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Abstract

Baculoviruses (BV) are DNA viruses that are pathogenic for insects. Although BV infect a range of mammalian cell types, they
do not replicate in these cells. Indeed, the potential effects of these insect viruses on the immune responses of mammals are
only just beginning to be studied. We show in this paper that a recombinant Autographa californica multiple nuclear
polyhedrosis virus carrying a fragment of ovalbumin (OVA) on the VP39 capsid protein (BV-OVA) has the capacity to act as
an adjuvant and vector of antigens in mice, thereby promoting specific CD4 and cytotoxic T cell responses against OVA. BV
also induced in vivo maturation of dendritic cells and the production of inflammatory cytokines, thus promoting innate and
adaptive immune responses. The OVA-specific response induced by BV-OVA was strong enough to reject a challenge with
OVA-expressing melanoma cells (MO5 cells) and effectively prolonged survival of MO5 bearing mice. All these findings,
together with the absence of pre-existing immunity to BV in humans and the lack of viral gene expression in mammalian
cells, make BV a candidate for vaccination.
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Introduction

The development of vaccines to prevent diseases for which no

vaccine currently exists, such as AIDS or malaria, or to treat

chronic infections or cancers, as well as the improvement of

efficacy and safety of existing vaccines, remains a high priority. In

most cases, the development of such vaccines requires strategies

capable of stimulating CD8 cytotoxic T lymphocytes (CTLs) and

thus, to deliver antigen to MHC class I molecules.

Among other systems, Baculoviruses (BV) have several advan-

tageous features, which make them an attractive new tool for

vaccine development. BV are enveloped DNA viruses that infect

insects, and require viral transcription factors for propagation. As

BV cannot replicate in vertebrate hosts [1,2], they are considered

safe. Their low cytotoxicity, their inability to replicate in mamma-

lian cells and the absence of pre-existing antibodies, make BV

candidates for gene therapy, expression vaccines and vector

display applications. Furthermore, to the best of our knowledge,

there are to date no studies reporting that BV have developed

strategies to escape from immune surveillance and thus could

hamper immunogenicity, probably because mammals are not their

natural hosts.

Recently, BV have become a subject of great interest as

immunopotentiators [3–7]. Hervas-Stubbs et al. and others have

demonstrated that BV have strong adjuvant properties, thereby

promoting humoral and CTL responses against co-administered

antigens, dendritic cell (DC) maturation and production of

inflammatory mediators through mechanisms primarily mediated

by IFN-a and b [5].

It has been previously shown that in-frame fusion of foreign

sequences to the mature sequence of GP64, an outer glycoprotein

of BV, drives the chimeric protein to the surface of the virions [8].

This strategy, known as BV display, has been used to develop

recombinant vaccines against foot-and-mouth disease virus

(FMDV) [9], Plasmodium berghei [10], rubella [11] and bovine

herpesvirus-1 (BHV-1) [12] that induced high titers of antigen-

specific antibodies.

A transduction strategy, in which the coding sequence of an

antigen is driven by the cytomegalovirus (CMV) promoter, was

employed by several authors to obtain antigen specific T cell

immune responses, resulting in high levels of protection against

parasitic diseases [13–15]. However, the antigen specific cytotox-

icity obtained with this strategy was not very strong [16].

Kukkonen et al. reported the generation of a novel BV

displaying a high density of enhanced green fluorescent protein

(EGFP) as a fusion to the VP39 capsid protein, while retaining

natural infectivity in insect cells [17]. This approach, originally

designed to improve the nuclear traffic of BV in mammalian cells,

has opened the possibility of performing insertions into the inner

capsid of the BV particle. VP39, a 39 KDa polypeptide with

monomers arranged in stacked rings around the nucleoprotein

core, is the most abundant protein of the nucleocapsid [18]. Also,
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large polypeptides (up to 28 KDa), instead of single epitopes

peptides [19], can be displayed in VP39 by BV, thus allowing a

new site for antigens to be delivered by BV vector.

