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Regional transcriptome analysis 
of AMPA and GABAA receptor 
subunit expression generates E/I 
signatures of the human brain
Kevin Shen1,4, Tommaso Zeppillo2,3,4 & Agenor Limon  3*

Theoretical and experimental work has demonstrated that excitatory (E) and inhibitory (I) currents 
within cortical circuits stabilize to a balanced state. This E/I balance, observed from single neuron to 
network levels, has a fundamental role in proper brain function and its impairment has been linked 
to numerous brain disorders. Over recent years, large amount of microarray and RNA-Sequencing 
datasets have been collected, however few studies have made use of these resources for exploring the 
balance of global gene expression levels between excitatory AMPA receptors (AMPARs) and inhibitory 
GABAA receptors. Here, we analyzed the relative relationships between these receptors to generate a 
basic transcriptional marker of E/I ratio. Using publicly available data from the Allen Brain Institute, we 
generated whole brain and regional signatures of AMPAR subunit gene expression in healthy human 
brains as well as the transcriptional E/I (tE/I) ratio. Then we refined the tE/I ratio to cell-type signatures 
in the mouse brain using data from the Gene Expression Omnibus. Lastly, we applied our workflow to 
developmental data from the Allen Brain Institute and revealed spatially and temporally controlled 
changes in the tE/I ratio during the embryonic and early postnatal stages that ultimately lead to the 
tE/I balance in adults.

Theoretical and experimental work has shown that fast excitatory (E) and inhibitory (I) currents within cortical 
circuits stabilize rapidly to a balanced state1–6. This E/I balance, observed from single neuron to recurrent con-
nected network levels, produces robust neuronal learning capabilities while minimizing disturbance by output 
noise7. The balance’s fundamental role in proper brain function has been demonstrated via pharmacological 
blocking of cortical inhibition which led to cortical epileptic activity and loss in stimuli features decoding8,9. 
Therefore, disturbances to this balance have been linked to numerous psychiatric, neurodevelopmental, and 
neurodegenerative disorders including schizophrenia, autism, and Alzheimer’s disease10–14. At the synaptic level, 
the electrophysiological E/I (eE/I) balance is driven mainly by the concerted activity of excitatory α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and inhibitory γ-aminobutyric acid type A 
receptors (GABAARs)15; however, it remains unknown to what extent the transcription levels of each receptor 
are also balanced across brain regions and developmental stages. This information would prove highly impor-
tant and useful since direct measurement of the activity of neurotransmitter receptors at the single neuron 
level in healthy humans is not currently possible with available technology. Rather, differential gene expression 
of postmortem tissue is the most widely used approach in making inferences of neurotransmitter function in 
physiological and diseased states.

Our previous work demonstrated a bioinformatics approach to analyzing the organizational layout of 
GABAARs in the human brain. This approach proposed the most abundant isoforms that followed a preferential 
pentameric arrangement in the human brain and showed that gene co-expression patterns of GABAAR subunits 
are highly stereotypical within structures characterized by recurrent cytoarchitecture16. Here, we shift our focus 
to glutamatergic AMPARs. These receptors mediate the post-synaptic depolarization necessary for fast excitatory 
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transmission and participate in the long-term potentiation and depression necessary for appropriate function of 
cortical circuits17. Unlike the highly diverse and heterogeneous GABAARs18, AMPARs are constructed as dimers 
of dimers19,20 from a pool of only four subunits (GluA1–GluA4)21 transcribed from four genes (GRIA1–GRIA4). 
This construction has been suggested to be highly dependent on afferent type22,23 and can change with synaptic 
activity24,25. Stoichiometric alterations and single subunit defects of AMPAR tetramers have been correlated with 
many brain disorders26. For instance, reductions in GluA2 and GluA3 subunits were found in the hippocampus of 
patients suffering from mild to severe forms of Alzheimer’s disease26, and alterations in GluA1-4 expression level 
have been observed in different human brain structures of people diagnosed with schizophrenia27–29. Therefore, 
understanding the organizational layout of these receptors should prove useful in determining pathological 
remodeling of AMPARs, and consequently alterations to the E/I balance.

Our analysis was performed at different levels using publicly available data (Fig. 1a). First, we examined major 
relationships between AMPAR subunit expression levels across a wide variety of structures from a microarray 
dataset from the Allen Brain Institute. This analysis, although low in number of subjects (n = 6), was extensive in 
its anatomical coverage, which ranged across 111 brain structures30. To analyze inter-individual differences, we 
utilized RNA-sequencing (RNA-Seq) data from the Aging, Dementia, and Traumatic Brain Injury (ADTBI) study 

