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Abstract: With the development of deep learning, considerable progress has been made in image
restoration. Notably, many state-of-the-art single image super-resolution (SR) methods have been
proposed. However, most of them contain many parameters, which leads to a significant amount
of calculation consumption in the inference phase. To make current SR networks more lightweight
and resource-friendly, we present a convolution neural network with the proposed selective channel
processing strategy (SCPN). Specifically, the selective channel processing module (SCPM) is first
designed to dynamically learn the significance of each channel in the feature map using a channel
selection matrix in the training phase. Correspondingly, in the inference phase, only the essential
channels indicated by the channel selection matrixes need to be further processed. By doing so, we
can significantly reduce the parameters and the calculation consumption. Moreover, the differential
channel attention (DCA) block is proposed, which takes into consideration the data distribution of
the channels in feature maps to restore more high-frequency information. Extensive experiments
are performed on the natural image super-resolution benchmarks (i.e., Set5, Set14, B100, Urban100,
Manga109) and remote-sensing benchmarks (i.e., UCTest and RESISCTest), and our method achieves
superior results to other state-of-the-art methods. Furthermore, our method keeps a slim size with
fewer than 1 M parameters, which proves the superiority of our method. Owing to the proposed
SCPM and DCA, our SCPN model achieves a better trade-off between calculation cost and per-
formance in both general and remote-sensing SR applications, and our proposed method can be
extended to other computer vision tasks for further research.

Keywords: single image super-resolution; lightweight image super-resolution; selective channel
processing; differential channel attention

1. Introduction

Single image super-resolution (SR), aims at recovering a high-resolution image (HR)
from its low-resolution image (LR) counterpart [1]. There is a recognized need for SR tech-
niques in many fields [2–7], such as remote sensing, medical imaging, security surveillance,
and hyperspectral images to name a few.

SR is a typically ill-posed problem because there is more than one solution for an LR
input. Additionally, there is significant room for further improving the performance of SR.
For these reasons, SR has been a subject of intense research for many years. Consequently,
numerous SR methods have been proposed by researchers. These methods can be classi-
fied into three classes in general [8]: interpolation-based methods, reconstruction-based
methods, and learning-based methods.
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In the SR field, interpolation-based methods are usually the most straightforward and
simple type, including the nearest interpolation, the bilinear interpolation, and the bicubic
interpolation [9]. These methods tend to calculate the values of the unknown pixels using
the known values of pixels surrounding them. Although these methods do not require large
calculation consumption, they show poor ability to restore the edges, textures, and other
high-frequency components of the pictures. The second category is the reconstruction-based
methods [10], whose theoretical basis is the balanced and unbalanced sampling theorem.
According to the degradation model, these methods reconstruct the high-resolution images
by utilizing the complementarity of image information in the same scene. The recon-
struction algorithms mainly include Maximum a Posteriori (MAP) [11,12], Projection onto
Convex Sets (POCS) [13], and Iterative Back Projection (IBP) [14–17] methods. MAP regards
the SR problem as a matter of statistical estimation. It has good performance in stability
and denoise but shows poor ability in restoring the edges of pictures. IBP and POCS
are all iterative algorithms, both of which have the disadvantage of multi-solution and a
tremendous amount of calculation.

To progress in this area, researchers have proposed several machine learning (ML)-
based SR methods [18,19]. The basic idea of these methods is to utilize the ML models to
fit the relationship between the HR and LR images. The traditional ML-based methods
include neighbor-embedding [20], sparse representation [8,21], and anchored neighborhood
regression [22]. Although these methods achieved a performance improvement upon
release, some problems still exist. First, a time-consuming process is needed to optimize
the algorithms. Second, they have poor generalization ability when there is a gap in data
distribution between the input and training datasets.

Since the pioneering work of SRCNN [23], which is proposed by Dong et al., deep-
learning methods are becoming a common trend in SR research. In VDSR proposed by
Kim et al. [24], the number of convolution layers increases to 20. In virtue of the residual
learning strategy [25], the deepened network has a better performance compared to the
shallow ones. Later, EDSR [26] was proposed, which is both a deep network with 60 layers
and a wide one with 256 channels. Then, Zhang et al. further increased the network
depth to over 100 and 400 layers in RDN [27] and RCAN [28], respectively. Compared
with the approaches mentioned above, the deep-learning-based methods can achieve
significantly higher performance under the criterion of peak signal-to-noise ratio (PSNR)
and structure similarity (SSIM) [29]. However, the increase in layers and channels leads
to an increase in computational consumption, which hinders these methods from being
applied to real-world scenery.

In order to solve the problem of sizeable computational consumption, CARN-M [30]
utilizes the recursive strategy to share the weight parameters of the blocks in the networks,
which reduces the model size, simultaneously leading to a performance drop. Hui et al. [31]
proposed the IDN model, which partially retained local short-path information. Further-
more, Hui et al. [32] proposed IMDN, which uses an information multi-distillation block to
further improve the performance. Wang et al. [33] proposed SMSR, which explores sparsity
in deep-learning SR models for efficient inference. To build a lightweight model with
higher performance, we propose our convolution neural network with the selective channel
processing strategy (SCPN). The SCPN model contains several selective channel processing
modules (SCPM), which utilize the channel selection matrixes with learnable arguments to
decide whether to process the channels in the feature map in the next convolution layer.
Thus, it can save much calculation in the inference phase. Furthermore, for the sake of
improving performance, we propose the differential channel attention block, which is mod-
ified from [28], and takes the distribution of channel parameters into consideration, which
is more suitable for low-level vision tasks, and preserves more high-frequency textures and
edges for SR reconstruction.