Here, we studied whether BV display using the VP39 capsid

protein instead of using the GP64 envelope protein is a valid strategy

to induce a T cell immune response. With this objective, we

constructed a BV particle expressing the OVA protein on the VP39

capsid protein and assayed its ability to activate adaptive and innate

immunity in vitro and in vivo. Finally, we evaluated if the immune

response induced by these BV is strong enough to deal with a tumor

challenge. The results showed here clearly demonstrate that BV

capsid display, by potentiating T cell immune responses against

tumors, could be a promising vaccine vector.

Results

BV carrying OVA in the capsid are efficiently internalized
by DCs and deliver OVA into the MHC I pathway

To maximize the possibility of obtaining functional fusion

proteins and capsid assembly, we constructed a transfer plasmid

that enabled the fusion of a truncated sequence of OVA or the

entire sequence of EGFP to the N-terminus of a second copy of

VP39 under the regulation of the strong polyhedrin promoter (BV-

OVA and BV-GFP, respectively) (Fig. 1A). Purified virus

preparations from Sf9 cells infected with BV-GFP and BV-OVA

produced the predicted 67 KDa and 62 KDa protein bands

respectively, as determined by Western blot (Fig. 1B). However, no

bands were detected in cells infected with non-recombinant BV

(BV-WT), indicating the incorporation of EGFP and OVA as a

part of the virus structure. To confirm that fusion proteins were

incorporated on the viral capsid, purified BV-OVA was analyzed

by immunogold labeling for electron microscopy using an anti-

OVA antibody. The viral capsid showed a typical rod-shaped

morphology and their surfaces were gold labeled (Fig. 1C).

Immunoblotting and flow cytometry revealed that about 1170

OVA molecules were incorporated per virus particle (data not

shown).

Dendritic cells (DCs) are professional antigen presenting cells

and the preferred target cells of vaccine vectors. To evaluate the

ability of BV as carriers of antigen, bone marrow-derived dendritic

Figure 1. Characterization of BV-OVA. (A) Scheme of Baculovirus (BV) vectors. The Ovalbumin (OVA) (653–1222) and enhanced Green
Fluorescent Protein (GFP) (1-717) sequences were cloned 59 of the VP39 sequence. A linker sequence (GGGGS) was added in the N-terminus of VP39
to provide distance and flexibility for the N-terminal fusion proteins to fold correctly. Production of the fusion protein is driven by the strong
polyhedrin promoter. (B) Western blot analysis of purified virions. The virions were purified by ultracentrifugation for 30 min at 131,0006g onto a
25% sucrose cushion. Fusion proteins OVAVP39 (MW 64 KDa), GFPVP39 (MW 67 KDa) and OVAGP64 (MW 89 KDa) were detected with anti-OVA or
anti-GFP specific polyclonal antibodies. (C) Immunoelectron microscopy of BV-OVA. Recombinant BV-OVA purified by ultracentrifugation through a
25% sucrose cushion were treated with 1% of Triton 100. Virions capsids were adsorbed to Formvar-coated grids, and the presence and localization
of OVAVP39 fusion protein on the capside of the virion was detected with an anti-OVA polyclonal antibody and an anti rabbit IgG-gold conjugate.
The figure is representative of all fields examined. Bar = 100 nm. (D) Uptake of BV by Bone Marrow-derived Dendritic Cells (BMDCs). The BMDCs were
incubated with BV-GFP for 2 hours at 37uC or 4uC. Then, cells were washed, stained with anti-CD11c and analyzed on a FACSCanto II. In all cases, a
minimum of 26105 events was acquired. Results are representative of two independent experiments and are expressed as the geometric mean of the
fluorescence intensity (MFI) of the FL1 channel in total DCs or the percentage of DCs which are positive for FL1 channel. (E) In vitro OVA presentation
by DCs infected with BV-OVA. Spleen CD11c+ cells (26105) were incubated in vitro with BV-OVA (N) or BV-GFP (#), and cultured overnight with 105