Figure 1.   Global and regional transcriptomic analysis of AMPAR subunits (GRIA1-4) in the human brain. (a) 
Diagram detailing transcriptomic workflow. Publicly available data from the Allen Brain Atlas, Brainspan, and 
the ADTBI studies were filtered using exploratory factor analysis and analyzed at the global and regional levels 
for both GRIA1-4 expression and tE/I ratio patterns. (b) Box plots of microarray gene expression from the Allen 
Brain Atlas (111 substructures per 6 subjects) and corresponding percent contributions at the global level. The 
median is represented by the line within the box, and the first and third quartiles are represented by the ends of 
the box. The whiskers extend from each end of the box to the first or third quartile ± 1.5 (interquartile range). 
Points outside of the whiskers are outliers and color-coded according to the inset. FL frontal lobe, Ins insula, 
CgG cingulate gyrus, HiF hippocampal formation, PHG parahippocampal gyrus, OL occipital lobe, PL parietal 
lobe, TL temporal lobe, Amg amigdala, GP globus pallidus, Str striatum, Cl claustrum, Hy hypothalamus, 
SbT subthalamus, DT dorsal thalamus, Vt ventral thalamus, MES mesencephalon, CbCx cerebellar cortex, 
CbN cerebellar nuclei, Bpons basal part of the pons, PTg pontine tegmentum, MY myelencephalon. (c) Two-
way unsupervised Ward’s hierarchical clustering of microarray data from the Allen Brain Atlas for analysis 
of substructures. Major brain regions were separated by Log2 gene expression, and subunits were clustered 
according to their regional expression levels. Structures are color coded as in b, and ontogeny is detailed by the 
inset. For substructure abbreviations, please see Supplementary Data 2.
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(https​://aging​.brain​-map.org/), which included a much higher number of individuals (n = 50), but was limited 
to only four regions: the hippocampus (HIP), temporal cortex (TCx), parietal cortex (PCx), and forebrain white 
matter (FWM). Together, these complementary analyses created a signature of AMPAR subunit expression in 
the healthy human brain. To determine whether transcripts for AMPAR subunits and GABAAR subunits were 
balanced, we then calculated and analyzed the ratio between AMPAR and GABAAR subunit expression at both 
the whole brain and structural levels. This generated an estimate of the most basic signature of the transcriptional 
E/I (tE/I) ratio. Finally, to investigate the usefulness of these signatures, we applied our method to single cell data 
from phenotypically characterized interneurons in mice and to RNA-sequencing data from the Allen Brainspan 
study that ranged from early embryonic stages to adulthood in humans.

Results
Global and region‑specific expression patterns of AMPAR subunits.  We first analyzed the micro-
array data from the Allen Brain Atlas at the whole brain level. From this data, we selected the most representative 
probe for each gene (Supplementary Data 1) using exploratory factor analysis (Fig. 1a; Supplementary Fig. S1 
for selection process) and divided the brain into major regions, structures, and substructures following the Allen 
Brain Atlas’ nomenclature (Supplementary Data 2). The initial global analysis after adjusting by age (Supple-
mentary Data 3; Supplementary Fig. S2) revealed high expression levels (Log2 > 4) for all four subunits (Fig. 1b). 
GRIA2 was the most expressed AMPAR subunit in the whole brain followed by GRIA4, GRIA1 and GRIA3 
(Fig.  1b). However, there was high variability across brain regions in expression levels for all four subunits, 
particularly for GRIA1 and GRIA4 (Supplementary Fig. S2). For example, structures such as the hippocampal 
formation (HiF; CA1-4 and DG) and the internal globus pallidus (GPi) were outliers at the global expression 
level for GRIA1. A nested ANOVA analysis of gene expression, where substructures are nested within struc-
tures to account for substructure dependencies, confirmed different levels of expression for all 4 subunits across 
major structures and across some substructures within the same region (Supplementary Data 4). To address 
this regional variability, unsupervised hierarchical clustering was performed to group together structures with 
similar expression profiles (Fig. 1c). The strength of these clusters was examined through non-parametric boot-
strap resampling to calculate both the approximately unbiased probability (AU) and bootstrap probability (BP) 
p values (Supplementary Fig. S3). The structures were first split between structures of telencephalic origin and 
those of diencephalic, mesencephalic, metencephalic, and myelencephalic origins (AU > 0.95, Fig. 1c). Within 
the latter group, further divisions based on structure ontogeny were observed. Regions of metencephalic origin 
exhibited very low levels of GRIA3 expression (Log2 < 4) and high levels of both GRIA2 and GRIA4 (Log2 > 9) 
while regions originating from the diencephalon, mesencephalon, and myelencephalon exhibited lower GRIA2 
expression (Log2 < 9.9; Fig.  1c). There was very strong evidence (AU > 0.95) for clustering of metencephalic 
structures at nearly all levels. Structures from these three regions were then further split between those with 
GRIA1 expression levels comparable to metencephalic structures (Log2 ≈ 8) and those with very low GRIA1 
expression levels (Log2 < 6). However, evidence for clustering of substructures within these structures was not as 
robust (AU < 0.95).

By contrast, the telencephalic cluster exhibited a high degree of homogeneity, particularly within cerebral 
cortical regions where high levels of GRIA2 and GRIA4 (Log2 > 9.5) and lower levels of GRIA1 and GRIA3 
(Log2 < 9.5) were observed (Fig. 1c). Some slight variations were introduced with the cerebral nuclei which 
typically exhibited lower levels of GRIA4 (Log2 < 9) and a structure-dependent increase in GRIA1 expression 
(Log2 > 9). However, this cluster was not as robust as that of the cortical regions with an AU ± S.E.M of only 
0.942 ± 0.005 (Supplementary Fig. S3). The hippocampal formation differed greatly from all other structures 
with high GRIA1-3 expression (Log2 > 10) but low GRIA4 expression (Fig. 1c), and the evidence for this cluster 
was very strong (AU ± SE = 0.999 ± 0.001).