Overall, our contributions in this work can be summarized as follows:
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(1) We propose the convolution neural network with selective channel processing strategy
(SCPN). Extensive experiments prove that our model can achieve higher performance
than previous works in remote sensing images in the SR field;

(2) We propose the selective channel processing module (SCPM), which contains trainable
parameters in a channel selection matrix to decide whether to process the correspond-
ing channels in the feature map in the next convolution layer. This strategy markedly
reduces the calculation consumption and the model size;

(3) We propose the differential channel attention (DCA) block, which is more suitable
for the SR tasks in restoring more high-frequency details and further improves the
representation ability of the networks.

2. Related Work

SR is a classic low-level task in computer vision. We can coarsely divide the existing
methods into two categories: the traditional methods and the deep-learning-based methods.
Attention mechanism and adaptive inference are two typical strategies to improve the
performance of the model. Due to space limitations, we offer a brief overview of the
deep-learning SR methods, the attention mechanisms, and the adaptive inference strategy.

2.1. Deep-Learning SR Methods

With the rapid development of deep learning [34,35], recent years have witnessed
a rapid rise in the growth of the deep-learning-based SR methods. As a pioneer work,
Dong et al. [23] first proposed SRCNN. This method shows significant advantages over
former methods, which uses a three-layer convolution neural network to learn the mapping
function between LR and HR. In the year of 2016, Kim et al. [24] proposed the VDSR
network, which is inspired by ResNet [25] architecture. Owing to the residual learning
mechanism, the VDSR model deepens the network to 16 convolutional layers to learn
more high-frequency prior knowledge. These methods mentioned above use interpolated
images as input, resulting in additional computational waste. In order to effectively solve
this problem, Shi et al. [36] proposed the ESPCN model, whose merit is the sub-pixel
convolution layer for upscaling feature maps in the model. Due to the efficiency of this
strategy, most of the following works use sub-pixel convolution layers in their models to
promote performance enhancement and reduce calculation. To further tap the potential
of CNN, Lim et al. [26] proposed a deep and wide network named EDSR, which won the
2017 NTIRE competition of SR. The previous works show that the width and depth of the
network have a correlation with the performance in a certain range. However, for the lack
of computing resources, the edge and mobile devices cannot support such large models;
therefore, these methods lack practicality in real-world scenery.

2.2. Attention Mechanisms for SR

Zhang et al. [28] first proposed RCAN, which is the first attention model in the SR
field. RCAN proposed the channel attention mechanism, which uses the global average
pooling strategy to measure the importance of the features in each layer and calculates the
weight of each channel by a multi-layer perceptron. In addition, Dai et al. [37] proposed
SAN, which modified the channel attention using the covariance average pooling. RFANet,
proposed by Liu et al. [38], takes advantage of the spatial attention mechanism to enhance
the critical areas for better reconstructing features. Zhang et al. [39] proposed a non-local
residual network for the image restoration task. In this work, they used the pixel-level
non-local attention mechanism to capture long-distance spatial contextual information for
SR reconstruction. Mei et al. [40] further explored the non-local attention at patch level with
a cross-scale strategy. Recently, Liang et al. [41] proposed the SwinIR model, which is based
on the epidemic Transformer [42,43] model to carry forward the self-attention mechanism
in the SR field.
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2.3. Adaptive Inference

Adaptive inference techniques have attracted increasing interest because of their ability
to adapt the network structure based on the input. One typical type of adaptive inference is
to select the path of inference at the levels of layers. Notably, Srivastava et al. [44] proposed
the dropout strategy to prevent neural networks from overfitting, which performs as a
pioneer in this field. Wu et al. [45] proposed the BlockDrop strategy, and implemented
it on ResNet to drop several residual blocks to improve efficiency. Mullapudi et al. [46]
proposed HydraNet, which has multiple branches and can dynamically choose a set for
inferencing the results. Another type of adaptive inference technique is the early stopping
strategy, which can skip at the location whenever it is judged to be unnecessary. Specifically,
Figurnov et al. [47] proposed a spatially adaptive computation time strategy to terminate
calculating at a space position where features are deemed good enough. Liu et al. [48]
proposed the AdaSR model, which utilizes an adapter to adapt the number of convolutional
layers implemented at different locations.

3. Visualization of Feature Maps in Classic Deep-Learning-Based SR Methods

In this section, we explore the sparsity of feature maps in the classic baseline networks,
i.e., EDSR [26] and RCAN [28]. We choose butterfly.png in the Set5 [49] dataset as input,
which is a typical case in the research of the SR field. We upscale the picture at the scale of
4 using the two models, and research the feature maps in detail.

We investigate the proportion of the non-zero elements in the feature map after the
ReLU layer in each block. Figure 1 illustrates a general trend where more elements are
activated as the number of ResBlock grows. This means that the numerous elements in
the feature maps in the front of the network are not as essential as those at the back of the
network for reconstructing the final results.
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Figure 1. Ratio of the non-zero elements in the feature maps of EDSR and RCAN.

Figure 2 shows the channels in the feature maps in the head, middle, and tail of the
RCAN network. It is observed that many of the feature maps are filled with zeros, which
contain little texture information. It is obvious that they contribute less to the process of
reconstruction, which can be overlooked for simplicity and fast inference. In addition,
Figure 2 demonstrates that the first and last feature maps of the backbone network store
more activated textures than the ones in the middle of the network. Inspired by these
observations, we propose the following selective channel processing network.
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Figure 2. Visualization of the feature maps in RCAN. (a,b), respectively, represent the feature map in
the first and last blocks in the first residual group. (c,d) represent the feature map in the first and last
blocks in the fifth residual group. (e,f) represent the feature map in the first and last blocks in the last
residual group.