B3Z cells/well. Then, cells were washed and the presentation of the OVA257-264 epitope to B3Z cells was monitored by the activity of b–galactosidase
with a colorimetric assay. Results are representative of two independent experiments and are expressed as mean +/2 SEM of the optical density at
595 nm (OD595, n = 3).
doi:10.1371/journal.pone.0024108.g001
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cells (BMDCs) were incubated with BV-GFP at 37uC for 2 hours

at different multiplicities of infection (MOI) and BV uptake was

analyzed by flow cytometry. We observed an efficient uptake of

BV-GFP by BMDCs that increased with MOI (Fig. 1D). The same

experiment conducted at 4uC (as negative control for internaliza-

tion) rendered a lower binding of BV to DCs. We then examined

whether DCs can process antigens carried by BVs, using a classical

in vitro antigen presentation assay. Splenic DCs incubated with BV-

OVA were cultured with B3Z cells, a CD8 T cell hybridoma

which recognizes the peptide corresponding to aminoacids 256 to

264 in OVA (OVA256-264) associated to H2-Kb. We observed that

DCs incubated with BV-OVA activated B3Z cells, whereas DCs

incubated with control BV-GFP did not stimulate B3Z cells

(Fig. 1E), showing that BV-OVA had the capacity to deliver

antigens into the MHC I pathway. Taken together, these results

demonstrated that BV can carry heterologous antigens in the

capsid, be internalized by DCs, and access the MHC I pathway for

presentation to CD8 T cells.

BV induce DC maturation and CD8 T cell activation
We investigated if BV were able to induce maturation of DCs.

BMDCs incubated with BV-WT for 18 hours showed by flow

cytometry analysis an increase in the expression of the phenotypic

activation marker CD40 and, to a lesser extent, of CD86 and

MHC II (Fig. 2A), as well as in the production of the inflammatory

cytokines IL-6 and IL-12 p40 (Fig. 2B), as determined by ELISA in

culture supernatants. Similar results were obtained with BMDCs

from TLR4 deficient mice, indicating that the maturation

observed in TLR4 competent DCs was due to BV and not to

LPS contamination within BV formulations (Fig. 2B). DCs

exposed to supernatants from mock infected Sf9 cells (SN) did

not exhibit either IL-6 or IL-12p40 secretion (Fig. 2B), showing

that no other constituent from the insect cell cultures than BV

were responsible for DC stimulation. These results clearly show

that BV are efficiently internalized by DCs, which then mature

and secrete proinflammatory cytokines.

As BV-OVA was able to deliver OVA to the MHC I pathway,

we evaluated its ability to induce CD8 T cell activation. With this

purpose, splenic DCs were first incubated with BV-OVA and then

co-cultured with CD8 T cells from OT-I mice. Activation of CD8

T cells was assessed by a carboxyfluorescein diacetate, succinimi-

dyl ester (CFSE)-dilution proliferation test as well as by CD25

expression and IFN-c secretion by T cells. Incubation of DCs with

BV-OVA led to strong proliferation (Fig. 3A and B) and

differentiation of naı̈ve OT-I CD8 T cells into effector cells, as

determined by CD25 expression (Fig. 3A) and IFN-c production

(Fig. 3C). In contrast, a BV formulation displaying an OVA

fragment on the BV envelope by fusion to its GP64 surface protein

(BV-OVAsur, Fig. 1A, B) was unable to activate either CD8 T cell

proliferation (Fig. 3D) or CD25 upregulation (Fig. 3E). Collec-

tively, these findings indicate that BV capsid display is a very

efficient strategy for delivering antigens into the MHC I pathway

in DCs and for activating naı̈ve CD8 T cells.

