabolic FPG state from the 
actual state (NFG-mIFG, IFG-mNFG). 74% of NFG and 
77% of IFG individuals had a concordant predicted FPG 
state (i.e. NFG-mNFG and IFG-mIFG, respectively) in 
Caucasian; 26% of NFG individuals were predicted to be 
mIFG (NFG-mIFG) and 23% of IFG individuals were pre-
dicted as mNFG (IFG-mNFG). In Asian Chinese, 70% of 
NFG and 74% of IFG individuals were predicted to have 
an mNFG and mIFG state, respectively; 30% of NFG indi-
viduals had an mIFG state and 26% of IFG individuals 
had an mNFG state.

The clinical and anthropometric profiles between these 
newly designated groups were then compared using a 
multivariate PLS-DA or univariate t-test approach. For 
the PLS-DA model, we first constructed and compared 
models using 21 clinical and anthropometric measure-
ments as explanatory variables and mNFG vs mIFG as 
predicted by the metabolomic signature or NFG vs IFG 
as stratified by ADA FPG criteria (Fig.  6). Both models 
of mNFG vs mIFG and NFG vs IFG were robust and 
revealed good separation between sample groups (mNFG 
vs mIFG model, R2Y = 0.428, Q2 = 0.384 for Caucasians 
and RY2 = 0.284, Q2 = 0.254 for Asian Chinese; NFG vs 
IFG model, R2Y = 0.316, Q2 = 0.282 for Caucasians and 
R2Y = 0.22, Q2 = 0.179 for Asian Chinese), with mNFG 
vs mIFG model outperforming NFG vs IFG in both eth-
nicities (Fig.  6). This highlighted the clinical profile was 
correlated better with the predicted FPG state by metab-
olomic than the actual FPG state. From the 4-group PLS-
DA analysis, component 1 clearly separated NFG-mNFG 
from all 3 IFG groups (NFG-mIFG, IFG-mNFG and IFG-
mIFG) in both ethnic groups, and the centre of NFG-
mIFG was projected even closer to IFG-mIFG than to 

NFG-mNFG (Fig. 7). These results collectively indicated 
a similar clinical risk profile of individuals delineated by 
the metabolic FPG state.

Comparison of clinical and anthropometric meas-
urements associated with cardiometabolic risk using 
a univariate approach based on this new stratification 
revealed a worse cardiometabolic risk profile of NFG-
mIFG individuals compared to the NFG-mNFG, despite 
all currently having a ‘normal’ fasting glucose level. This 
included higher adiposity-related parameters (BMI, 
waist-to-hip ratio), liver enzyme (ALP, GGT), total cho-
lesterol, total TG, LDL-C, glucoregulatory hormones 
(amylin, C-peptide, GLP-1, glucagon, insulin), and lower 
HDL-C in Caucasians (p < 0.05) (Fig.  8a). In Asian Chi-
nese, NFG-mIFG individuals were characterised by 
higher blood pressure (SBP, DBP), adiposity-related 
parameters (BMI, waist-to-hip ratio), liver enzymes (ALT, 

Fig. 6  PLS-DA model based on clinical variables associated with 
cardiometabolic risks as independent variables. Score plots and 
model performances for PLS-DA models of NFG vs IFG or mNFG vs 
mIFG in a Caucasian and b Asian Chinese. Clinical variables HbA1c, 
HOMA2-IR, BMI, age, waist-to-hip ratio, SBP, DBP, ALT, AST, ALP, GGT, 
total cholesterol, HDL-C, total TG, LDL-C, amylin, C-Peptide, GIP, GLP-1, 
glucagon, insulin were use as x-variable in the PLS-DA models
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AST, GGT), total cholesterol, total TG, glucoregulatory 
hormones (amylin, C-peptide, insulin), and lower HDL-C 
than NFG-mNFG individuals (p < 0.05) (Fig.  8b). Con-
versely, Caucasian IFG-mNFG individuals tended to be 
younger and had lower total TG, and Asian Chinese IFG-
mNFG individuals had lower total TG and higher HDL-C 
than their IFG-mIFG counterparts (p < 0.05).

