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Abstract

Background: Nursing home residents have increased rates of intestinal colonisation with multidrug-resistant
organisms (MDROs). We assessed the colonisation and spread of MDROs among this population, determined
clinical risk factors for MDRO colonisation and investigated the role of the gut microbiota in providing colonisation
resistance against MDROs.

Methods: We conducted a prospective cohort study in a Dutch nursing home. Demographical, epidemiological
and clinical data were collected at four time points with 2-month intervals (October 2016–April 2017). To obtain
longitudinal data, faecal samples from residents were collected for at least two time points. Ultimately, twenty-
seven residents were included in the study and 93 faecal samples were analysed, of which 27 (29.0%) were MDRO-
positive. Twelve residents (44.4%) were colonised with an MDRO at at least one time point throughout the 6-month
study.
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Results: Univariable generalised estimating equation logistic regression indicated that antibiotic use in the previous
2 months and hospital admittance in the previous year were associated with MDRO colonisation. Characterisation
of MDRO isolates through whole-genome sequencing revealed Escherichia coli sequence type (ST)131 to be the
most prevalent MDRO and ward-specific clusters of E. coli ST131 were identified. Microbiota analysis by 16S rRNA
gene amplicon sequencing revealed no differences in alpha or beta diversity between MDRO-positive and negative
samples, nor between residents who were ever or never colonised. Three bacterial taxa (Dorea, Atopobiaceae and
Lachnospiraceae ND3007 group) were more abundant in residents never colonised with an MDRO throughout the
6-month study. An unexpectedly high abundance of Bifidobacterium was observed in several residents. Further
investigation of a subset of samples with metagenomics showed that various Bifidobacterium species were highly
abundant, of which B. longum strains remained identical within residents over time, but were different between
residents.

Conclusions: Our study provides new evidence for the role of the gut microbiota in colonisation resistance against
MDROs in the elderly living in a nursing home setting. Dorea, Atopobiaceae and Lachnospiraceae ND3007 group
may be associated with protection against MDRO colonisation. Furthermore, we report a uniquely high abundance
of several Bifidobacterium species in multiple residents and excluded the possibility that this was due to probiotic
supplementation.

Keywords: Gut microbiota, Multidrug-resistant organisms, Asymptomatic colonisation, Colonisation resistance,
Bifidobacterium, Nursing home, Extended-spectrum beta-lactamase-producing Enterobacterales

Background
Infections caused by multidrug-resistant organisms
(MDROs) are a rising threat to global health and caused
~ 33,000 attributable deaths in Europe in 2015 [1]. Infec-
tions with MDROs are usually preceded by asymptom-
atic gut colonisation, and asymptomatically colonised
individuals represent a potential transmission reservoir
[2]. Nursing home residents are at increased risk for
MDRO colonisation due to comorbidities resulting in in-
creased healthcare contact and antibiotic use [3]. In
addition, MDRO spread within a nursing home can be
facilitated due to communal living, confined living space
and incontinence of residents [4, 5]. This is similar to
the transmission dynamics of Clostridioides difficile. The
prevalence of MDROs and C. difficile varies between
nursing homes from different countries, but large differ-
ences in prevalence can also be observed between differ-
ent institutions in one country. For example, MDRO
prevalence ranges from 0 to 47% in various nursing
homes in the Netherlands [6–8] and from 0 to 75% in
Ireland [5]. C. difficile colonisation prevalence ranges
from 0 to 17% in Dutch nursing homes [9, 10] and from
0 to 10% in Germany [11]. These differences may reflect
variation in individual nursing home infection preven-
tion and control practices, antimicrobial stewardship, in-
frastructure, care load and presence of MDRO risk
factors such as incontinence, recent hospitalisation and
current antibiotic use. Colonisation resistance provided
by the gut microbiome could contribute to preventing
MDRO colonisation in the gut. The gut microbiome can
provide colonisation resistance through secretion of
antimicrobial products, nutrient competition, support of

epithelial barrier integrity, bacteriophage deployment
and immune activation. However, current knowledge on
the link between the microbiome and MDRO colonisa-
tion is limited [12, 13]. In travellers, an increase of anti-
microbial resistance genes and Escherichia coli relative
abundance in the microbiome were observed after acqui-
sition and asymptomatic carriage of extended-spectrum
beta-lactamase (ESBL)-producing E. coli, but without
clear differences in microbial community structure [14].
An exception to the understudied role of the micro-
biome in MDRO colonisation is vancomycin-resistant
Enteroccocus (VRE). For example, it has recently been
demonstrated that a lantibiotic-producer, in this case
Blautia producta, could restore colonisation resistance
against VRE [15].
To determine the prevalence and spread of MDROs in

a Dutch nursing home, and to elucidate the role of the
gut microbiota and clinical risk factors herein, we con-
ducted a four-point-prevalence study and analysed clin-
ical data of residents and whole-genome sequencing
(WGS) data of MDRO isolates, in combination with gut
microbiota analysis through 16S rRNA gene amplicon
sequencing. In addition, we conducted more in-depth
microbiota analysis in a selection of samples through
metagenomics in order to further investigate findings
from 16S rRNA gene amplicon analysis.