BV capsid display elicits an OVA-specific CTL response
The next step was to evaluate whether the activation of naı̈ve

CD8 T cells by recombinant BV led to the induction of an

adaptive CTL response against the heterologous antigen. Seven

days after a single i.v. injection, BV-OVA induced a vigorous CTL

response specific to the OVA257-264 epitope (Fig. 4A, B), as

determined by an in vivo killing assay using CFSE-labeled target

cells. One mg of OVA protein coadministered with BV elicited an

equivalent CTL response to that induced by BV-OVA, whereas

30 ng of OVA (the same amount as that of the OVA contained in

the BV-OVA formulation) coadministered with BV did not elicit a

detectable CTL response (Fig. 4B). Thus, our results show that

although BV have a good adjuvant capacity to elicit CTL

responses against soluble antigens, they are far more efficient when

antigen is carried by VP39 capsid protein, as they allow to hugely

reduce the amount of required antigen for the same response.

The CTL response was accompanied by a high production of

IFN-c upon in vitro restimulation of immune spleen cells with OVA

protein (Fig. 4C). Furthermore, when spleen cells from mice

immunized with BV-OVA, or with BV-WT alone or combined

with OVA protein were restimulated with BV-WT, we observed

high and similar levels of IFN-c (Fig. 4C). This showed that BV

elicited a strong T cell response not only to OVA but also against

BV antigens, produced by CD4 and CD8 T cells (data not shown).

We also observed that in the absence of restimulation, the

supernatants of all experimental groups immunized with any of the

BV formulations had a higher IFN-c content than mice injected

with OVA alone or PBS. The same result was observed in

supernantants of mice immunized with BV-WT and restimulated

with OVA. These last observations could be attributed to the

Figure 2. BV induce BMDCs maturation. (A) Maturation of BMDCs by BV. BMDCs were incubated for 18 hours with BV-WT or mock. Then, cells
were stained with anti-CD11c and one of the following antibodies: anti-CD40, CD86 or I-Ab, and analyzed on a FACSCanto II. In all cases, a minimum
of 26105 events was acquired. Results are representative of two independent experiments and are expressed as the geometric mean of the
fluorescence intensity (MFI) for each indicated molecule in total DCs. (B) Production of inflammatory cytokines. BMDCs from C57BL/10 ScCr (TLR4
deficients) and C57BL/6 (TLR4 competents) were incubated for 18 hours with BV-WT, or a supernatant from mock infected Sf9 cells (SN), and then
levels of IL-6 and IL-12 p40 were determined in supernatants of BMDCs by ELISA. Results are representative of two independent experiments.
doi:10.1371/journal.pone.0024108.g002
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strong anti-BV T cell response, which does not need further

restimulation to be detected.

In order to identify the source of IFNc in spleen cells and

evaluate the quality of T cell response, we performed an

intracellular IFN-c staining of splenocytes from all experimental

groups. As determined by flow cytometry, immunization with BV-

OVA elicited the production of IFN-c by CD4 and CD8 T cells

(Fig. 4D), whereas the injection of OVA protein (30 ng) in

combination with BV-WT elicited OVA-specific IFN-c produc-

tion only in CD4 T cells (Fig. 4E), strongly indicating that to

obtain sufficient and efficient CD8 T cell activation, antigen must

be contained in the BV capsid. As for ELISA bulk determinations,

all experimental groups immunized with any of the BV

formulations had a higher frequency of IFN-c-producing CD4

and CD8 T cells than the same cells of mice injected with OVA

alone or PBS in the absence of the specific stimulus, reinforcing the

observation that BV induce such a strong T cell response that it

does not need further restimulation to be detected.

Next, we compared the ability of BV-OVAsur and BV-OVA

(containing a similar number of OVA insertions in both

preparations) to induce a CTL response. Seven days after

immunization, mice injected with BV-OVAsur failed to elicit a

CTL response (Fig. 4F) and no OVA-specific IFN-c secreting CD8

T cells were detected after in vitro restimulation of spleen cells with

OVA (Fig. 4G). When the same comparison was performed by

employing a BV-OVAsur containing around 5 times more OVA

insertions than BV-OVA, BV-OVAsur was able to induce a mild

anti-OVA CTL response, much weaker than the response induced

by BV-OVA (approximately 55% of specific lysis vs around 95%,

respectively, data not shown). These results showed that BV capsid

display is a much more efficient strategy to activate CD8 T cell

mediated responses than BV envelope display.