Discussion
T2D is a progressive disease that may be prevented if at-
risk individuals can be identified before disease onset and 
managed through lifestyle and dietary intervention [48]. 
As such, prediabetes has attracted considerable attention 
as it represents a stage where individuals have a subop-
timal glycaemic profile and a higher risk of proceeding 
to T2D onset [49]. Metabolite markers identified using 
metabolomics may provide insights into the metabolic 
perturbation contributing to T2D development and help 
to identify at-risk individuals. Notably most metabo-
lomics studies screening for biomarkers have focused on 
a single population, however ethnicity is also a key risk 
factor for T2D that requires investigation. The greater 

susceptibility of certain populations to T2D with higher 
propensity of visceral fat deposition suggests metabolic 
alterations contributing to T2D development are likely 
to differ between ethnicities [50]. Our study provides 
compelling evidence for a highly discriminatory fasting 
plasma metabolome between Asian Chinese and Cauca-
sians. The major differences included a number of AA-
related metabolites involved in tryptophan and histidine 
metabolism, methyl transfer pathway, sugar derivatives, 
gut microbial metabolites and exogenous compounds, 
as well as lipid species encompassing 15 lipid subclasses. 
These results highlighted the need for investigating 
metabolic alterations and biomarkers associated with 
risk for T2D development in each ethnicity separately. 
Subsequently, the ethnicity-stratified analysis showed 
that FPG was associated with a wide range of lipid spe-
cies and fewer polar metabolites in both ethnic groups, 
emphasising a prominent shift in lipid metabolism asso-
ciated with impaired fasting glucose. Common mark-
ers for FPG across both ethnic groups included DG and 
TG species and the MS-measured glucose. The associa-
tion between elevated glycerolipids and development of 

Fig. 7  PLS-DA model based on parameters associated with cardiometabolic risks as independent variables. Score plots and loading plots with 
projected centre from each group for PLS-DA of four level analysis (NFG-mNFG, NFG-mIFG, IFG-mNFG and IFG-mIFG) in a Caucasian and b Asian 
Chinese
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T2D has been well documented, and our results are in 
line with other metabolomics studies [51–53]. FPG was 
additionally associated with 3 lipid classes and eryth-
ronic acid in Caucasian, and 8 lipid classes, acetylcar-
nitine and an unknown hexose in Asian Chinese. These 
associations were unique to each ethnic group and might 
underlie different metabolic perturbation contributing to 
development of dysglycaemia. Notably, more lipid mark-
ers remained significantly associated with FPG in Asian 
Chinese after adjustment for age, gender and BMI than 
in Caucasians, and a larger portion of markers for FPG 
overlapped with those for %VATTBF in Asian Chinese 
(43.9% overlap) than in Caucasians (19% overlap), sug-
gesting visceral adiposity was more closely related to the 
development of dysglycaemia in Asian Chinese inde-
pendent of total adiposity.

With limited studies investigating metabolic altera-
tions associate with VAT deposition, we here provided 

evidence demonstrating visceral adiposity profoundly 
affected lipid metabolism whilst changes of polar metab-
olites were only weakly associated (i.e. no metabolites 
passed the significance level after multiple testing cor-
rection). 67 lipid species belonging to 7 classes were 
common %VATTBF markers to both ethnic groups, and 
%VATTBF was specifically associated with 2 additional 
lipid classes in Asian Chinese. Both ethnic groups had a 
TG species (TG(58:2) for Caucasians and TG(58:3) for 
Asian Chinese) as the most significant marker (i.e. lowest 
p-value) correlated with %VATTBF. The similar pattern of 
lipid profiles associated with %VATTBF across the 2 ethnic 
groups suggested a homogenous metabolic adaptation to 
visceral adiposity irrespective of ethnic background.