4. Selective Channel Processing Network (SCPN)

In this section, we first introduce the architecture of our proposed SCPN model.
Then, we give a detailed description of the selective channel processing module and the
differential channel attention block. Finally, we introduce the implementation details of the
proposed SCPN.

4.1. Network Architecture

As shown in Figure 3, our selective channel processing network (SCPN) consists of
three parts: the shallow feature extraction, the deep feature extraction, and the up-sampling
reconstruction.
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Given a low-resolution image ILR and its counterpart high-resolution image IHR,
the output of our model is denoted as ISR. The shallow feature extraction consists of one
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convolution layer with the kernel size 3 × 3, following the earlier research [26–28,37,38,40],
and the extracted features F0 is represented as:

F0 = PSFE(ILR), (1)

where PSFE(·) denotes the convolution operation. Then, F0 is sent to the deep feature
extraction part for extracting more effective features FDF, which can be denoted as:

FDF = PDFE(F0), (2)

where PDFE is the deep feature extraction part, which consists of m selective channel
processing modules. Finally, we utilize the up-sampling reconstruction part to convert the
deep features into output results, denoted as:

ISR = PUP(FDF + F0), (3)

where PUP means the up-sampling reconstruction, which contains the convolution layers
and an up-sampler. Following [36], the up-sampler includes a convolution layer and a
sub-pixel convolution, which also corresponds to our lightweight design principle.

To make the procedure of SCPN clearer, we present a flowchart in Figure 4.
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4.2. Selective Channel Processing Module (SCPM)

As shown in Figure 5, the proposed selective channel processing module (SCPM)
has different forms in the training phase and the inference phase, which will be explicitly
introduced below.
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4.2.1. SCPM in the Training Phase

Channel selection matrix. To set up the modules, channel selection matrixes are
needed to learn to judge whether each channel in the feature maps is important or not in
the feature maps generated by the convolution layers, and whether to transmit it to the
next convolution layer. Ideally, we utilize the binary code, i.e., 0 and 1, to represent the
‘selection’ manipulations of the corresponding channels. To make the parameters of the
channel selection matrix learnable, for the reason that the softmax function cannot convert
the numbers close to the binary code, we adopt the Gumbel softmax distribution [50] to
approximate the one-hot distribution. To be specific, for the l-th layer in the m-th SCPM,
the channel selection matrix CSMm

l has two columns, and the number of rows in the matrix
equals the number of channels. We input the parameters of the channel selection matrix
into a Gumbel softmax function, and generate the parameters Mm

l to reweight the feature
maps output by the convolution layers:

Mm
l [c, i] =

exp
((

CSMm
l [c, i] + Gm

l [c, i]
)
/τ
)

∑2
j=1 exp

((
CSMm

l [c, j] + Gm
l [c, j]

)
/τ
) , (4)

where c denotes the channel index, and Gm
l ∈ RC×2 represents the Gumbel noise tensor. In

addition, τ denotes the temperature coefficient of the Gumbel softmax function. When τ
tends to ∞, all results of Gumbel softmax function tends to 0.5, which makes the generated
elements uniformly distributed. Conversely, when τ infinitely tends to 0, results from the
function become one-hot, which makes the channel selection matrix binary fit our settings.
When initializing the network architecture before the training phase, we use the random
function to generate parameters for every SCM with Gaussian distribution N(0, 1). We
denote the first column in Mm

l as Mm
l,1, and the second column as Mm

l,2.
Architecture. Figure 5a illustrates the flow path of the SCPM in the training phase.

Four convolution layers are set for deeply processing the features from input. Let us denote
the input feature map as Fin, the output of the n-th convolution layer as Fn, and the output
feature map as Fout. Then we can get:

F1 = Conv1(Fin), (5)
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F2 = Conv2
(

Mm
1,1 � F1

)
, (6)

F3 = Conv3
(

Mm
2,1 � F2

)
, (7)

F4 = Conv4
(

Mm
3,1 � F3

)
, (8)

Fout = Conv1×1(DCA(Mm
1,2 � F1 + Mm

2,2 � F2 + Mm
3,2 � F3 + F4)) + Fin, (9)

where Convn denotes the n-th convolution layer, and � denotes the element-wise multipli-
cation. DCA denotes the differential channel attention block, which will be detailed in the
following article.

Training strategy. During the training phase, we adjust the temperature coefficient τ
with the following formula:

τ = max
(

0.4, 1− t
500

)
, (10)

where t is the number of epochs. It is shown that τ drops from 1 slightly to 0.4 at the 300 th
epoch and maintains 0.4 during the following epochs in the training phase.