The hippocampal formation contained the substructures with the greatest fold enrichment of GRIA1 (CA4), 
GRIA2 (DG) and GRIA3 (CA1) expression (Table 1). GRIA1 was particularly enriched in the CA4 with an 
expression ~ 1,000% larger than the global brain average.

Proportional contributions of AMPAR subunits and inter‑individual variability.  To determine 
the contribution of all available transcripts for AMPAR subunits per brain region, we calculated the average 
percentage of expression for each subunit as was previously done for GABAARs subunits16; that is to calculate 
the sum of probe intensities across AMPAR subunits and then determine to proportional contribution of the 
intensity of each probe to this sum. This proportional contribution is an estimate that represents the available 

Table 1.   Human brain substructures with greatest anatomical enrichment. The expression (log2) represents 
the average per brain region. The fold enrichment is the substructure’s value divided by the global average. HiF 
Hippocampal Formation, VT ventral thalamus.

Subunit Major region Structure Substructure Expression (log2) Fold enrichment

GRIA1 Cerebral cortex HiF CA4 11.54 10.12

GRIA2 Cerebral cortex HiF Dentate Gyrus 12.63 3.31

GRIA3 Cerebral cortex HiF CA1 10.46 3.75

GRIA4 Tectum VT Reticular nucleus 11.33 2.23

https://aging.brain-map.org/
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pool of AMPAR subunits mRNA in each brain region, structure, or substructure, and normalizes distinct levels 
of expression between different brain areas (Fig. 2). As before, the cerebral cortex was highly homogenous with 
a greater contribution from GRIA2. GRIA1 contributed more in the hippocampus and cerebral nuclei, and 
noncortical regions were more variable and dominated by GRIA4 (Fig.  2). Further analysis revealed oppos-
ing expression patterns between some subunits. For example, the hippocampus showed a gradual decrease in 
the proportional contribution of GRIA2 from the DG to CA4 that was paralleled by a gradual increase in the 
contribution of GRIA1 (Fig. 2). Similarly, GRIA4 and GRIA2 followed opposing patterns of expression in the 
myelencephalon and thalamus compared to the cortex (Fig. 2).

It is important to note that microarray data is highly influenced by technical factors, and intensity levels are 
typically compared across experimental units for the same probe, not across probes within the same experimental 
unit as we are doing in this study; therefore we compared the proportional contribution of GRIA subunits in the 
temporal cortex using microarray (n = 6 subjects with 12 temporal lobe substructures per subject) with that using 
RNA-Seq of the ADTBI study (n = 50 subjects), which is a better measure of mRNA expression. Proportional 
contributions in both datasets showed similar relationships across GRIA1, GRIA2 and GRIA3 subunits providing 
support for our microarray analysis of these subunits; the proportion of GRIA4 seems to be overrepresented in 
microarray compared to RNA-Seq (Supplementary Fig. S4), a probable consequence of choosing the probe with 
higher correlations across all GRIA4 probes in the whole brain, that happened to also have the highest intensity, 
highlighting some of the technical limitations aforementioned (Supplementary Fig. S1).

In addition to differences in level of gene expression of isolated subunits, we also explored the variability in 
the collective organization of AMPAR subunits between individuals. To do so, we followed the previous approach 
used for GABAARs16. First, inter-individual variability, within and across substructures of the microarray study, 

Figure 2.   Region-specific proportional contribution of AMPAR subunits (GRIA1-4) across the brain. The area 
map graph (top) shows proportional contributions of each subunit as percentages to the total pool of AMPAR 
subunits in the brain. The line graph (bottom) of proportional contributions by each subunit more clearly 
shows interregional trends. (n = 6 subjects, 111 substructures) Structures are organized in a rostro-caudal order 
according to the Allen Brain Atlas. FL frontal lobe, Ins insula, CgG cingulate gyrus, HiF hippocampal formation, 
PHG parahippocampal gyrus, OL occipital lobe, PL parietal lobe, TL temporal lobe, Amg amigdala, GP globus 
pallidus, Str striatum, Cl claustrum, Hy hypothalamus, SbT subthalamus, DT dorsal thalamus, Vt ventral 
thalamus, MES mesencephalon, CbCx cerebellar cortex, CbN cerebellar nuclei, Bpons basal part of the pons, PTg 
pontine tegmentum, MY myelencephalon. For substructure abbreviations, please see Supplementary Data 2.
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was quantified by calculating the Euclidian distances (d) between the expression levels of GRIA subunits in each 
region and correlating these results. For example, the correlation coefficient (R) between the superior frontal 
gyrus across individuals (di) was higher (diSFG-SFG = 0.94 ± 0.05; Mean ± SD) than in the dentate gyrus (diDG-DG 
0.81 ± 0.18), indicating that the dentate gyrus is more variable across individuals than cortical regions (Sup-
plementary Fig. S5). To extend the analysis and compare brain regions at the level of substructures the frontal 
operculum (fro), which is the frontal-most structure displayed in the Allen Atlas, was chosen to construct a 
reference (consensus) against which all other 110 substructures were compared (dcFro). Each substructure from 
each subject was then measured against this reference (Fig. 3a and Supplementary Fig. S6). Cerebral cortical 
structures were mostly homogenous with correlation coefficients close to one, indicating a high similarity to 
other cerebral structures and to the frontal operculum (Fig. 3a and Supplementary Data 6 for statistical analyses). 
Hippocampal structures, as expected, differed greatly from other cerebral regions (r < 0.6) and were more vari-
able between individuals (Fig. 3a). However, the microarray study included only six subjects, so we turned to 
the ADTBI study (n = 50 subjects) to examine inter-individual variability more accurately. For this analysis, the 
parietal cortex was chosen as the reference structure against which the other three structures were compared. The 
parietal and temporal cortices were identical with virtually no global variability between all 50 subjects (Fig. 3c). 
Surprisingly, unlike what was previously observed for GABAAR subunits16, the forebrain white matter was very 
similar to the cortices with low inter-individual variability (Fig. 3c). The hippocampus, in agreement with the 
microarray data, was very different from the other structures and highly variable between subjects (Fig. 3c). This 
difference arose primarily out of a higher proportional contribution of GRIA1 in the hippocampus as opposed 
to the other three regions.