The anti-OVA CTL response remained evident at least 110

days after a single injection of BV-OVA (Fig. 5A), without the

need of a further boost. Moreover, spleen cells recovered from the

same mice still produced significant amounts of IFN-c upon

restimulation with OVA (Fig. 5B). This latter result reaffirmed the

efficiency of single doses of BV, which elicited a strong and long-

lasting CD8 T cell response to an heterologous antigen.

Strong B and T cell immunogenicity against vectors can limit

the T cell response against the foreign antigens they carry [20].

Although a single injection with BV-OVA is enough to obtain a

long lasting OVA-specific CTL response without further boosting,

the strong anti-BV T cell response (which remains very high at

least 14 days after a single injection, Fig. 5C) may be able to

constrain repeated injections of BV to boost the immune response.

Thus, in order to evaluate this possibility, we measured the OVA-

specific CTL response in mice injected twice with BV-OVA (on

days 0 and 15). As showed in Figure 5D, anti-OVA CTL response

on day 21 after a single BV-OVA injection (Group BV-OVA/

PBS) was reduced compared to CTL response 7 days after

immunization (Group PBS/BV-OVA). However, mice receiving

two repeated doses of BV-OVA had an equivalent CTL response

against OVA (Group BV-OVA/BV-OVA) than mice immunized

Figure 3. BV-OVA induces CD8 T cell activation. Splenic CD11c+ cells (26105) purified from C57BL/6 mice were incubated with BV-WT, BV-OVA
or BV-OVAsur at the indicated multiplicity of infection (MOI) for 120 minutes and washed twice. Then, DCs were cultured for 3 days with CFSE-labeled
CD8 T cells from OT-I mice (having a transgenic T cell receptor which recognizes OVA257-264 in the context of H-2Kb). T cell proliferation and CD25
expression were analyzed by flow cytometry, after labeling cells with an anti-CD3 antibody and exclusion of dead cells with 7AAD. (A) A
representative dot plot overlay of cell proliferation vs CD25 expression of CD8 T cells cultured with DCs, which were preincubated with BV-OVA (black
dots) or BV-WT (gray dots) at a MOI of 30. (B) Percentage of CD8 T cells undergoing one or more rounds of proliferation and (C) IFN-c content,
assessed by ELISA, in supernatants of culture of CD8 T cells with DCs preincubated with BV-OVA or BV-WT. (D) T cell proliferation and (E) CD25
expression of CD8 T cells co-cultured with DCs preincubated with BV-OVA (&), BV-OVAsur (m) or BV-WT (#). Results are representative of at least two
independent experiments and are expressed as mean +/2 SEM (n = 4).
doi:10.1371/journal.pone.0024108.g003
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with a single BV-OVA injection on day 15 (Group PBS/BV-

OVA). Conversely, previous injection with BV-WT abrogated the

induction of anti-OVA CTL upon immunization with BV-OVA

(Group BV-WT/BV-OVA), showing that BV-immune mice had

an impaired ability to mount de novo anti-OVA responses. In this

way, a strong anti-BV immune response prevents the induction of

a primary response, but does not constrain the maintenance and

boosting of an already established anti-OVA CTL response after

repeated immunizations.