Dysregulation of lipid metabolism is a characteristic 
of T2D and suggested to be a metabolic event prior to 
the onset of dysglycaemia [54]. Meikle et  al. have com-
prehensively measured the lipid profile associated with 

Fig. 8  Clinical characterisation the newly assigned metabotype groups. Boxplot showed different levels of parameters associated with 
cardiometabolic health among healthy (NFG-mNFG), normoglycaemic with “prediabetic” metabolomic signature (NFG-mIFG), impaired fasting 
glucose with normoglycaemic metabolomic signature (IFG-mNFG), and prediabetic (IFG-mIFG) individual in (a) Caucasian and (b) Asian Chinese. 
T-test was carried out on each pair of NFG-mNFG vs NFG-mIFG, IFG-mNFG vs IFG-mIFG, NFG-mNFG vs IFG-mIFG (*p < 0.05, **p < 0.01, ns: p > 0.05). All 
measured values were scaled to mean = 0, standard deviation = 1
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prevalent prediabetes and T2D [51]. Many of their obser-
vations were replicated in our Asian Chinese group, 
including association with glycerolipids, ceramides, PEs 
and ether-linked PCs. Ceramides have been implicated 
in insulin resistance (IR) as mediators of lipotoxocity 
and strong associations between high levels of plasma 
ceramides and reduced insulin sensitivity, prediabetes 
(glucose intolerance as determined by oral glucose toler-
ance test) and T2D have been previously reported [55]. 
In addition, we detected an inverse association between 
levels of FPG and SMs and hexosylceramide. In a previ-
ous cross-sectional study comprising 111 Asian partici-
pants, levels of SMs were also markedly lower in IFG/
T2D individuals than healthy controls [56]. SMs also 
inversely correlated with T2D risk in prospective stud-
ies including the European Prospective Investigation into 
Cancer and Nutrition (EPIC)-Potsdam and PREDIMED 
trials [53, 57]. The positive correlation of ceramides con-
comitant with negative correlation of SM species and 
hexosylceramide with FPG observed in the present study 
reinforced a role of altered sphingolipid metabolism in 
T2D pathogenesis. Interestingly, %VATTBF also corre-
lated with several ceramide species and dihydroceramide 
Cer(d40:0), and negatively correlated with SM species in 
Asian Chinese, highlighting a link between visceral adi-
posity and altered sphingolipid metabolism. Remarkably, 
all ceramide species correlated with %VATTBF observed 
in our study contained a very long acyl chain (C22:0, 
C24:0 and C24:1), all of which are likely to be products 
of CerS2, a ceramide synthase showing substrate specific-
ity for longer acyl chain species which is predominantly 
expressed in liver [58, 59]. Collectively, visceral adiposity 
might be associated with an altered sphingolipid metabo-
lism that might partly contribute to hepatic IR and confer 
early dysglycaemia in Asian Chinese. An altered sphin-
golipid profile was also associated with visceral adiposity 
but not FPG in Caucasians, suggesting an altered sphin-
golipid metabolism was a consistent trait for increased 
VAT deposition across both ethnicities but not directly 
implicated in early dysglycaemia in Caucasians.

Our results confirmed a metabolic shift in the phos-
pholipid profile implicated in T2D development [60]. 
However, the molecular makeup segregated between 
the two ethnic groups. FPG positively correlated with a 
number of PCs in both ethnic groups, and additionally 
correlated with PEs in Asian Chinese. We also observed 
elevated PCs and PEs associated with %VATTBF in both 
ethnic groups. The association between PEs and pre-
diabetes/T2D was highlighted in Meikle’s study as well 
as in another study conducted in a Chinese cohort [51, 
61]. Both PEs and PCs were also reported to be associ-
ated with incident T2D [53, 57]. A concordant alteration 
of phospholipids and glycerolipids has been suggested to 

relate to hypertriglyceridaemia and increased very low-
density lipoprotein (VLDL) production [62].