Global and region‑specific patterns of transcriptional excitation–inhibition ratio markers.  To 
combine these results with the expression patterns in GABAARs subunits we previously uncovered, we used 
the microarray gene expression data as a marker of the tE/I ratio by dividing the sum of probe intensities 
across AMPAR subunits by the sum of probe intensities across GABAAR subunits (Supplementary Data 7). 
This is the most basic and non-subunit specific estimation of the transcriptional foundations of the E/I bal-
ance based on gene expression for the principal gates of excitation and inhibition. Because age correction may 
change GABAARs and AMPARs differently and lead to distinct ratios in each subject, we compared the tE/I ratio 

Figure 3.   Inter-individual variability across brain regions. (a) Euclidian distances of AMPAR subunits per 
structure (111) per subject (n = 6; di) were correlated against a standard (frontal operculum, fro; dc) using 
microarray data corrected by age. Structures are organized in a rostro-caudal order as in Fig. 2. Correlation 
coefficients (R) closer to one indicate higher similarity in expression patterns between the substructures and the 
standard. Each point is a single subject containing the collective information of all four AMPAR subunits. (b) 
Same information as in a but grouped by structure. (c) Euclidian distances of AMPAR subunits per structure (4) 
and per subject (n = 50) were correlated against the Parietal Cortex (PCx) using ADTBI data corrected by age. 
The hippocampus (HIP) is drastically different from the other three regions and also highly variable between 
subjects. FWM, forebrain white matter, TCx, Temporal cortex. Each point is a single subject.
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using gene expression levels with and without age correction. Both ratios were linearly correlated (R2 = 0.789; 
p < 0.0001) and no significant difference in each substructure was observed between both ratios, although more 
dispersion was observed using non-corrected data (p > 0.29 in all cases by Welch’s testing means equal, allowing 
SD not equal, Fig. 4 and Supplementary Fig. S7). For simplicity, we decided to use the tE/I based on non-adjusted 
gene expression values. Expression patterns across cerebral cortical regions were relatively homogenous with 
tE/I ratios close to one (Fig. 4a). Similarly, cerebellar regions exhibited highly homogenous tE/I ratios though 
these were lower than those found in the cerebral cortex (Fig. 4a). Hippocampal structures exhibited a higher 
tE/I ratio overall compared to the rest of the brain, apart from the reticular nucleus (Supplementary Data 7). 
Within the hippocampus, the tE/I ratio gradually decreased from DG to CA2 and then increased from CA3 to 
CA4 where AMPAR subunit expression was nearly double that of GABAARs subunit expression (Fig. 4a). Cer-
ebral nuclei and thalamic regions were more variable with more caudal regions tipping towards greater inhibi-
tion (Fig. 4a). The structure with the greatest difference was the reticular nucleus in the ventral thalamus (tE/
Imean = 3.8, Fig. 4a). These observations were further supported by the ADTBI RNA-Seq dataset. The tE/I ratios 
using non-adjusted by age gene expression in the parietal and temporal cortices were remarkably homogeneous 
and both were significantly different from the hippocampus, which was both higher and more spread (Fig. 4b; 
Supplementary Data 8 for statistical analysis). No differences in the tE/I ratio in the temporal and parietal cor-
tices, hippocampus or forebrain white matter by sex were observed (p > 0.11 double tailed t test; Supplemen-
tary Fig. S8). Even though the tE/I ratio in the forebrain white matter was more variable across individuals, 
the tE/I ratios from these structures were remarkably constant overall, indicating that AMPARs and GABAARs 
were highly correlated within brain structures, although with different slopes (Fig. 4c). Such strong correlations 
between AMPARs and GABAARs suggest that transcriptional correlations start at the cellular level. Indeed, the 