4.2.2. SCPM in the Inference Phase

Channel selection matrix. Channel selection matrixes are properly optimized in the
training phase in order to represent whether to preserve the channel to the next convolution
layer, or directly send it to the addition layer at the end of the fourth convolution layer for
feature-adding. In the inference phase, the channel selection matrixes work as a basis for
the channel splitting processes. To get the binary code of the channel selection matrixes, for
the two elements Mm

l [c, 1] and Mm
l [c, 2], we replace the larger one with 1 and the smaller

one with 0 directly. In the channel selection matrix CSMm
l , the positions of elements equal

to 1 in the first column Mm
l,1 denote the coordinate number of channels to preserve to be

sent to the next layer, and the positions of elements equal to 1 in the second column Mm
l,2

mean the coordinate number of channels to pass to the addition layer.
Architecture. As shown in Figure 5b, the architecture of SCPM in the inference phase

has a different shape from that in the training phase. The significant difference is that we
introduce the channel splitting strategy to extract the channels from the output channels.
For the l-th layer in the m-th SCPM, we first split the number of channels indicated by
Mm

l,1 and then extract the convolution kernels at the corresponding positions in the next
convolution layer in the meanwhile. Then, the two-dimensional convolutions are made
using the extracted kernels and feature maps.

To be explicit, the process of the inference phase can be denoted as:

F1 = Conv1(Fin), (11)

F2 = Conv2d
(

F1
[
Mm

1,1(1)
]
, w2

[
Mm

1,1(1)
])

, (12)

F3 = Conv2d
(

F2
[
Mm

2,1(1)
]
, w3

[
Mm

2,1(1)
])

, (13)

F4 = Conv2d
(

F3
[
Mm

3,1(1)
]
, w4

[
Mm

3,1(1)
])

, (14)

Fout = Conv1×1
(

DCA
(

F1
[
Mm

1,2(1)
]
+ F2[Mm

2,2(1)
]
+ F3[Mm

3,2(1)
]
+ F4)) + Fin, (15)

where Conv1 means the first convolution layer, Conv2d means the 2-D convolution function,
Fl

[
Mm

l,1(1)
]

means the extracted feature map from the original feature map Fl , whose
indexes equal to the positions of ‘1’ in Mm

l,1, and wl denotes the original weight of the l-th
convolution layer. Other symbols have the same meanings as those in Section 4.2.1. With
the combination of 2-D convolution and the selective channel processing strategy, we can
avoid calculating the channels which contribute less for SR reconstruction in the feature
maps, thus, we reduce the number of channels for calculating to a large extent, and do not
have to store the parameters of the redundant convolutional kernels, therefore, save many
redundant consumptions.
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4.2.3. Differential Channel Attention Block

The channel attention mechanism is a widely used strategy in both high-level and
low-level computer vision tasks. As a common practice, either global average pooling
or global maximum pooling is utilized to generate the channel descriptor of the feature
maps, and the channel descriptor will be processed to become the weight of each channel
of the feature map. RCAN shows the advantage of this mechanism by achieving a higher
rate of PSNR and SSIM. However, by only using the average value of each channel, we
cannot extract the richer information from the feature map, e.g., the high-frequency details,
the distribution and deviation of data, etc., therefore, having some negative impact on
SR performance. To solve the problem and further boost the performance of our model,
we propose the differential channel attention block (DCA), whose procedure is shown in
Figure 6. We first calculate the mean value of each channel, whose formula is:

mvc =
1

H ×W ∑
(i,j)∈xc

xc[i, j], (16)

where mvc means the mean value of the c-th channel, xc means the c-th channel of the input
feature, (i, j) means the coordinate of the element in xc, and H and W means the height and
width of the channel feature, respectively.
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In the meanwhile, the standard deviation value of the input feature map is calculated,
formulated as:

sdvc =

√√√√ 1
H ×W ∑

(i,j)∈xc

(xc[i, j]−mvc)
2, (17)

where sdvc means the standard deviation value of the c-th channel, and other symbols have
the same meanings as in the formulas above. With the standard deviation value, we take
the whole distribution of data into the model. Hence, our model has a better ability to
reconstruct high-frequency information. This manipulation has the formula:

sv = mv + sdv, (18)

where sv means the summed value. Then, the addition operation is completed, and the
summed values are sent to a multi-layer perceptron (MLP) for further processing. The MLP
has three layers, where the first layer has 64 elements, the second 16, and the third 64. After
this process, the weights of channels are formed. This process can be denoted as:

y = MLP(sv), (19)

where y denotes the generated weight of channels. Finally, we multiply the weights and
the input feature, denoted as:

output = x� y, (20)
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where � denotes the element-wise multiplication. With the plug-and-play DCA block, the
proposed SCPN further upgrades its reconstruction performance.

4.2.4. Implementation Details

As a supplement, we introduce the implementation details to explicitly explain our
SCPN architecture. We set the number of the SCPMs as 6. There are four convolution layers
in each SCPM whose kernel size is 3 × 3 and the zero-padding parameter is one and stride
one. Another convolution layer in the SCPM has the kernel size of 1 × 1, the stride of
1 and no zero-paddings. The number of feature maps in our SCPN is set to 64 for better SR
reconstruction results. In the up-sampling reconstruction section, the 3 × 3 convolution
layer transforms the number of channels to 3× r2, where r is the rate of SR. Then, the
pixel-shuffle layer turns the number of channels to 3 (i.e., red, green, and blue channels),
and the height and width of features become r times the original ones.

4.2.5. Pseudocode of the Proposed Network

To better explain the procedure of our SCPN, we present the PyTorch-like pseudocode
of the SCPN in the two phases (Algorithm 1).

Algorithm 1 The PyTorch-like pseudocode of SCPN.