We have intriguingly observed an inverse correlation 
of FA(16:0) and FA(18:2) with FPG in Asian Chinese, 
as opposed to several studies reporting associations of 
elevated FFA with IR and development of T2D [56, 63, 
64]. One explanation might be an increased uptake and 
utilisation of FFA by the liver to fuel TG re-esterification 
and VLDL secretion [65, 66]. In fact, a recent study has 
shown a U-shaped instead of linear relationship between 
plasma FFA and insulin resistance in Chinese, and this 
trend was more prominent in non-obese individuals [67]. 
As elevated plasma FFA is a characteristic of adipose tis-
sue IR [68], our data did not support adipose tissue IR as 
a primary factor associated with early dysglycaemia in 
our Asian Chinese cohort; instead, hepatic IR or hyper-
insulinaemia leading to increased hepatic uptake and uti-
lisation of FFA might explain such an inverse association. 
In addition, we observed an inverse correlation between 
acetylcarntine and FPG in Asian Chinese. Acetylcarni-
tine is the product of complete beta-oxidation as well as a 
substrate for lipogenesis, and an inverse correlation may 
reflect impairment in complete FAO or an increased uti-
lisation for lipogenesis. Our method did not detect other 
acylcarnitines, thus it is difficult to conclude whether 
such an inverse correlation was due to incomplete FAO. 
Profiling of acylcarnitines with a targeted approach in the 
future may help to explain this association.

We observed a negative correlation between FPG and 
an ether-linked PC in Asian Chinese, consistent with 
other reports of an inverse association of this lipid class 
with prevalent and incident T2D, obesity and IR [51, 
53, 57, 69]. In addition, an inverse association between 
ether-linked PC and %VATTBF was observed in both eth-
nic groups, in good agreement with a previous finding 
of an ether lipid signature characteristic for VAT depo-
sition [31]. Little is known about the biological role of 
ether-linked PC despite accumulating evidence showing 
its association with metabolic health. It might act as a 
free radical scavenger and protect against LDL oxidation 
[70, 71]. In contrast to Asian Chinese, a mixture of ether-
linked PC and ether-linked PE positively correlated with 
FPG in Caucasians, all of which contained an arachidonic 
acyl chain. Ether-linked phospholipids are also sources of 
arachidonic acid and arachidonic acid is a precursor of 
the production of pro-inflammatory eicosanoids [70, 72]. 
Our result suggested an elevated FPG in Caucasians was 
concurrent with an increased lipid reservoir for second-
ary messengers with pro-inflammatory potential, which 
might accelerate insulin resistance and the development 
of T2D.

Contrary to several studies demonstrating a positive 
association between CE and prediabetes/T2D, we have 
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unexpectedly found an inverse association. However, 
the PREDIMED trial has reported an inverse association 
between CEs and risks of T2D and CVD [53, 73], and 
the authors linked this observation to the “atherogenic 
lipoprotein phenotype” (characterised by increasing 
atypically small and dense LDL, usually accompanied by 
elevated plasma TG and reduced HDL [74]). The small 
and dense LDL particles are packed with TG instead of 
CEs [75], and are suggested to be preferentially cleared 
from plasma via a receptor-independent pathway and 
therefore exhibit enhanced atherogenic potential [76]. A 
previous intervention study has shown a high CHO diet 
is a primary dietary factor driving the atherogenic lipo-
protein pattern whereas a restricted CHO diet attenu-
ated this expression [77]. Without dietary record in the 
present study it is hard to comment beyond this point; 
but considering the cultural background of Asian Chi-
nese tending to consume large amount of refined grain 
(e.g. rice), our interesting finding prompts the hypothesis 
that the association between CE and risk factors for T2D 
development may be interrelated with diet.