Figure 4.   Structural differences in transcriptional E/I ratio in the human brain. (a) Mean ± S.E.M. of the tE/I 
(total probe intensity of AMPAR (ΣAMPARs) subunits over total probe intensity of GABAAR (ΣGABAARs) 
subunits) across the whole human brain. The ratios before (red) and after age correction (blue) were calculated 
for each region and were not different within brain structures. Structures were ordered along the anteroposterior 
axis. (b) The tE/I ratio calculated from the ADTBI RNA-Seq data. Each point represents a single subject. (c) 
Plotting total AMPAR subunit against total GABAAR subunit expression levels from ADTBI RNA-Seq data. 
Strong positive linear correlations were detected within all four structures (p < 0.001 for all), though with 
different slopes. Histograms represent the data distribution for the cohort in either axis.
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electrophysiological E/I (eE/I) balance has been demonstrated in excitatory pyramidal neurons as well as inhibi-
tory interneurons31–33. However, analyzing the tE/I at the single cell level by single-cell RNA-Seq (sc-RNA-Seq) 
in humans is challenging due to the inherent low coverage of the method (approx. 10–20% of the transcriptome) 
and the potential mRNA degradation by postmortem interval and agonal factors34. Therefore, we used a high 
resolution sc-RNA-Seq dataset from six phenotypically identified cortical interneurons from mice35 to test for 
intra- and inter-variability of the tE/I ratio at the cell-type level (Fig. 5). For this analysis, we used the dataset 
from Paul et al.35 available on the gene expression omnibus (GEO; GSE92522) which provided data from ana-
tomically and physiologically identified cortical chandelier cells (CHCs), perisomatic fast-spiking basket cells 
(PVBCs), long-projecting interneurons (LPCs), Martinotti cells (MNC), interneuron-selective cells (ISCs) and 
CCKC basket cells (CCKCs). 

These cells demonstrated strong linear correlations between AMPARs and GABAARs with tE/I ratios averag-
ing between 0.66 to 1.8 (Fig. 5b; Table 2). Only MNCs were significantly different with a tenfold higher tE/I ratio 
(P < 0.0001; ANOVA followed by Tukey–Kramer HSD), and CHC1 cells were significantly different from CCKC 
cells (P = 0.022). No other cellular types were significantly different from the others (P > 0.05).

tE/I ratio expression patterns change during development.  To demonstrate the flexibility and capa-
bilities of our approach, we applied our workflow to developmental data gathered by Allen Brainspan focusing 
on the cortex since it has more data than the other structures studied in that dataset (Supplementary Data 9). The 

Figure 5.   Cell-type differences in transcriptional E/I ratio in the mouse brain. (a) Transcriptional E/I ratio 
of phenotypically identified GABAergic cell-type35. Ratios were plotted on a logarithmic scale. Each point 
represents a single cell nucleus analyzed. (b, c) Plotting of total AMPARs expression against total GABAARs 
subunits expression using normalized data as downloaded (b) or after Log2 transformation to normalize the 
distribution (c). Continuous lines show significant Pearson correlations for all cell-types (p < 0.001). Histograms 
represent the data distribution for the cohort in either axis.
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tE/I ratio across cortical regions was initially spread across a large range, but all structures reached a relatively 
stable tE/I ratio by one postnatal year (Fig. 6a). Interestingly, the tE/I ratio in the cortex using the Brainspan 
dataset was smaller than the one in the ADBTI study, although both used RNA-Seq methods (tE/I = 0.31 ± 0.0061 
(mean ± S.E.M) in Brainspan vs 0.5842 ± 0.0045 in ADTBI; double tailed t test, p < 0.001). During pre-natal devel-
opment, some structures, namely the dorsolateral and inferolateral temporal cortices, auditory primary cortex, 
and posteroventral parietal cortex exhibited high tE/I ratios that rapidly declined approaching birth (Fig. 6a). 
Other structures, such as the primary somatosensory and anterior cingulate cortices rose slightly during early 
development and peaked at around 19 post-conception weeks (pcw) before declining towards the steady state 
observed in adulthood (Fig. 6a). Overall, the cortical tE/I ratio stabilizes after birth. Closer inspection of the data 
revealed that the developmental reduction of tE/I resulted from a gradual increase in GABAAR subunit expres-
sion levels while AMPAR subunit levels remained stable (Supplementary Fig. 9). In addition to the tE/I ratio, we 
also analyzed the patterns of expression of the sodium–potassium–chloride cotransporter (NKCC1, SLC12A2) 
and the neuron-specific chloride–potassium symporter 5 (KCC2, SLC12A5) which have been demonstrated to 
change with development and determine whether GABAARs are inhibitory or excitatory36. KCC2 expression 
increases, while NKCC1 expression decreases during development. To do so, we compared the ratio of SLC12A5 
to SLC12A2 with the tE/I ratio and found that during prenatal development, the higher tE/I ratio corresponded 
to a low SLC12A5/SLC12A2 ratio while postnatal development exhibited no relationship between the two ratios 
(Fig. 6c). KCC2 expression is the main driver of variability in the KCC2/NKCC1 ratio. Interestingly, KCC2 gene 
expression was linearly correlated with the global expression of GABAAR and AMPAR subunits.

Discussion
Our clustering analysis indicates that the co-expression patterns of AMPARs subunits is region specific according 
to the ontogenic origin of the brain structures. It is quite remarkable that with the expression of only 4 genes, 
major brain regions could be separated by unsupervised clustering analysis. This suggests that AMPARs may act 
as strong gene markers in synaptic components previously described by bioinformatics analysis37–40. Our micro-
array analysis fit the clustering scheme created by Gold et al. in the rodent model using in situ hybridization41, 
though with some differences. For instance, while the higher contribution of GRIA1 in the amygdala and hip-
pocampus relative to other cerebral structures was mirrored in our analysis, it was to a much lesser extent, 
only 20–30% as compared to the 50% reported. Further, the cerebellum exhibited a high GRIA4 profile that is 
inconsistent with any of the reported clusters. On the other hand, cortical regions aligned fully with the pattern 
of ~ 50% GRIA2 contribution. While data from mice showed GRIA3 and GRIA4 enrichment relative to GRIA1 in 
the thalamus, our analysis found only GRIA4 enrichment. Both differences may be related to the high anatomical 
specificity of structures in hybridization studies compared to the microarray data that we used for our analysis, 
or it could be due to divergent characteristic between species42.