BV induce an innate immune response
In order to evaluate the stimulation of an innate immune

response by the BV, we studied the production of IFN-c, IL-6 and

IL-12p40 in C57BL/6 mice shortly after an i.v. injection of BV-

WT or SN. High levels of IFN-c, IL-6 and IL-12p40 were detected

in the sera of BV-WT injected mice 6 hours post injection, which

then returned to basal levels after 24 hours (Fig. 6A). However,

none of these cytokines were detected in sera of mice injected with

SN. Interferon-c producing cells in spleen were identified as NK

and NKT cells (with 36 and 38%, respectively, of these cells being

IFN-c+) (Fig. 6B, C). Related to this, no changes in the proportion

of these cell populations were observed in spleen after BV

injection.

Intravenous BV injection also stimulated in vivo DC maturation,

as shown by up-regulation of CD86 (Fig. 6D) and MHC II and

CD40 molecules (data not shown). The BV genome contains

Figure 4. Anti-OVA CTL response in mice injected with BV-OVA. C57BL/6 mice were immunized by a single i.v. injection of 56107 PFU BV-WT,
BV-OVA, BV-OVAsur, BV-WT + OVA (30 ng or 1 mg), OVA alone (1 mg) or PBS. Seven days later, immunized mice received an i.v. injection of a mixture
(1:1) of OVA256-264 peptide-loaded CFSEhigh and unloaded CFSElow splenocytes as target cells. (A) A representative histogram of remaining CFSEhigh

and CFSElow cells in control and BV-OVA immunized mice 20 hours after injection of target cells is shown. (B) Percentage of specific in vivo killing of
one representative experiment. (C) IFN-c content in supernatants of spleen cells from immunized mice determined by ELISA. Spleen cells were
recovered and cultured for 48 hours in the presence of OVA protein or BV-WT. As control, spleen cells without stimulus were also cultured. *, p,0.05;
**, p,0.01. (D, E) IFN-c intracellular staining on splenocytes from immunized mice with 30 ng OVA+BV-WT, BV-WT, BV-OVA, OVA alone or PBS, as
indicated above. Spleen cells were recovered and cultured for 12 hours in the presence of OVA protein or OVA256-264, and incubated in the presence
of brefeldin A for 6 additional hours. Then, cells were labeled for CD4 or CD8 markers and intracellular IFN-c. (D) A representative dot plot is shown.
(E) Percentage of IFN-c+ CD4 or CD8 T cells. **, p,0.01; ***, p,0.001. (F) Comparison of specific in vivo killing between mice immunized with BV-OVA
vs BV-OVAsur. ***, p,0.001. (G) Comparison of the frequency of IFN-c-producing CD8 T cells in splenocytes from BV-OVA vs BV-OVAsur immunized
mice. **, p,0.01. Results are representative of at least two independent experiments and are expressed as mean +/2 SEM (n = 4).
doi:10.1371/journal.pone.0024108.g004
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bioactive CpG motifs whose frequency is similar to that observed

for Escherichia coli and herpes simplex virus DNAs and significantly

higher than that in murine and entomopoxvirus DNAs [3]. TLR9

is essential for the immune response to CpG-rich DNA and it is

considered to be the most probable receptor involved in DC

activation by BV [3,21]. In order to evaluate the extent to which

DC maturation is induced by BV, we also measured the expression

of CD86 on DCs from mice injected i.v. with 30 ng or 30 mg of

CpG-containing oligodeoxynucleotide (CpG-ODN) 1826. BV

DNA contains at least 7 CpG different motifs, which in total

represent a total count of 344 copies of CpG motifs in the entire

BV genome (Table 1). Therefore, in a regular dose of 56107

plaque forming units (PFU) BV-WT there are at least 2.961025

nmol CpG motifs, which is approximately 100,000 times lower

than the amount of CpG motifs contained in 30 mg CpG-ODN

1826 (5.5 nmol). The up regulation of CD86 expression in mice

injected with 30 mg CpG-ODN complexed with DOTAP was

notably lower than that observed after 56107 PFU BV injection

and was almost not noticeable in mice injected with 30 ng CpG-

ODN, clearly indicating that BV is a much more efficient inducer

of DC maturation.