###The basic module SCPM of SCPN.
def SCPM(input):

if model.training:
c1=ReLU(conv1(input))
c1_0=c1*matrix1[0];c1_1=c1*matrix1[1]
c2=ReLU(conv2(c1_0))
c2_0=c2*matrix2[0];c2_1=c2*matrix2[1]
c3=ReLU(conv3(c2_0))
c3_0=c3*matrix3[0];c3_1=c3*matrix3[1]
c4=ReLU(conv4(c3))
c_out=c1_1+c2_1+c3_1+c4
out=conv5(CCA(c_out))+input
return out

if model.inference:
pos1_0=position(matrix1[0]==1);pos1_1=position(matrix1[1]==1)
pos2_0=position(matrix2[0]==1);pos2_1=position(matrix2[1]==1)
pos3_0=position(matrix3[0]==1);pos3_1=position(matrix3[1]==1)
c1=F.conv2d(input,conv1.weight)
c1_0=split(c1,pos1_0);c1_1=split(c1,pos1_1)
c2=F.conv2d(c1_0,conv2.weight[pos1_0])
c2_0=split(c2,pos2_0);c2_1=split(c2,pos2_1)
c3=F.conv2d(c2_0,conv3.weight[pos2_0])
c3_0=split(c3,pos3_0);c3_1=split(c3,pos3_1)
c4=F.conv2d(c3_0,conv4.weight[pos3_0])
c_out=c1_1+c2_1+c3_1+c4
out=conv5(CCA(c_out))+input
return out

###The deep feature extraction part, which contains 6 SCPMs.
def P_DFE(input):

out1=SCPM1(input)
out2=SCPM2(out1)
out3=SCPM3(out2)
out4=SCPM4(out3)
out5=SCPM5(out4)
out6=SCPM6(out5)
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Algorithm 1 Cont.

###The whole SCPN model.
if model.training:

F0=P_SFE(LR) #shallow feature extraction
F1=P_DFE(F0) #deep feature extraction
SR=P_UP(F0+F1) #upsampling reconstruction
loss=sum(|HR-SR|)/(h*w)
loss.backward()
optimizer.step()

if model.inference:
F0=P_SFE(LR)
F1= F1=P_DFE(F0)
SR=P_UP(F0+F1)
imshow(SR)

5. Experiments on General Images
5.1. Datasets and Evaluation Metrics

During the training phase, we utilize the DIV2K [51] dataset to construct our training
set, which is widely used in the image restoration tasks, especially in the SR field. It
contains 800 high-quality natural images with 2-K resolution and three channels of colors,
i.e., red, green, and blue. For evaluating the performance of our SCPN, five standard
benchmark datasets, i.e., Set5 [49], Set14 [52], B100 [53], Urban100 [54], and Manga109 [55]
were selected as test sets. To be exact, Set5 and Set14 have 5 and 14 images without complex
patterns, respectively. The B100 dataset contains 100 images of natural and cultural scenery.
The Urban100 dataset comprises 100 images, whose semantics are about urban scenes.
Manga109 contains 109 manga volumes drawn by professional manga artists in Japan.
To build the low-resolution inputs in the datasets, we adopt the commonly used imresize
function in MATLAB (www.mathworks.com, accessed on 23 July 2022), which utilizes the
bicubic model for degradation.

In order to quantify the SR efficiency of our SCPN and its competitors, we adopt
two universal standards, i.e., peak signal-to-noise ratio (PSNR) and structural similarity
index (SSIM) [29] on the luminance channel in YCbCr space converted from RGB space.
In simple terms, PSNR calculates the pixel-wise differences between the super-resolved
images and the ground truth. At the same time, SSIM indicates the structural similarity,
e.g., luminance, contrast, and structures between the two images. The higher scores of the
evaluation metrics mean the better performance of the model.

5.2. Training Details

A pretreatment was carried out before training. That is, we subtracted the mean value
from images in the training set. During the training phase, we crop the low-resolution
images to patches whose height and width fit 192/r, where r is the rate of SR upscaling.
Corresponding high-resolution images are cropped in the meanwhile to be the labels for
training. Data augmentation was conducted after the data loader read the images, that is,
random 90◦ rotations and horizontal flips. We trained our model with the L1 loss function
and ADAM optimizer [56], whose hyper-parameters are: β1 = 0.9, β2 = 0.999, and ε = 10−8.
The initial learning rate was set to 2 × 10−4, then decreased to half after every 400 epochs
for SR upscale rates of 2 and 3, and after every 500 epochs for an SR upscale rate of 4.
The minibatch size was set to 16. We implemented all the experiments using the PyTorch
framework on a workstation with an NVIDIA (www.nvidia.com, accessed on 23 July 2022)
RTX2080Ti GPU.

www.mathworks.com
www.nvidia.com
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5.3. Effectiveness of Selective Channel Processing Strategy

To demonstrate the effect of our proposed selective channel processing strategy, we
designed two new variant modules, i.e., Module-A and Module-B, to replace the original
SCPM in our SCPN, and trained them with the same strategy.

As shown in Figure 7a, all the feature maps generated by the convolution layers
are added by the addition layer without cooperating with the channel selection matrixes.
In Figure 7b, for the feature maps with channel numbers of 64, 16 channels in front are
split to pass to the concatenating layer, and the rest are preserved to be sent into the
next convolution layer for further processing. As a comparison, our SCPM selects which
channels to preserve or pass to the addition layer to skip processing with a learnable
channel selection matrix. Comparative results are shown in Table 1.
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Table 1. The comparison of complexity and performance on Set14 by the contestants with upscale
factor 4. FLOPs denote the number of floating-point operations.