Methods
Study design
We conducted a prospective cohort study in which resi-
dents of a nursing home in the Netherlands were invited
to participate. The prevalence, dynamics and risk factors
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of MDRO colonisation were studied in a non-outbreak
situation. Demographical, epidemiological and clinical
data of four time points with a 2-month interval
(October 2016 until April 2017) were collected. Micro-
biota analysis was performed on stool samples collected
at the same four time points. Written informed consent
was obtained from the resident or corresponding proxy.
Ethical approval was granted by the medical ethics com-
mittee of the Leiden University Medical Center
(No.P16.039). Sixty-four of 131 residents (49%) con-
sented to participate. Data and corresponding faeces
were collected from 60 residents (94%). To make opti-
mal use of the longitudinal data from this study, resi-
dents were selected whom provided faeces at at least
two time points (n = 47). For this study, we included res-
idents who gave consent for additional analyses, from
whom faeces were cultured for MDROs at at least two
time points, and of which sufficient material was left for
microbiota profiling at at least two time points (n = 27
residents). The prevalence of MDRO was not statistically
significant between the residents selected for microbiota
analysis (12/27 residents and 27/93 time points) and
those not selected (10/30 residents and 12/61 time-
points) (chi-squared test, p = 0.26).

Data and faeces collection
The nursing home consisted of 131 beds divided over
eight wards of various sizes (12–35 beds). The wards
had single en-suite rooms, except for three double
rooms for couples. All wards had a separate dining area
where freshly prepared meals were served daily and resi-
dents did not receive a specific diet or probiotics. In
addition, the nursing home had a large communal recre-
ation and shared physiotherapy area. Nursing staff was
dedicated to specific wards, but occasionally staff cross-
covered wards. For each consenting resident, socio-
demographic and the following MDRO risk factor data
were collected at each of the four time point using stan-
dardised ECDC definitions: care load indicators (dis-
orientation, mobility, incontinence), hospitalisation in
the previous 6 months, antibiotics (concomitant and in
the previous 6 months), comorbidities, presence of an
indwelling urinary catheter or wounds and history of
past MDRO colonisation [16].
In addition, instructed caring staff collected fresh fae-

ces on the four time points and subsequently stored the
samples at 4 °C. Samples were transported within 72 h to
the laboratory (Leiden University Medical Center).

MDRO detection
Faecal samples were examined for multi-drug-resistant
bacteria by culturing within 8 h after arrival at the la-
boratory and the faeces and cultured MDROs were sub-
sequently stored at − 20 °C [9]. Based on national

recommendations [17], the following micro-organisms
were considered to be an MDRO: ESBL-producing
Enterobacterales; Enterobacterales and Acinetobacter
spp. resistant to both fluoroquinolones and aminoglyco-
sides or carbapenemase-producing; carbapenemase-
producing Pseudomonas aeruginosa; P. aeruginosa
resistant to at least three of the following antibiotic clas-
ses: fluoroquinolones, aminoglycosides, ceftazidime and/
or piperacillin; trimethoprim/sulfamethoxazole-resistant
Stenotrophomonas maltophilia; or vancomycin-resistant
enterococci (VRE). Faecal samples were enriched in 15
ml of Tryptic Soy Broth (TSB) and incubated for 18 h at
35 °C prior to plating on ChromID ESBL, ChromID VRE
and MacConkey tobramycin agars (BioMérieux, Marcy
l’Etiole, France) for 48 h at 35 °C [9]. The twenty samples
of the first time point were re-cultured 2 years after
sampling, as these samples were initially enriched with
TSB containing 8mg/L vancomycin and 0.25 mg/L cefo-
taxime. The samples were stored in − 20 °C with gly-
cerol. All morphological different aerobic Gram-negative
bacteria and enterococci were identified by the BD Bru-
ker matrix-assisted laser desorption ionisation-time of
flight (MALDI-TOF) Biotyper (Microflex, Bruker Dal-
tonics, Bremen, Germany). Phenotypic antibiotic suscep-
tibility testing was performed with the VITEK2 system
(card N199, BioMérieux) using the European Committee
of Antimicrobial Susceptibility Testing (EUCAST)
breakpoints [18]. ESBL production was confirmed by a
double-disk method [19]. In addition, the faecal samples
were screened for the presence of carbapenemase-
producing Gram-negative bacteria [19]. The minimum
inhibitory concentration (MIC) of Enterobacterales with
a meropenem MIC > 0.25 mg/L was confirmed with an
antibiotic gradient strip method (Etest, BioMérieux).
Strains with an MIC > 0.25 mg/L were further investi-
gated by an in-house multiplex PCR to detect the most
frequently found carbapenemase genes (KPC, VIM,
NDM, OXA-48 and IMP). Additionally, Clostridioides
difficile was cultured and characterised as previously de-
scribed [20].

Risk factor analysis
Data from 27 nursing home residents (93 samples in
total) were included for risk factor analysis. All analyses
compared all MDRO-positive samples with all MDRO-
negative samples, as extensive metadata was collected at
each time point for each individual resident. To account
for the repeated measurements design, generalised esti-
mating equations (GEE) logistic regressions (using the
geeglm() function in the geepack package) were per-
formed with Resident number as cluster [21]. To identify
clinical factors associated with MDRO colonisation, uni-
variable GEE logistic regression was performed using
variables for which ten or more ‘events’ were recorded,
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as previously recommended for logistic regression [22].
Factors with a p-value < 0.05 were included in multivari-
able GEE logistic regression analysis, as well as non-
significant factors that were considered likely to influ-
ence MDRO colonisation risk based on expert opinion
and literature review. These factors were sex and current
use of a urinary catheter. Lastly, we inspected possible
multicollinearity between the variables included in the
multivariable GEE logistic regression by computing vari-
ance inflation factors. While opinions differ on when a
variance inflation factor can be considered considerable,
we used the stringent variance inflation factor value of
2.5 here, as previously recommended, to obtain insight
in possible multicollinearity [23].