One potential drawback of our microarray analysis is the low number of samples which reduces the statisti-
cal validity of our findings. However, our main aim for this microarray data was to generate a transcriptional 
signature of structural clusters based on the relative expressions of the different GRIA subunits. For this purpose, 
we utilized bootstrapping to measure the strength of our clusters. As a result, we discovered very strong evidence 
for upper-level divisions between cortical regions of telencephalic origin and regions of myelencephalic, meten-
cephalic, and diencephalic origin, as well as the existence of distinct structural clusters, such as the hippocampal 
formation. While these results are promising, additional samples would boost the power of this study.

Our observed region-specificity in AMPAR subunit expression correlates with the differing complexity in 
pathways and cytoarchitecture and with embryonic origin. Indeed, previous studies have found that a large selec-
tion of genes exhibit region-specific expression largely dependent on their embryonic structure of origin38,43. For 
brain structures with recurrent cytoarchitecture, such as the cerebral and cerebellar cortices44, AMPAR subunit 
expression patterns are highly stable well into adulthood. This shared pattern may result from a shared embryonic 
origin such as the pallial regions for cortical glutamatergic cells45 and the rhombic lip for the glutamatergic cells 
in the cerebellar cortex46. In contrast, the more heterogenous patterns observed in deep cerebral nuclei, thalamic 
nuclei, and mesencephalic structures are congruent with more heterogenous cytoarchitecture of these regions 
and may underly the diverse modulatory functions of these nuclei47. Recent studies have begun to demonstrate 
the importance of using functional rather than neuroanatomical principles for the analysis of synaptic proteins48; 

Table 2.   Cell-type transcriptional E/I ratios. The mean expression represents the average per cell type. CCKC 
basket cells, CHC1 chandelier cells 1, CHC2 chandelier cells 2, ISC interneuron-selective cells, LPC long-
projecting interneurons, MNC Martinotti cells, PVBC perisomatic fast-spiking basket cells. *Different from 
CCKC (p = 0.022). **Different from all other cells (p < 0.0001).

Cell-type Number of cells Mean ± SD

CCKC 64 0.66 ± 0.13

CHC1 80 1.7 ± 0.38*

CHC2 52 1.0 ± 0.43

ISC 63 0.80 ± 0.26

LPC 136 1.1 ± 0.22

MNC 62 10 ± 6.3**

PVBC 127 0.96 ± 0.13
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Figure 6.   tE/I ratio and KCC2/NKCC1 ratio in the developing human brain. (a) tE/I ratios were calculated 
in different cortical regions against age (from 12 postconceptional weeks to 40 years, shown as categorical 
values in the plot) using data from the Allen Brainspan project (n = 40 subjects). Each point represents a single 
cortical region per subject. Spline smooth curves, here and in (b), show the principal trend in values for AMPA 
and GABAA receptors. Please see Supplementary Data 9 for detailed number of subjects per region. (b) The 
graph shows the mean ± S.E.M. of cortical tE/I in each subject per region. The cortical tE/I in each subject is 
the average of all cortical regions available for each subject. (c) Lack of correlation between the cortical tE/I 
ratio in each subject and the KCC2/NKCC1ratio. KCC2 is the potassium-chloride transporter member 5 
produced by the SLC12A5 gene and its expression increases during development, while NKCC1 is the Na–K–Cl 
cotransporter produced by SLC12A2 gene. The relationship between these transporters define the direction of 
chloride permeability in GABAARs. (d, e) KCC2 expression is linearly correlated with the increase of GABAARs 
(d) and AMPARs (e) after birth. Points are color coded as prenatal (blue), near birth (magenta), or post-natal 
(orange). Linear correlations are for data grouped as pre and postnatal development.
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similar analytical approaches with gene expression may help to explain the heterogenous expression of AMPA 
receptor subunits in the thalamic nuclei and mesencephalic structures in future studies.

Interestingly, the hippocampal formation differed greatly from the cerebral cortices, exhibited the highest 
expression levels of all AMPAR subunits compared to all the other brain structures, and showed the largest vari-
ability across individuals when using the correlation of Euclidian distances between subunits. The heightened 
expression may result from the unique neurogenesis in the hippocampus49, the rapid regulation of synaptic 
AMPA receptors necessary for its role in learning50–52 and the high neuronal density in this area. Previous studies 
have shown the necessity of GRIA1 subunit in long-term potentiation and contextual learning at the CA3-CA1 
synapse52,53 and the rapid subunit specific turnover of AMPARs in response to alterations in neuronal activity54,55. 
Moreover, the subgranular zone of the dentate gyrus is one of the only regions in the human brain where adult 
neurogenesis occurs56. As a part of this process, neural stem cells enter hippocampal circuits after modulation by 
various environmental and cell-intrinsic factors57,58. This intense plasticity suggests that hippocampal AMPAR 
subunit expression varies greatly depending on the subject and environment. Our analyses of both the micro-
array and RNA-seq studies support this hypothesis as inter-subject variability in AMPAR subunits expression 
is particularly high in the hippocampal formation while AMPAR subunits expression in the cerebral cortex is 
highly stereotypical across individuals.