Model Parameters FLOPs PSNR

Network with Module-A 1.01 M 115.5 G 28.56
Network with Module-B 0.72 M 82.0 G 28.56

SCPN 0.95 M 115.3 G 28.60

As illustrated in Table 1, the network with Module-A, which has no channel selection
matrix to selectively pass the channels to the next layer, shows a significant performance
drop. The main reason is that redundant features are passed to the following convolution
layer in the Module-A architecture, and this degrades the SR performance. In our SCPN,
the channel selection matrix can pass the feature pieces, which are needed by the next
convolution layer, and pass the rest of the channels to the addition layer, which leads to
fewer parameters, less computational cost, and higher performance of PSNR and SSIM. An
inspection of the table shows that the network with Module-B has fewer parameters than
our SCPN. Although the architecture of Module-B seems more lightweight, its strategy is
only to pass a fixed quantity of channels to the next convolution layer, and aggregate the
rest channels in the concatenation layer, which leads to the lack of processing a proportion
of features for SR reconstruction. Owing to our selective channel processing strategy, our
SCPN achieves a better trade-off between computational complexity and performance.
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5.4. Visualization of Channel Selection Matrixes

We visualize the selective channel matrixes in Figure 8. It is observed that, in models
of any scale factor, more channels in the feature map are preserved in the layers in the tail
of the model than those in the front. This illustrates that more features in the front have
less significance, which can be stridden over to avoid computational redundancy. Figure 7
also shows that more layers are preserved to be sent into the next layers than the ones sent
to the addition layer, which demonstrates that most of the channels in the feature maps
are of significance for reconstructing the final SR results. These observations also echo the
phenomena shown in Section 3.
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VDSR [24] 665 K 37.53/0.9590 33.05/0.9130 31.90/0.8960 30.77/0.9140 37.22/0.9750 

DRCN [58] 1774 K 37.63/0.9588 33.04/0.9118 31.85/0.8942 30.75/0.9133 37.55/0.9732 

LapSRN [59] 813 K 37.52/0.9591 33.08/0.9130 31.08/0.8950 30.41/0.9101 37.27/0.9740 

SRFBN-S [60] 282 K 37.78/0.9597 33.35/0.9156 32.00/0.8970 31.41/0.9207 38.06/0.9757 

CARN [30] 1592 K 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 38.36/0.9765 

IDN [31] 553 K 37.83/0.9600 33.30/0.9148 32.08/0.8985 31.27/0.9196 38.01/0.9749 

IMDN [32] 694 K 38.00/0.9605 33.54/0.9172 32.16/0.8994 32.09/0.9279 38.73/0.9771 

SCPN (ours) 938 K 38.08/0.9607 33.65/0.9177 32.19/0.89967 32.23/0.9288 38.89/0.9774 

Bicubic [9] 

×3 

- 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349 26.95/0.8556 

SRCNN [23] 8 K 32.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989 30.48/0.9117 

FSRCNN [57] 13 K 33.18/0.9140 29.37/0.8240 28.53/0.7910 26.43/0.8080 31.10/0.9210 

VDSR [24] 665 K 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279 32.01/0.9340 

DRCN [58] 1774 K 33.82/0.9226 29.76/0.8311 28.80/0.7963 27.15/0.8276 32.24/0.9343 

LapSRN [59] 502 K 33.81/0.9220 29.79/0.8325 28.82/0.7980 27.07/0.8275 32.21/0.9350 

SRFBN-S [60] 375 K 34.20/0.9255 30.10/0.8372 28.96/0.8010 27.66/0.8415 33.02/0.9404 

CARN [30] 1592 K 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 33.50/0.9440 

IDN [31] 553 K 34.11/0.9253 29.99/0.8354 28.95/0.8013 27.42/0.8359 32.71/0.9381 

IMDN [32] 703 K 34.42/0.9275 30.25/0.8401 29.06/0.8041 28.12/0.8507 33.49/0.9440 

Figure 8. Visualization of the selective channel matrixes, where yellow denotes 1 and brown denotes
0 in the figures. X-Y denotes the SCM for the Y-th layer in the X-th SCPM. (a) Channel selection
matrixes in SCPN of upscale factor 2. (b) Channel selection matrixes in SCPN of upscale factor 3.
(c) Channel selection matrices in SCPN of upscale factor 4.
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5.5. Quantitative Evaluation and Visual Comparision

In order to test the effectiveness of the proposed model, we compare the SCPN with
the bicubic interpolation method and nine state-of-the-art models, including SRCNN [23],
FSRCNN [57], VDSR [24], DRCN [58], LapSRN [59], SRFBN-S [60], CARN [30], IDN [31],
and IMDN [32]. Since we mainly focus on the lightweight network designs in this paper,
several recent works with more than 2 M parameters (e.g., EDSR [26] (~40 M), RCAN [28]
(~15 M), and SAN [37] (~15 M)) are not included for comparison. We report the quantitative
comparison in Table 2.

Table 2. Quantitative results of the compared methods in the format of PSNR/SSIM. #Params denotes
parameters for short. The results are either reproduced by ourselves with the official settings or
copied directly from the origin paper. Bold numbers indicate the best performance.