Whole-genome sequencing of bacterial isolates and data
processing
WGS analysis to characterise MDRO isolates was done
at GenomeScan B.V. (Leiden, the Netherlands). Genome
sequences were determined using the Illumina HiSeq
4000 platform (Illumina, San Diego, CA, USA) from
DNA prepared by the QIAsymphony DSP Virus/Patho-
gen Midi Kit (Qiagen, Hilden, Germany) at Leiden Uni-
versity Medical Center following manufacturer’s
recommendations. Sequence libraries were prepared
using NEBNext® Ultra™ II DNA Library Prep Kit for 150-
bp paired-end sequencing.
Sequencing quality was evaluated with FastQC (ver-

sion 0.11.8) [24] and MultiQC (version 1.7) [25]. Reads
were assembled using a hybrid assembly strategy, start-
ing with SKESA (version 2.3.0) [26] using default param-
eters for paired-end reads, followed by SPAdes (version
3.13.1) [27] using default parameters while providing
SKESA’s contigs with the ‘--untrusted-contigs’ param-
eter. Assembly quality and length were checked after
each step using QUAST (version 5.0.2) [28]. The scaf-
folds produced by SPAdes were used for subsequent
analyses.
To evaluate assembly quality, all scaffolds were blasted

(megablast version 2.9.0, parameters ‘-evalue 1e-10’ and
‘-num_alignments 50’) [29, 30] against the NCBI BLAST
nt database (from July 13, 2017) and taxonomically clas-
sified using the Lowest Common Ancestor algorithm
implemented in Krona ktClassifyBLAST (version 2.7.1)
[31]. Scaffolds classified as eukaryote were removed from
further analysis. The remaining non-eukaryotic scaffolds
were screened for the presence of antibiotic resistance
genes using staramr (version 0.5.1, https://github.com/
phac-nml/staramr) and ABRicate (version 0.8.13, https://
github.com/tseemann/abricate) against the ResFinder
database (from May 21, 2019) [32]. The same scaffolds
were also subjected to in silico multi-locus sequence typ-
ing (MLST) and core-genome MLST using SeqSphere
(version 6.0.2, Ridom GmbH, Münster, Germany) [33]

to determine Warwick sequence types (ST) and pairwise
allele distances using the built-in E. coli scheme. Next, a
pangenome analysis was conducted on the scaffolds
using Roary (version 3.12.0) [34], for which the scaffolds
were annotated using Prokka (version 1.13.4) [35]. Fi-
nally, a maximum-likelihood phylogenetic analysis was
generated with IQTree (version 1.6.10, parameters ‘-b
500’ and ‘-m MFP’ for 500 bootstrap replicates and auto-
matic model selection) [36] on the multiple sequence
alignment of the core genomes generated by Roary. The
selected phylogenetic model based on the best Bayesian
Information Criterion score was GTR+F+R2.
All tools were run with default parameters unless

stated otherwise.

DNA extraction for gut microbiota analyses
DNA was extracted from 0.1 g faeces (n = 93 samples)
using the Quick-DNA™ Fecal/Soil Microbe Miniprep Kit
(ZymoResearch, CA, USA) according to manufacturer’s
instructions with minor adaptations, as described previ-
ously [37]. Beads were a mix of 0.1 and 0.5 mm size, and
bead-beating was performed using a Precellys 24 tissue
homogeniser (Bertin Technologies, France) at 5.5 m/s
for three times 1 min with short intervals.

16S rRNA gene amplicon sequencing
Quality control, library preparation and sequencing were
performed by GenomeScan B.V. (Leiden, The
Netherlands) using the NEXTflex™ 16S V4 Amplicon-
Seq Kit (BiooScientific, TX, USA) and the Illumina
NovaSeq6000 platform (paired-end, 150 bp). Raw reads
were processed using the NG-Tax 0.4 pipeline with fol-
lowing settings: forward read length of 120, reverse read
length of 120, ratio OTU abundance of 2.0, classify ratio
of 0.9, minimum threshold of 1 × 10−7, identity level of
100% and error correction of 98.5, using the Silva_132_
SSU Ref database [38, 39]. Since a 100% identity level
was used, amplicon sequence variants (ASVs) were ob-
tained. The obtained ASV table was filtered for ASVs
with less than 0.005% relative abundance [40]. Three
ZymoBiomics Microbial Community Standards (Zymo
Research, Irvine, CA, USA), two ZymoBiomics Microbial
Community DNA Standards (Zymo Research) and three
negative DNA extraction controls were included as posi-
tive and negative controls for DNA extraction and se-
quencing procedures.

Metagenomic sequencing
Ten faecal samples (two samples from five residents)
and two positive controls were selected for metagenomic
shotgun sequencing. Quality control, library preparation
and sequencing were performed by GenomeScan B.V.
(Leiden, The Netherlands) using the NEBNext® Ultra™ II
FS DNA Library Prep Kit (New England Biolabs,

Ducarmon et al. Genome Medicine           (2021) 13:54 Page 4 of 17

https://github.com/phac-nml/staramr
https://github.com/phac-nml/staramr
https://github.com/tseemann/abricate
https://github.com/tseemann/abricate