A major interest in our analysis was to determine whether the mRNA for the receptors involved in estab-
lishing the E/I ratio were balanced across brain structures in human. Because many subunits of GABAARs and 
AMPARs follow complementary or opposing patterns of expression, we used the most conservative approach 
which includes all potential receptor configurations by adding transcripts for all subunits when estimating the 
tE/I ratio. Our analysis found that the total amount of AMPARs and GABAARs is highly correlated in a region-
specific manner. Therefore, the tE/I ratio remains highly stable across substructures within major regions such 
as the cerebral and cerebellar cortices but varies gradually within the hippocampus and amygdala, suggesting 
different balances within these regions. Our results using the ADTBI study did not find sex differences for the 
tE/I ratio, suggesting that in healthy individuals, sex differences for particular GABAARs subunits like higher 
cortical α1 in men59, may be balanced by compensatory mechanisms regulating the expression of AMPARs.

Our study unfortunately cannot distinguish between synaptic and non-synaptic receptors; therefore, our 
inferences are limited to estimates of total transcription levels per brain structure in the microarray and ADTBI 
analyses, or to the cell-type level in the single cell analysis. Nevertheless, the electrophysiological activity of syn-
aptic and non-synaptic receptors GABAARs strongly correlates within single neurons60, and AMPARs show high 
lateral mobility between non-synaptic and synaptic regions61 suggesting that whole transcription levels may at 
least partially reflect the activity-dependent need for AMPAR and GABAAR subunit transcription. Recent studies 
have also shown that electrophysiological measures of global eE/I by recording cortical synaptic AMPARs and 
GABAARs are highly correlated62. Future studies integrating transcriptomic with electrophysiological measures 
of the E/I will help to understand deviations of this balance in non-physiological states.

Our analysis also shows that the tE/I ratio is established near birth. While AMPAR subunits expression is 
relatively stable during the embryonic stages, GABAAR subunit expression gradually increases until stabilizing 
near birth reducing the tE/I ratio to a stable value. This indicates that GABAARs are highly important in setting 
the tE/I ratio. In fact, development of GABAARs from immature GABAAα2- and GABAAα3-enriched to mature 
GABAAα1-enriched receptors has been observed to play a major role in synaptic plasticity in the cat visual cortex 
during the early post-natal phases63 and a fundamental role in the establishment of circuits and neuronal-firing 
properties within the mouse cortex64. On the other hand, although the amount of AMPARs remains quite sta-
ble during the development, the subunit expression and receptor assembly profile change markedly leading to 
a shift in receptor properties. As described by Henley and Wilkinson65, subunit adjustment is directly related 
to function; for instance, GRIA1 is developmentally restricted while expression of GRIA2, which produces 
Ca2+-impermeable receptors, increases after birth guiding the activation of silent glutamatergic synapses and 
the consolidation of the synaptic neural network. Our findings using the Brainspan dataset are in line with these 
descriptions (Supplementary Fig. S10), suggesting that the relationship between GRIA1 and GRIA2 are important 
in stabilization and regulation during brain development.

In conclusion, we show that AMPARs, as well as GABAARs, follow stereotypical patterns of expression in 
healthy controls; therefore, the tE/I ratio is remarkably stable across brain regions with recurrent cytoarchitecture. 
Additionally, this balance is established early after birth and remains stable through adulthood. Our analysis 
also shows that the tE/I ratio is determined at the cellular level, highly constant within neurons of the same type, 
and very similar across transcriptionally different cell types, with some exceptions. The stability of the tE/I ratio 
suggests that many redundant mechanisms control the concerted abundance of AMPAR and GABAAR subunit 
transcripts, and disruption of this balance may have severe impacts on proper neuron and brain function.

Methods
Microarray and RNA‑sequencing databases.  Three publicly available databases from the Allen Insti-
tute were used. For global brain analysis, normalized microarray transformed data (Log2) from the Allen Brain 
Atlas was downloaded from the webpage (https​://human​.brain​-map.org). This database was generated with brain 
samples obtained from six subjects (five males and one female) between the ages of 24 and 57 years of age with 
no known neuropsychiatric or neuropathological history. Brain tissue was collected after obtaining informed 
consent from decedent’s next-of-kin. Institutional Review Board (IEB) review and approval was obtained for 
collection of tissue and non-identifying case information at the tissue banks and repositories that provided the 
tissue for the project. Case qualification and donor profiles can be seen in the Allen website: https​://help.brain​
-map.org/displ​ay/human​brain​/Docum​entat​ion. Only brain regions where data for all AMPAR and GABAAR 
subunits were measured were used for the analysis (111 brain structures). For gene expression measurements 

https://human.brain-map.org
https://help.brain-map.org/display/humanbrain/Documentation
https://help.brain-map.org/display/humanbrain/Documentation
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the Allen Institute used a custom design (by Beckman Coulter Genomics) Agilent 8 × 60 K array that includes 
the 4 × 44 K Agilent Whole Human Genome probe set supplemented with an additional 16,000 probes. The 
upper limit for detection was 2 and was used as part of the initial quality control as described in the white papers 
for microarray survey found at https​://help.brain​-map.org/displ​ay/human​brain​/Docum​entat​ion. Normalization 
methods are also documented extensively in the white papers; briefly the data was normalized within each dis-
section batch through multivariate local regression fitting, each brain via quantile–quantile mapping of averages, 
and across all brains by aligning control samples.