Taken together, our results demonstrated that BV promote

innate immune responses by inducing inflammatory cytokines,

IFN-c production by NK and NKT cells and in vivo DC

maturation.

BV-capsid display strongly potentiates antitumor
immune response

In order to test the efficacy of BV vaccination we investigated

whether the immune response induced by BV-OVA was strong

enough to prevent tumor implantation and expansion. First, we

conducted a classical prophylactic vaccination scheme. Mice were

immunized with BV-OVA and 7 days later challenged with a

subcutaneous (s.c.) injection of MO5 cells. All mice vaccinated

with BV-OVA survived without developing tumors whereas mice

vaccinated with BV-WT or PBS succumbed (Fig. 7A, B).

Moreover, all mice vaccinated with BV-OVA were free of tumors

until the end of the experiment (more than 60 days). To verify that

the protection provided by BV-OVA was specific to the OVA

antigen expressed by MO5 cells, we challenged groups of

vaccinated mice with the untransfected parental cell line B16. In

these experiments, tumors grew in all groups at similar rates (data

not shown), indicating that the anti-tumoral immune response was

mediated by a specific anti-OVA immune response induced by

BV-OVA. Furthermore, mice vaccinated with BV-OVA and

challenged 7 days later with MO5 cells became protected from a

Figure 5. Anti-OVA CTL response in mice injected with BV-OVA is long-lasting and not affected by repeated immunization with the
same vector. (A, B) C57BL/6 mice were immunized by a single i.v. injection of 56107 PFU BV-WT, BV-OVA or PBS. One hundred and ten days later,
immunized mice received an i.v. injection of a mixture (1:1) of OVA256-264 peptide-loaded CFSEhigh and unloaded CFSElow splenocytes. Twenty hours
later, spleen cells were recovered to determine (A) the percentage of specific in vivo killing by flow cytometry and (B) IFN-c content by ELISA in
supernatants of spleen cells from immunized mice, cultured for 48 hours in the presence of OVA protein. (C) C57BL/6 mice were immunized by a
single i.v. injection of 56107 PFU BV-WT or PBS. Seven and fourteen days later, spleen cells were recovered and cultured with BV-WT (MOI 5) for
48 hours. The IFN-c content in supernatants was determined by ELISA (D) C57BL/6 mice were immunized by a single i.v. injection of 56107 PFU BV-
WT, BV-OVA or PBS. Fifteen days later, mice received a second i.v. injection of 56107 PFU BV-WT, BV-OVA or PBS, combined as shown in the figure.
Seven days later, immunized mice received an i.v. injection of a mixture (1:1) of OVA256-264 peptide-loaded CFSEhigh and unloaded CFSElow

splenocytes. Twenty hours later, spleen cells were recovered and the percentage of specific in vivo killing was determined by flow cytometry. *,
p,0.05; ***, p,0.001. Results are representative of at least two independent experiments and are expressed as mean +/2 SEM (n = 5).
doi:10.1371/journal.pone.0024108.g005
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second challenge at day 120 after immunization with B16 cells

(data not shown), indicating that the prophylactic response elicited

by BV-OVA and the subsequent challenge with MO5 cells

triggered the development of a long lasting anti-B16 cell specific

response.

To examine further the potential of the BV capsid display, we

conducted a therapeutic vaccination scheme. Mice were injected

with a s.c. dose of MO5 cells 7 days before being immunized with

BV-WT, BV-OVA or PBS and subsequently injected by near

tumor s.c. or intratumoral injections on days 11, 17 and 21 post-

tumor cell inoculation, in order to maintain a state of continuous

inflammation around the site of tumor implantation and

consequently increase mice survival. Tumors grew much faster

in mice injected with PBS or BV-WT than in mice injected with

BV-OVA. Survival was 100% in mice injected with BV-OVA on

day 32 post-tumor injection, with all mice died by day 42. In PBS

or BV-WT immunized mice only 50% were alive on day 28 and

all of them were dead by day 32 (Fig. 7C, D). Therefore, a

significant prolongation in survival was found for BV-OVA mice

compared with PBS or BV-WT ones.