Ipswich, Massachusetts, USA) and the Illumina Nova-
Seq6000 platform (paired-end, 150 bp). Raw shotgun se-
quencing reads were processed using the NGLess
(v1.0.1) language and accompanying tools [41–45].
NGLess is a domain-specific language especially de-
signed for processing raw sequence data and designed
for enabling user-friendly computational reproducibility.
Pre-processing of raw data was performed as previously
described [41]. In short, raw sequence data was first pre-
processed by performing quality-based trimming and
reads with quality value below 25 were discarded,
followed by discarding reads shorter than 45 bp. Second,
reads were aligned to the human genome (hg19 refer-
ence) and discarded if reads mapped with more than
90% sequence identity and an alignment length of at
least 45 bp. Third, taxonomic profiling was performed
using the mOTUs2 (v2.5.1) tool using default parameters
as previously described [44]. This profiler is based on
ten household, universal, single-copy marker gene fam-
ilies and profiles bacterial species both with (ref-
mOTUs) and without (meta-mOTUs) a sequenced refer-
ence genome. A relative abundance table was obtained
as output.
Next to the read-based analysis described above, we

used an assembly-based analysis pipeline, Jovian (version
v0.9.6.1) [46]. In short, the pipeline checks read quality,
trims low-quality reads, removes reads derived from the
host organism (human) and de novo assembles reads into
scaffolds which are then taxonomically classified and
quantified. These classifications were used to support the
read-based results and scaffolds of selected species were
compared to one another using pyANI (version 0.2.10) to
calculate pairwise average nucleotide identities [47].

Positive and negative controls for gut microbiota
profiling
Included controls indicate good DNA extraction and
sequencing performance
An average of 24,095 reads (range 4841–68,057, median
22,775 reads) was generated per sample for 16S rRNA
gene amplicon sequencing (total n = 93), resulting in
1042 ASVs after filtering on 0.005% abundance. Both
positive DNA sequencing controls (n = 2) were highly
similar to theoretical expectations (average fold change
1.11), while DNA extraction controls (n = 3) were some-
what less similar to theoretical expectation (average fold
change 1.81). One DNA extraction control showed a
lower than expected abundance (~ 12 fold) of Staphylo-
coccus for unknown reasons (Additional file 1: Fig. S1A).
Of the three included negative extraction controls, two
did not contain any reads post-filtering and one negative
control contained 21 reads, mostly from known contam-
inants such as Delftia and Streptococcus, as previously
observed [37].

For metagenomic sequencing, the DNA extraction
control and sequencing control closely matched theoret-
ical profiles and eight mOTUs were identified, apart
from a small fraction of unassigned reads (Add-
itional file 1: Fig. S1B).

Statistical analysis and visualisations
Analyses and visualisations were performed in R (v3.6.1),
using the following packages: phyloseq (v1.28.0), micro-
biome (v1.6.0), Metalonda (v1.1.5), DESeq2 (v1.24.0),
tidyverse packages (v1.2.1), pheatmap (v1.0.12) and
ggplot2 (v3.2.0) [48–54].

Community composition analysis
Permutational multivariate analysis of variance (PERM
ANOVA) using Bray-Curtis dissimilarity was performed
to test for differences in overall community composition.
Prior to employing PERMANOVA testing, it was tested
whether groups had homogenous dispersions (homosce-
dasticity) using the betadisper function, as violation of
this statistical assumption can lead to erroneous conclu-
sions regarding PERMANOVA results. No heteroscedas-
ticity was observed between groups. To account for the
repeated measurements design, we used ‘strata=Resident
number’. Principal coordinates analysis (PCoA) based on
Bray-Curtis dissimilarity was made and 95% confidence
intervals were computed using the stat_ellipse function.
Alpha diversity indices (observed ASVs/observed genera
and Shannon index) were compared using independent
t-tests or Wilcoxon rank sum tests. For calculating
intraindividual stability, Bray-Curtis dissimilarities be-
tween all samples of a resident were calculated, and this
was averaged to obtain a mean stability per resident.

Differential abundance analysis
Differential abundance analysis between groups
(MDRO-positive samples versus MDRO-negative sam-
ples) was performed at genus level using DESeq2 and
stratified per time point. Genera had to be present in at
least 25% of samples to be included in the analysis. To
correct for false discovery rate, p-values were corrected
using the Benjamini-Hochberg procedure. Considering
the low number of MDRO-positive samples per time
point, adjusted p-values < 0.1 were included in visualisa-
tion of results.

Time series modelling of alpha diversity
Linear mixed models were applied to investigate the
changes in alpha diversity over time between the ever
colonised versus never colonised groups using the lme4
and lmerTest packages [55, 56]. Ever colonised was de-
fined as having an MDRO-positive sample at at least one
time point during the study, while never colonised was
defined as having no MDRO-positive sample during the
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study. Resident number was included as a random inter-
cept to control for inter-individual baseline differences
and repeated measurements design. The included fixed
effect was the interaction between ‘ever colonised’ and
timepoint (‘ever colonised’*timepoint). Models were
inspected for normally distributed residuals using qq-
plots and p-values < 0.05 were considered significant.

Time series modelling of individual taxa
To identify temporal trends in differential abundance of
bacterial genera, the metagenomic longitudinal differen-
tial abundance method (MetaLonDA) package was used
[50]. Only residents with at least three available gut
microbiota samples were included in this analysis (n = 24
residents). Genera had to be present in at least 25% of
samples to be included in the analysis. MetaLonDA is
capable of handling inconsistencies often observed in
human microbiome studies (e.g. missing samples) and
relies on two main modelling components, the negative
binomial distribution for modelling read counts and
smoothing spline ANOVA for modelling longitudinal
profiles. The function metalondaAll was used with the
following settings: n.perm=1000, fit.method=“nbino-
mial”, num.intervals=3, pvalue.treshold=0.05, adjust.-
method=“BH”, norm.method=“median_ratio”. These

settings indicate that the function was run with 1000
permutations using the median ratio method to normal-
ise count data and fitting a negative binomial distribu-
tion. P-values were corrected using the Benjamini-
Hochberg procedure.