Method Scale #Params Set5 Set14 B100 Urban100 Manga109

Bicubic [9]

×2

- 33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403 30.80/0.9339
SRCNN [23] 8 K 36.66/0.9542 32.45/0.9067 31.36/0.8879 29.50/0.8946 35.60/0.9663
FSRCNN [57] 13 K 37.05 0.9560 32.66 0.9090 31.53 0.8920 29.88 0.9020 36.67 0.9710

VDSR [24] 665 K 37.53/0.9590 33.05/0.9130 31.90/0.8960 30.77/0.9140 37.22/0.9750
DRCN [58] 1774 K 37.63/0.9588 33.04/0.9118 31.85/0.8942 30.75/0.9133 37.55/0.9732

LapSRN [59] 813 K 37.52/0.9591 33.08/0.9130 31.08/0.8950 30.41/0.9101 37.27/0.9740
SRFBN-S [60] 282 K 37.78/0.9597 33.35/0.9156 32.00/0.8970 31.41/0.9207 38.06/0.9757

CARN [30] 1592 K 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 38.36/0.9765
IDN [31] 553 K 37.83/0.9600 33.30/0.9148 32.08/0.8985 31.27/0.9196 38.01/0.9749

IMDN [32] 694 K 38.00/0.9605 33.54/0.9172 32.16/0.8994 32.09/0.9279 38.73/0.9771
SCPN (ours) 938 K 38.08/0.9607 33.65/0.9177 32.19/0.89967 32.23/0.9288 38.89/0.9774

Bicubic [9]

×3

- 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349 26.95/0.8556
SRCNN [23] 8 K 32.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989 30.48/0.9117
FSRCNN [57] 13 K 33.18/0.9140 29.37/0.8240 28.53/0.7910 26.43/0.8080 31.10/0.9210

VDSR [24] 665 K 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279 32.01/0.9340
DRCN [58] 1774 K 33.82/0.9226 29.76/0.8311 28.80/0.7963 27.15/0.8276 32.24/0.9343

LapSRN [59] 502 K 33.81/0.9220 29.79/0.8325 28.82/0.7980 27.07/0.8275 32.21/0.9350
SRFBN-S [60] 375 K 34.20/0.9255 30.10/0.8372 28.96/0.8010 27.66/0.8415 33.02/0.9404

CARN [30] 1592 K 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 33.50/0.9440
IDN [31] 553 K 34.11/0.9253 29.99/0.8354 28.95/0.8013 27.42/0.8359 32.71/0.9381

IMDN [32] 703 K 34.42/0.9275 30.25/0.8401 29.06/0.8041 28.12/0.8507 33.49/0.9440
SCPN (ours) 934 K 34.44/0.9275 30.33/0.8420 29.09/0.8046 28.18/0.8522 33.62/0.9445

Bicubic [9]

×4

- 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 24.89/0.7866
SRCNN [23] 8 K 30.48/0.8628 27.50/0.7513 26.90/0.7101 24.52/0.7221 27.58/0.8555
FSRCNN [57] 13 K 30.72/0.8660 27.61/0.7550 26.98/0.7150 24.62/0.7280 27.90/0.8610

VDSR [24] 665 K 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524 28.83/0.8870
DRCN [58] 1774 K 31.53/0.8854 28.02/0.7670 27.23/0.7233 25.14/0.7510 28.93/0.8854

LapSRN [59] 502 K 31.54/0.8850 28.19/0.7720 27.32/0.7270 25.21/0.7560 29.09/0.8900
SRFBN-S [60] 483 K 31.98/0.8923 28.45/0.7779 27.44/0.7313 25.71/0.7719 29.91/0.9008

CARN [30] 1592 K 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 30.47/0.9084
IDN [31] 553 K 31.82/0.8903 28.25/0.7730 27.41/0.7297 25.41/0.7632 29.41/0.8942

IMDN [32] 715 K 32.19/0.8943 28.56/0.7807 27.53/0.7345 26.02/0.7825 30.32/0.9057
SCPN (ours) 952 K 32.20/0.8948 28.60/0.7819 27.55/0.7354 26.10/0.7857 30.49/0.9080

5.5.1. Quantitative Results

It can be seen from Table 2, that our SCPN outperforms the state-of-the-art methods
with a higher PSNR and SSIM value. Our method also keeps a slim model size, which
holds its parameters within one million.

Explicitly, the bicubic interpolation method has no prior knowledge for the SR recon-
struction, therefore, it has inferior performance. SRCNN modifies the interpolated images
with a shallow network architecture, which achieves a 2~3 dB progress in PSNR over the
interpolation methods. FSRCNN and VDSR further increase the number of layers but do
not achieve rapid growth due to the limitation of the network architectures. DRCN and
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SRFBN-S utilize the recursive mechanism, which can recurrently use the modules in the
networks with the shared parameters. This mechanism saves the parameters but limits the
network to learn more prior knowledge. IDN and IMDN propose and enhance the informa-
tion distillation mechanism, respectively, which helps to reconstruct SR images without too
many parameters. Our proposed SCPN utilizes the selective channel processing strategy,
which empowers the network to save parameters and achieve better performance. Our pro-
posed method surpasses all the methods above and achieves state-of-the-art performance
and keeps a slim model size in the meanwhile.