For analysis of variability across individuals, normalized RNA-Seq Fragments Per Kilobase Million (FPKM) data 
from the Aging, Dementia, and Traumatic Brain Injury study (https​://aging​.brain​-map.org/downl​oad/index​) covered 
four regions from 56 healthy control subjects (35 males and 21 females) between the ages of 78 and 99 years of age. 
Detailed documentation of the ADTBI study, including tissue collection, tissue processing, and RNA-Sequencing and 
quantification, can be found at: https​://help.brain​-map.org/displ​ay/aging​/Docum​entat​ion. Briefly, RNA-Sequencing 
was done through Illumina TruSeq (random hexamer first strand cDNA synthesis with rRNA depletion and frag-
mentation) on Illumina HighSeq 2,500 using v4 chemistry, producing a minimum of 30 M 50 bp paired-end clusters 
per sample. FPKM gene quantifications were normalized via TbT normalization and corrected for RNA quality and 
batch effects.

Normalized developmental RNA-seq Reads Per Kilobase Million (RPKM) data from the BrainSpan atlas 
(Gencode v10 summarized to genes; https​://www.brain​span.org/stati​c/downl​oad.html) covered up to 26 regions 
from 42 subjects ranging from eight weeks post conception to 40 years of age. Detailed documentation of the 
developmental data, including Institutional Review Board approval for the tissue collection, donor and sam-
ple metadata, and transcriptome profiling methods, can be found at: https​://help.brain​-map.org/displ​ay/devhu​
manbr​ain/Docum​entat​ion. Briefly, RNA-Sequencing was done with poly(A) selection and normalized by the 
addition of spike-ins.

For single cell analysis we used the processed high resolution sc-RNA-seq unique Transcripts Per Million 
(uTPM) dataset downloaded from GEO expression omnibus accession number: GSE9252235. This dataset com-
prises single cell transcriptomes of anatomically and physiologically characterized GABAergic neurons. Paul et al. 
developed combinatorial recombinase driver lines to identify and isolate 6 types of neurons. Detailed methods, 
including the approval for the study, can be found in the author’s manuscript35. Sequencing was performed with 
poly(A) linear amplification followed by Illumina TruSeq and normalized to a single cell’s total unique counts 
across all genes; approximately 9 k genes per cell were detected35. Our study focused on the analysis of the 
databases described above. All the methods to generate the original data were performed in accordance with 
the relevant guidelines and regulations of the respective authors’ institutions as described in the documentation 
accessed by the provided links.

Analysis of AMPAR subunits.  All analysis was done as previously stated for GABAARs16. The normalized 
transformed data (Log2) microarray data from the Allen Brain Atlas used 17 probes to measure the expression 
of 4 AMPARs genes, 4 probes for each GRIA1-3 and 5 probes for GRIA 4. To avoid redundant clustering due to 
collinearity between probes for the same gene, only the most representative probe for each gene as determined 
via principal axis Exploratory Factor Analysis with no rotation in JMP 14Pro were used. While the effects of sex 
and ethnicity were negligible on any of the datasets analyzed, corrections were made for age effects via linear 
regression in JMP 14. As before, all expression patterns were represented by the Mean (M) ± Standard Deviation 
(SD) unless otherwise stated. The proportional contributions of each subunit were expressed as percentages 
of untransformed (non-Log2) probe intensity level of each subunit to the sum of probe intensities across all 
subunits. Unsupervised hierarchical clustering was done using Ward’s minimum variance method in JMP 14. 
Bootstrap probability (BP) and approximately unbiased (AU) p-values were calculated through 10,000 boot-
straps with pvclust in RStudio using ward.D2 and Euclidean distances as the clustering method and distance 
measures, respectively66. Pearson product-moment correlations were used to measure both inter-structure and 
inter-subject variance. Euclidean distances of each structure or subject (di) were correlated against a chosen con-
sensus (dc). For subjects, dc was calculated from the average of all subjects; for structures, the frontal operculum 
(fro) and parietal cortex (PCx) were used. The Euclidean distances were calculated in RStudio as follows:

where di is the Euclidean distance between two subunits, given by x and y, per subject or structure, represented 
by the integer i, and dc is the consensus Euclidean distance, for all n subjects or structures.

Analysis of the excitation–inhibition ratio.  The tE/I ratio was calculated by dividing the sum of all 
AMPAR subunit expression by the sum of all GABAAR subunit expression. Pearson product-moment corre-
lations were then run on these ratios to measure inter-structure variance. Data from the microarray (Log2, 
uncorrected and corrected for age), ADTBI (normalized FPKM, uncorrected and corrected for age), single-cell 
(uTPM), and BrainSpan (normalized RPKM) studies were all analyzed separately. In addition to the tE/I ratio, 
the expression of NKCC1 (SLC12A2), NKCC2, (SLC12A1) and KCC2 (SLC12A5) were also analyzed in a fashion 
similar to the AMPARs and GABAARs.
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Statistics and reproducibility.  All data analysis was performed, and plots constructed, in both JMP 14 
and RStudio running R3.6.3 and the mosaic package for R Markdown. All R code is available upon request.

Data availability
All original data was downloaded from publicly available databases with links provided in the manuscript. All 
data after adjustments are included in supplementary data.
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