Results
Clinical risk factor analysis for MDRO colonisation
MDRO colonisation among nursing home residents is highly
prevalent and dynamic over time
Of the 27 included residents, twelve (44.4%) were colo-
nised by an MDRO at at least one time point; four
(33.3%) were colonised at one time point and eight resi-
dents (66.7%) at more than one time point during the 6-
month study (Fig. 1). Of the 93 faecal samples, 27
(29.0%) contained an MDRO. Fourteen samples (15.1%
of all samples) from six different residents (22.2% of all
residents) were positive for ESBL-producing bacteria, of
which ten were E. coli, three Enterobacter cloacae and
one Citrobacter non-koseri. The remaining thirteen
MDRO isolates (14.0% of all samples) were both fluoro-
quinolone- and aminoglycoside-resistant E. coli. No
carbapenemase-producing Gram-negative bacteria, VRE
and Clostridioides difficile were cultured. As MDROs in
the current study are exclusively MDR Enterobacterales,

Fig. 1 Overview of MDRO status for all samples of each resident over time. Blue colour indicates a negative MDRO culture, while red indicates a
positive MDRO culture. Prevalence per time point is shown in percentage. Resident numbers are preceded by either ‘R’ or ‘L’; these letters
indicate two physically separated buildings
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we refer to MDR Enterobacterales as MDROs from here
onwards.

Clinical risk factors are only associated with MDRO
colonisation in univariable analysis
Analysis of MDRO-status of faecal samples and clin-
ical data using univariable GEE logistic regression
showed several factors related to an increased risk of
MDRO colonisation, including bone fracture in med-
ical history (p = 0.031, odds ratio (OR) 4.39, 95% con-
fidence interval (CI) 1.14–16.95), antibiotic use in the
past 2 months (p = 0.039, OR 3.06, 95% CI 1.06–8.85)
and hospital admittance in the last year (p = 0.043,
OR 4.95, 95% CI 1.05–23.34). Based on expert opin-
ion, we further included sex and present use of urin-
ary catheter as variables in multivariable GEE logistic
regression. After including all variables in a multivari-
able GEE logistic regression only antibiotic use in the
past 2 months displayed a trend (p = 0.088, OR 2.84,
95% CI 0.85–9.49), while hospital admittance in the
past year (p = 0.13, OR 3.78, 95% CI 0.69–20.70) and
bone fracture in medical history (p = 0.35, OR 1.95,
95% CI 0.48–8.00) became non-significant. Lastly,
multicollinearity between the included variables was
assessed by computing variance inflation factors, but
no considerable collinearity was observed (variance in-
flation factors for all variables < 2).

WGS of bacterial isolates
As most isolated MDRO strains were E. coli strains (22/
27, 81.5%), we focused our analyses on this species. The
22 isolates were derived from 11 residents and were ana-
lysed by whole-genome analysis, including maximum
likelihood phylogeny of core genes, accessory genome
clustering, core-genome MLST and profiling of anti-
biotic resistance genes.

Genome-based clustering reveals a ward-specific E. coli
ST131 strain
Based on pangenome analysis, we identified core and
accessory (non-core) genes, of which the accessory
genes (5057) were selected for clustering. Clustering
based on presence/absence of these accessory genes
showed a clear cluster of ST131 strains (Fig. 2).
Within the ST131 cluster, two separate clusters could
be observed, one closely related cluster of twelve iso-
lates belonging to three residents on ward A, and one
cluster of four less related isolates from four residents
of four different wards. The isolates of three residents
on ward A (R002, R003 and R004) have nearly identi-
cal accessory genes, suggesting that they were colo-
nised with the same strain. In addition, these isolates
have a nearly identical accessory genome over time,
suggesting persistent colonisation of the same strain.

Clustering based on the maximum likelihood phylogeny
of core genes also resulted in a clear clustering of ST131
strains (data not shown). In addition, while the differences
are smaller than in the accessory genome, ST131 strains
from ward A still cluster separately from ST131 strains
from other wards. Lastly, a core-genome MLST confirms
clustering of ST131 strains on ward A (with up to two al-
leles difference) and shows that ST131 isolates from other
wards are different (with more than 30 alleles difference)
(Additional file 1: Fig. S2). These results support the hy-
pothesis that an ST131 strain was spread across ward A.

Specific resistance genes are exclusive to certain wards
Next, the prevalence of antibiotic resistance genes was
determined. Based on resistance gene absence/presence
in the genome, ST131 largely clustered together (Fig. 3),
and again a cluster of ST131 belonging to residents of
one ward (ward A) was observed. These strains were
characterised by presence of nine resistance genes (aac
(6’)-Ib-cr, aadA5, bla-CTX-M-15, blaOXA-1, catB3,
dfrA17, mph(A), sul1 and tet(a)). Three isolates belong-
ing to ST131, 847 and 2786 from ward F clustered to-
gether, and these three strains (from two residents)
contained the rifampicin resistance gene arr-3, which
was not detected in other strains.

Gut microbiota analysis using 16S rRNA gene amplicon
sequencing
A distinct gut microbiota between MDRO-positive and
MDRO-negative samples
First, alpha diversity (using observed ASVs/genera and
Shannon index) was computed at both ASV and
genus level to compare MDRO-positive with MDRO-
negative samples. To account for repeated measures,
we stratified these alpha diversity analyses by time
point. No significant differences in alpha diversities at
either level at any time point were observed (Add-
itional file 1: Fig. S3). Beta diversity was also not sig-
nificantly different between these samples (p = 0.12
and R2 = 0.049) (Fig. 4a). To identify individual bacter-
ial taxa associated with MDRO status, differential
abundance analysis was performed using DESeq2 at
each time point. Several taxa were more abundant in
MDRO-negative samples on multiple timepoints,
namely Atopobiaceae, Coprococcus_3, Dorea, Enorma,
Holdemanella, Lachnospiraceae, Lachnospiraceae_
ND3007_group, Phascolarctobacterium and Rumino-
cocceae_UCG-014 (Additional file 1: Fig. S4,
Additional file 2: Table S1). Only three taxa (Erysipe-
latoclostridium, uncultured_Coriobacteriales and un-
cultured_Ruminococcaceae) were more abundant in
MDRO-positive samples at any time point.
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MDRO colonisation is associated with consistent differences
in relative abundance of specific bacterial taxa
Residents and their samples were further classified on
having been MDRO-colonised at at least one time point
during the study (ever, n = 45 samples) or not (never,
n = 48 samples). There were no differences in alpha di-
versities over time between the groups (Additional file 1:
Fig. S5), nor in beta diversity (intra-individual stability)