5.5.2. Qualitative Results

We provide the visual comparison of some selected pictures (i.e., img047, img067,
img076, and img087 in the Urban100 dataset) generated by our SCPN and other previous
works, which are shown in Figure 9. First, take img047 and img087 as an example. The
difficulty in reconstructing the images is to show the edges of the windows in the buildings.
Our SCPN can precisely recover the edges, making the SR images look sharper than others.
Regarding img067, our SCPN performs better when facing complex textures in comparison
with the other methods. It should be noted that our method recognizes the two-line stripes
and tries to make them clearer, while other methods ignore this detail. In img076, our
SCPN restores the blocks on the wall with more regular textures, and other methods
cannot reconstruct these rectangles. In sum, our proposed SCPN model generates clearer
SR results than other methods, especially in detailed sections. Owing to the selective
channel processing strategy and DCA, our method achieves the best performance with
limited parameters.
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6. Remote Sensing Image Super-Resolution

Remote sensing technology is now widely used in agriculture, forestry, military, and
other fields. As enhancing the quality of remote sensing images is of great significance,
we conducted experiments on remote sensing datasets in order to fit our method with
the remote sensing field. Because of the difference of shooting angels and the existing
distribution bias between the natural and remote sensing images, we utilized the pre-
trained model with the DIV2K dataset and fine-tuned it on the remote sensing dataset.
Owing to transferring the external knowledge from the natural image domain to the remote
sensing image domain, our model achieves faster convergence and better performance in
the remote sensing SR tasks.

We conducted experiments on the UC Merced Land-use [61] dataset, which is used
by most remote sensing SR methods. The UC Merced Land-use dataset is one of the
most famous datasets in the remote sensing research area. It contains 21 classes of land-
use scenes, and each class includes 100 aerial images with a high spatial resolution (i.e.,
0.3 m/pixel) and size of 256 × 256. Following the settings of the previous works [7,62], we
randomly selected 40 images per class (i.e., totally 840 images) to construct the training
set, and randomly chose 40 images in the training set as a validation set. Furthermore, we
constructed the UCTest dataset with the 120 randomly selected images from the remaining
part of the dataset. The acquisition of the HR-LR pairs for training and testing is the same
as that for the common images in Section 5.1. The training strategy for remote sensing
images is the same as that for common images in Section 5.2, and the only difference is
that we load the weight of the model trained by common datasets for the transfer strategy
mentioned above. We also trained the IMDN model with the same strategy for comparison.

The NWPU-RESISC45 dataset [63] is a publicly available benchmark dataset, which
covers 45 classes with 700 images in each class extracted from Google Earth. We randomly
chose 180 images from NWPU-RESISC45 to make up a test dataset named RESISCTest to
evaluate the performance and generalization ability of our model.
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Table 3 shows the mean PSNR and SSIM value of test datasets by the compared
methods. We can observe that our SCPN achieves a higher PSNR value (approximately
0.1 dB), and a higher SSIM index (approximately 0.004) than its main competitor, i.e., IMDN.
It is noteworthy that IMDN-T achieved its best performance after more than 1000 epochs
of fine-tuning, while our SCPN only needs 8 epochs of fine-tuning to achieve its best
performance, which illustrates that our method has better generalization ability and is
easier for training.

To fully demonstrate the effectiveness of our method, we provide six visual results
of the scale factor ×4 in the two test datasets, which are shown in Figure 10. The results
shown illustrate that our SCPN-T restores more high-frequency information precisely and
reconstructs remote sensing pictures with better visual effects.
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Table 3. Quantitative results of the compared methods for scale factor ×4. Bold numbers indicate the
best performance. The suffix T denotes that the parameters in the model are after tuning.

Method
UCTest RESISCTest

PSNR SSIM PSNR SSIM

Bicubic 26.77 0.6968 26.43 0.6300
IMDN-T 29.19 0.7920 26.44 0.6369
SCPN-T 29.32 0.7961 26.53 0.6406

Application in real-world cases. To further test the performance of our method in real-
world scenes, we captured three remote-sensing images from the Landsat-8 satellite [64–67],
which are the landscapes around Xuanwu Lake, Xinjizhou National Wetland Park, and
Lukou International Airport in Nanjing. The original size of these images is 900 × 619. Our
method successfully super-resolved these images with good visual effects and abundant
details, which are shown in Figure 11. It is demonstrated that our proposed method can be
well-applied to real-world remote-sensing scenery.
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Figure 11. The visual results of the landscapes around (a) Xuanwu Lake, (b) Xinjizhou National
Wetland Park, and (c) Lukou International Airport in Nanjing from the Landsat-8 dataset, with
upscale factor 4 generated by our method. The small pictures in the right button corner are the
low-resolution images, and the larger ones are high-resolution images.

7. Conclusions

In this paper, we propose a lightweight convolution neural network with the selective
channel processing strategy (SCPN) for single image super-resolution. Specifically, we
propose selective channel processing modules (SCPM) to execute our selective channel
processing strategy, which utilizes channel selection matrixes with learnable parameters. In
the training phase, selective channel matrixes are softened and multiple the corresponding
feature maps to guide the model distinguish the importance of each channel. In the
inference phase, the values in the selective channel matrixes are hardened to work as the
gates, which decide whether to process the corresponding channels in the next convolution
layer or pass the channels to the addition layer directly for simplified calculation. What
is more, we propose the differential channel attention block in order to restore more
high-frequency details. Extensive experiments demonstrate that our method achieves a
better trade-off between model complexity and performance, which keeps the number
of parameters within 1 M, and gets higher PSNR and SSIM values of the test datasets
beyond its competitors. Sections 5 and 6 show that our method can generate natural
images and remote-sensing images with higher quality and fine details and achieve better
results beyond previous state-of-the-art methods both in quantitative and qualitative
comparisons. Specifically, our SCPN achieves an approximately 0.1 dB higher PSNR value
and 0.004 higher SSIM value beyond IMDN, its main competitor. In the future, we will
explore efficient ways to deploy our lightweight model on mobile devices. At the same
time, we will explore the other lightweight strategies in the SR field, such as introducing
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the sparsity convolution in the models to further reduce the size and calculation complexity
of our models.
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