In addition to the MS-measured glucose itself, FPG 
was correlated with erythronic acid in Caucasians and 
an unknown hexose in Asian Chinese. Erythronic acid 
is a novel hitherto-unreported marker that will require 
further validation, whereas increased hexose (other than 
glucose) associated with prediabetes and T2D was in line 
with the others [56, 78].

Taking the metabolomic signature jointly determined 
by %VATTBF—and FPG-associated metabolomic profiles, 
we were able to create a novel stratification with a sub-
set of normoglycaemic individuals whose metabolomic 
signature resembled that of prediabetes (termed NFG-
mIFG). In both ethnicities they were characterised by 
higher BMI and W-to-H ratio, and worse lipid (higher 
total cholesterol and TG, lower HDL-C), liver enzyme 
and hormone (amylin, C-peptide and insulin) profiles 
compared to NFG-mNFG counterparts. Of particular 
interest were the higher liver enzymes, which are indi-
cators of inflamed or damaged liver cells. The liver is a 
key organ in the regulation of energy homeostasis and 
metabolism, and is proposed as the primary site affected 
by excess VAT deposition [14]. Hepatic IR may result 
from release by VAT into the portal vein of lipolytic prod-
ucts such as FFA and adipokines, as well as inflammatory 
cytokines by infiltrated macrophages [79]. Importantly, 
the multivariate statistical modelling revealed improved 
discrimination between mNFG and mIFG metabotypes 
than clinical NFG and IFG classification, suggesting a 
metabolomics-derived signature was more reflective 
of the integrated changes across a broad range of car-
diometabolic risk factors. NFG-mIFG individuals maybe 

more susceptible to rapid development of T2D than 
NFG-mNFG despite current normoglycaemia. Validation 
of these predictions are required through a longitudinal 
follow up study, or retrospectively on already existing 
longitudinal public datasets.

One strength of our study is the simultaneous meas-
urement of metabolomic profiles from two co-located 
ethnic groups with the same extraction protocol and 
analytical platform, allowing direct comparison whilst 
minimising environmental confounding factors to inform 
ethnicity-specific changes in metabolism associated with 
T2D development. The use of unbiased, highly sensitive 
and complementary methods enabled a more holistic 
view of metabolic perturbation associated with increased 
visceral adiposity and FPG. In addition, we have utilised 
the metabolomic signature characteristics to develop a 
possible risk prediction of T2D development, identifying 
individuals with a worse cardiometabolic profile despite 
having normoglycaemia. Limitations include the nature 
of cross-sectional studies which precludes conclusion on 
causality and requires follow-up to confirm our findings. 
In spite of a wide range of metabolites and lipids meas-
ured by untargeted metabolomics, this approach may 
not be optimal if a particular class of metabolites/lipids 
is of interest, hence it is inevitable that some of the find-
ings by others using metabolite class-optimised targeted 
approaches such as the analysis for acylcarnitines were 
not observed in our study.

Conclusions
Our study has revealed a broad spectrum of lipid species 
associated with FPG and %VATTBF in both Caucasian and 
Asian Chinese independent of age, gender and BMI. We 
have shown plasma metabolomic profile to be profoundly 
influenced by ethnicity, and are the first to compare an 
ethnicity-specific signature for T2D risk factors includ-
ing FPG and visceral adiposity. A similar signature for 
%VATTBF across both ethnicities but a very different sig-
nature for FPG observed in the present study highlighted 
homogeneous metabolic adaptations and alterations in 
response to VAT deposition, yet a distinct underlying 
pathogenesis of dysglycaemia. Predictive modelling using 
the joint metabolomic signature of FPG and %VATTBF 
has identified a subset of individuals with worse cardio-
metabolic risk despite current healthy normoglycaemia. 
This novel approach of re-stratification using the metab-
olomic signature aids early identification of those at-risk 
of T2D. This modelling approach could be applied to a 
wide range of diseases.
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