between the ever and never colonised group (independ-
ent t-test, p = 0.2) (Fig. 4b).
Longitudinal differential abundance analysis between

samples from ‘ever’ versus ‘never’ MDRO-colonised resi-
dents was performed to investigate whether differences
in relative abundance were consistent over time. From
each resident, at least three out of four samples should
have been available to be included in this analysis,

Fig. 2 Overview of the accessory genome (non-core genes) of the 22 E. coli strains from eleven residents at different time points. Accessory
genes are clustered based on the average linkage method using Euclidean distances. All (n = 17) ST131 isolates cluster together, while the other
STs form a separate cluster. In addition, ST131 from ward A cluster together and are different from ST131 from other wards. The y-axis displays
accessory genes and the x-axis isolate numbers. Black bars indicate presence and white bars absence of a gene
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resulting in 45 samples from ever colonised residents
and 42 samples from never colonised residents. Three
taxa (Atopobiaceae, Dorea and Lachnospiraceae_
ND3007_group) were consistently more abundant in
‘never’ colonised residents throughout the 6-month
study period (Fig. 5, Additional file 1: Fig. S6). These
taxa were also identified to be more abundant in
MDRO-negative samples compared to MDRO-positive
samples at two time points (Additional file 1: Fig. S4).
Lastly, we looked for intra-individual changes in

pairs of samples of residents who either became
MDRO colonised or were MDRO decolonised during
the study period. For this, samples were analysed of
an MDRO-negative sample prior to an MDRO-
positive sample (n = 8 residents), and vice versa; an
MDRO-positive sample followed by an MDRO-
negative sample (n = 6 residents). Resident L10 could
be included twice in the first comparison, but to
avoid excessive impact of this resident on statistical
analysis, it was included once. We then performed
paired analyses for each of the two groups. However,
no differences in alpha or beta diversity were

observed, nor were any genera differentially abundant
in any of the comparisons (data not shown).

Compositional profiles show very high abundance of
Actinobacteria members Bifidobacterium and Collinsella
Next, we investigated the global microbiota profiles
across all residents without a focus on MDRO colonisa-
tion. Compositional profiles at phylum and family level
showed that the most abundant phylum in multiple resi-
dents was Actinobacteria (Fig. 6a), which is in contrast
to what is considered a ‘normal’ gut microbiota that gen-
erally consists of ~ 90% Firmicutes and Bacteroidetes.
Bifidobacterium and Collinsella were the Actinobacteria
members with highest relative abundance (Fig. 6b).

Metagenome analysis using shotgun sequencing data of
ten faecal samples
Not a single species, but several Bifidobacterium species are
highly abundant in residents
The nursing home did not provide probiotics to their
residents. However, the high abundance of Bifidobacter-
ium in the residents’ stools suggested otherwise. Ten

Fig. 3 Heatmap of antibiotic resistance genes in the 22 E. coli isolates from eleven residents at different time points. Black boxes indicate
presence of a resistance gene, while white indicates absence of the resistance gene. Antibiotic resistance gene profiles are clustered by
hierarchical clustering using Euclidian distances. Resident number, time, ward and time point are given as coloured annotations
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stool samples from five residents with high Bifidobacter-
ium and/or Collinsella relative abundance were further
investigated by shotgun metagenomic sequencing, and
two positive controls were included. The high relative
abundance of Bifidobacterium and Collinsella could be
confirmed and residents were colonised by seven highly
abundant Bifidobacterium species, namely B. adolescen-
tis, B. angulatum, B. bifidium, B. breve, B. longum, B.
pseudocatenulatum and B. ruminantium (Fig. 7a). From
these species, B. adolescentis, B. bifidum, B. breve and B.
longum are the most commonly used species in probio-
tics, although the others have been studied for probiotic
properties as well [57].

Assembly-based method reveals that Bifidobacterium
longum strains are (almost) identical within residents, but
not between residents
To investigate whether Bifidobacterium longum strains
were identical between and within residents, we analysed
the strains using de novo assemblies. B. longum was se-
lected because of its high relative abundance in multiple
samples, increasing the chance of recovering a full gen-
ome from the respective metagenomes and because it is

commonly present in probiotics. Its genome size is
about 2.5Mb and contains a high GC content of ~ 60%.
From samples of residents L001, L006 and L028, B.
longum genomes larger than 2Mb could be recovered,
indicating that (nearly) full genomes were successfully
obtained from the metagenome, but this was not the
case for L031 and R003 (Additional file 3: Table S2).
While average nucleotide identities were high between
samples, strains from the same individual were more
identical to themselves than to strains from other resi-
dents (Fig. 7b). This indicates that residents do not carry
the same B. longum strains. It should be noted that a full
B. longum genome could not be retrieved for all resi-
dents. Lastly, B. longum genomes were compared to the
NCBI reference genome (accession number NC_
011593), the representative genome (NC_004307) and its
plasmid (NC_004943) and several other B. longum
strains (Fig. 7b) to provide insight in what levels of di-
vergence are to be expected between strains. Comparing
these B. longum genomes from the NCBI database shows
that unrelated B. longum strains have an average nucleo-
tide identity (ANI) of between 0.956 and 0.988. This fur-
ther confirms that B. longum strains between the

Fig. 4 Bray-Curtis distance measures visualised by principle coordinates analysis (PCoA) for all (n = 93) faecal samples based on whether an MDRO
was cultured (a) and by mean intraindividual stability (1 - Bray-Curtis dissimilarity) between ‘ever’ and ‘never’ colonised residents (b). Each dot in
plot A represents a single sample, and ellipses indicate 95% confidence intervals

Ducarmon et al. Genome Medicine           (2021) 13:54 Page 10 of 17



nursing home residents were different (maximum ANI
between strains from different residents 0.99) and that
within residents strains were almost identical (ANI >
0.994), in case a nearly full genome could be retrieved.

Discussion
We present a unique study on asymptomatic gut MDRO
(in this study MDR Enterobacterales) colonisation in
nursing home residents and performed a wide variety of
analyses, namely clinical risk factor analysis, WGS of
MDRO isolates and 16S rRNA gene amplicon sequen-
cing and metagenomic sequencing of the gut microbiota.
We identify possible risk factors for MDRO colonisation,
potential spread of MDROs within a ward and microbial
signatures associated with MDRO colonisation using
16S rRNA gene amplicon sequencing. Many of the
MDRO-associated microbial signatures are consistent
over the 6-month time course of this study as shown by
longitudinal modelling. Additionally, the unexpectedly
high abundance of Bifidobacterium abundance in mul-
tiple residents was further investigated using metage-
nomic sequencing. We show that this high abundance is
very unlikely to be stemming from probiotic supplemen-
tation, as Bifidobacterium species and B. longum strains
differed between residents.
We observed a spread of E. coli ST131 within a ward,

but not between wards, as the ST131 seemed ward-
specific. E. coli ST131 was the most commonly found ST
in our study, which is in line with previous results

showing that this ST is major driver of the current
worldwide spread of ESBL-producing E. coli [58, 59].
This sequence type is associated with community-
acquired infections and older age, and is frequently ob-
served in nursing homes in countries throughout Europe
and the USA [7, 60–62]. While ST131 outbreaks are
generally seen among and between various nursing
homes, we concluded that spread of specific ST131
strains was restricted within wards. However, previous
studies may have been limited by methods to character-
ise ST131, as they characterise strains only with regular
MLST (of a limited number of housekeeping genes). By
using pangenome analysis, we investigated the genetic
differences in detail, allowing for discrimination of the
ST131 strains between the wards. We conclude that
MDRO transmission within nursing home wards seems
to reflect that of household contacts [63]. This small
scale MDRO spread was observed in the samples of 27
residents, one could hypothesise higher absolute num-
bers of related strains if all nursing home residents
would have been screened. Not only strains can spread,
plasmids are also able to move between different bacter-
ial strains. For instance, three different E. coli ST types
found at ward F contained arr-3, aadA16 and dfrA27.
Considering that these three genes are usually encoded
on a plasmid [64, 65], it is possible that they spread be-
tween ST131 strains on ward F. However, definite con-
clusions cannot be made based on these results, as only
three MDRO strains were detected in ward F.

Fig. 5 Time intervals of significantly different bacterial genera between ever (n = 12) and never (n = 15) MDRO colonised residents. Each line
interval represents a significant time interval, with significance being considered p < 0.05. Orange lines indicate higher abundance in the never
colonised group, while blue indicates higher abundance in the ever colonised group. If no coloured line is observed, the respective genus is not
significantly differentially abundant between specific time points
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Novel microbial signatures of MDRO colonisation
were identified which could contribute to colonisation
resistance against MDROs. Three taxa were consistently
more abundant throughout the study in residents never
colonised with an MDRO, namely Dorea, Lachnospira-
ceae_ND3007_group and Atopobiaceae, and these taxa
were also found to be more abundant in MDRO-
negative samples at two time points. Increased relative
abundance of Dorea and the Lachnospiraceae family has
been shown to be associated with colonisation resistance
against Campylobacter infection [66]. The relative abun-
dance of Dorea formicigenerans was identified as a po-
tential pre-liver transplant marker for subsequent
MDRO colonisation [67] but another report did not
mention Dorea as either a protective taxon or a risk fac-
tor [13]. While these results are conflicting, there is a
possibility that different studies observed effects of dif-
ferent Dorea species or strains, which could theoretically
have different or opposing effects on MDRO colonisa-
tion. Lastly, as clinical variables were not evenly distrib-
uted between compared groups, there is a possibility
that observed differences in relative abundance of bac-
terial taxa can partially be attributed to these confound-
ing factors.
We did not observe differences in alpha diversities be-

tween the different groups based on MDRO status. This
contrasts several reports where MDRO colonisation was
associated with a reduced alpha diversity, although con-
flicting evidence exists [13, 67, 68]. In addition, no

difference in beta diversity was observed between the
ever and never MDRO-colonised groups, nor between
MDRO-positive and MDRO-negative samples. This con-
tradicts findings in liver transplant patients and MDRO
colonisation [67]. Conflicting results regarding diversities
and microbial signatures could have multiple reasons.
First, technical variation induced from the entire work-
flow starting with sample collection and ending with use
of different statistical tools. Second, different MDRO
types were studied between the various reports. In the
current study, we mainly observed multi-drug-resistant
E. coli, while two other major studies investigating
MDROs and gut microbiota found a larger variety of
MDRO types [13, 67]. Considering that microbiome-
mediated colonisation resistance is likely to be specific
for individual bacterial species and most likely even bac-
terial strains, further studies should ideally focus on in-
vestigating single MRDOs in relation to the gut
microbiota. Third, geographical locations of the studied
cohorts were different, likely reflecting differences in gut
microbiota composition due to varying dietary patterns
and other cultural habits.
An unexpectedly high relative abundance of Bifidobac-

terium was observed in several residents in different
wards. Such consistently high relative abundances have,
to the best of our knowledge, not previously been de-
scribed in adults or elderly. Incidental reports of an out-
growth of Bifidobacterium species in elderly in a long-
term care facility have been described [69]. Rowan et al.

Fig. 6 Compositional profiles at phylum level (a) and genus level (b) from 16S rRNA gene amplicon data of 27 residents at four time points.
Other indicates the sum of all bacterial phyla or genera not specifically indicated in the legend. The y-axis displays relative abundance and the x-
axis the study time point
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observed a high relative abundance of Bifidobacterium
species in two out of eleven elderly subjects (> 15% rela-
tive abundance at at least one time point; mainly B.
longum, B. breve and B. adolescentis), although potential
explanations were not discussed.
It is known that in infancy the gut microbiota is largely

dominated by Bifidobacterium, but that this high abun-
dance declines with ageing [70]. In addition, elderly
mostly harbour B. longum, B.nucleatum, B. pseudonu-
cleatum and B. adolescentis. While we found that these
species were indeed among the most abundant, high
relative abundances of B. angulatum, B. bifidus, B. breve
and B. ruminantium were also observed. At first, we
hypothesised that high Bifidobacterium relative abun-
dance could be stemming from probiotic supplementa-
tion used on a voluntary basis by the nursing home
residents, despite knowing that probiotics generally do
not colonise very successfully [71, 72]. By performing
metagenomic sequencing on a subset of samples, we
showed this was unlikely to be the case, as different Bifi-
dobacterium species were observed between residents.
In addition, using strain-resolved metagenomics, we
show that B. longum strains were different between

residents, but likely the same within residents. Our sec-
ond hypothesis was related to dietary patterns of resi-
dents that perhaps a very monotonous diet could
stimulate outgrowth of Bifidobacterium. However, resi-
dents consumed fresh, daily prepared meals according to
a normal Dutch diet. It is unclear what the reasons and
consequences of this high relative abundance of Bifido-
bacterium are in our residents. In combination with the
observation that a high relative abundance of Bifidobac-
terium is not associated with protection against MDRO
colonisation, this suggests that probiotics based on the
Bifidobacterium species in our study may not effectively
protect against MDRO colonisation.
This study has several limitations and strengths. First,

our sample size and number of MDRO-positive samples
was limited, preventing the application of a more exten-
sive epidemiological risk factor analysis. Sample size was
also a limiting factor in differential abundance testing
between MDRO-positive and MDRO-negative samples
per time point. Second, this study focused on a single
nursing home and we can therefore not be certain that
microbiota profiles are representative for residents of
other (Dutch) nursing homes. Especially in light of our

Fig. 7 Compositional plot based on metagenomes of ten faecal samples from five residents using mOTUs (a) and average nucleotide identity
between assembled B. longum strains and reference sequences (b). Relative abundance is shown of the twenty most abundant bacterial species
in all samples and different bacterial species are indicated by colours. ‘Other’ is the sum of the relative abundance of all species not listed in the
colour key. Numbers on the x-axis indicate the resident number and study time point. Average nucleotide identity of B. longum strains as
computed by pyANI. The sequence labelled ‘NC_004307_REP’ in B is the representative genome on GenBank; the sequence with
‘NC_004943_PLAS’ is its plasmid. The sequence with ‘NC_011593_REF’ is the B. longum reference genome
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unique findings of high relative abundance of Bifidobac-
terium species, profiling the gut microbiota across other
nursing homes would be important. Third, some wards
had a very limited number of MDRO isolates, which
hampered making definite conclusions about MDRO
spread in those wards. Lastly, not all residents provided
faecal samples on all four time points.
However, this study uses a unique combination of

analyses for in-depth understanding of MDRO spread
in a nursing home and the relation of MDRO colon-
isation with residents’ microbiota. The longitudinal
nature of our study setup allowed for (1) detection of
robust associations between MDRO colonisation and
specific microbial taxa, (2) identifying whether colo-
nising MDRO strains were identical over time and (3)
comparing B. longum strains within and between resi-
dents using strain-resolved metagenomics. In addition,
the use of various statistical methods for identifying
microbial taxa associated with MDRO colonisation
further strengthens our findings. Lastly, our finding of
high relative abundance of Bifidobacterium in mul-
tiple residents warrants further investigation and con-
firmation by other studies.

Conclusions
Our study provides new evidence regarding the gut
microbiota’s potential in providing resistance against
MDRO colonisation in a nursing home. Several specific
taxa were identified which were consistently more abun-
dant in residents never colonised with an MDRO
throughout the 6-month study. Considering that most of
the detected MDROs were E. coli strains belonging to
ST131, it may be especially interesting to test the poten-
tially protective effect of these taxa against E. coli ST131.
In addition, we report a uniquely high abundance of sev-
eral Bifidobacterium species in multiple residents and
excluded the possibility that this was due to probiotic
supplementation. While the reasons for, and conse-
quences of this high relative abundance remain unclear,
it does suggest that probiotics based on Bifidobacterium
species observed in our study are highly unlikely to pre-
vent or eradicate MDRO colonisation in the gut of nurs-
ing home residents.
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