These results demonstrate that recombinant BV is sufficient to

establish a protective immunity against MO5 challenge, thus

showing the potential of BV capsid display as a new strategy of

vaccination.

Discussion

The baculovirus system has been previously shown to be

capable of displaying a foreign protein on the virion surface [9–

12,22], usually by using GP64, its major surface glycoprotein. It

has been reported that in vivo, after i.v. injection, BV are taken up

by the liver and spleen, and preferentially infect DCs and B cells in

the spleen [6]. BV can reach the cytoplasm of mammalian cells by

a mechanism similar to the one used in insect cells [17,23–25],

with this process starting with endocytosis, being followed by acid-

induced fusion of the virus envelope to the endosome (probably

mediated by GP64) and by escape of the virus capsid to the cytosol

Figure 6. Innate immune response in mice injected with BV. (A) Induction of inflammatory cytokines by BV. C57BL/6 mice were i.v. injected
with 56107 PFU BV (N) or with supernatants of uninfected insect cells (SN, %), and at the times shown sera were collected and assayed for IL-6, IFN-c
and IL12p40 by ELISA. Sera collected before the injection were employed as control. Results are representative of two independent experiments. The
line depicted in each group corresponds to the mean of each group of dots. (B, C) Activation of NK, NKT and T cells by BV. C57BL/6 mice were i.v.
injected with 56107 PFU BV, and 3 hours post injection splenic populations were incubated in the presence of BFA for an additional 6 hours. Then,
cells were labeled for CD49b and CD3 markers and intracellular IFN-c. (B) A representative dot plot of the proportion of NK (CD49b+ CD3-), NKT
(CD49b+ CD3+) and T (CD49b- CD3+) cells in the spleen of a control mouse and (C) the percentage of NK, NKT and T cells (left) and proportion of IFN-
c+ NK, NKT and T cells after BV injection (right) are shown. Results are representative of two independent experiments and are expressed as mean
+/2 SEM (n = 4). (D) In vivo maturation of DCs by BV. C57BL/6 mice were injected i.v. with saline, 56107 PFU BV-WT and 30 ng or 30 mg
CpG-containing oligodeoxinucleotide (CpG-ODN) 1826. Eighteen hours later, their CD11c+ spleen cells were labeled with anti-CD86 and analyzed on
a FACSCanto II flow cytometer. In all cases, a minimum of 26105 events was acquired. Results are representative of two independent experiments
and are expressed as the geometric mean of the fluorescence intensity (MFI) and as the frequency of CD86+ cells in total DCs. Results are
representative of at least two independent experiments.
doi:10.1371/journal.pone.0024108.g006

Table 1. Estimation of the number of CpG motifs in AcNMPV
genome.

CpG motif # of copies

TGACGTT 11 copies

GACGTT 37 copies

CACGTT 119 copies

AACGTC 40 copies

AGCGTC 35 copies

GGCGTC Not present

GGCGTT 56 copies

AGCGTT 46 copies

The frequency at which each CpG hexamer appeared in the BV genome was
determined by using the GenBank accession number for the complete genome
of AcNPV NC 001623.
doi:10.1371/journal.pone.0024108.t001
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[26]. Therefore, recombinant GP64 should remain on the luminal

side of the endosome membrane. Under these circumstances, it

seems unlikely that the antigen displayed on the BV envelope

would be able to efficiently reach the cytoplasm and consequently

would preferentially trigger CD4 T cells. As foreseen by this

hypothesis, antigen displayed on GP64 failed to produce a good

CD8 T cell response, but did induce an effective CD4 T and B cell

ones [16]. In contrast, antigen contained in the capsid should be

able to reach the cytosol and preferentially trigger CD8 T cells. So

far, to our current knowledge there have been no reports about

antigen display on VP39 capsid protein. Thus, we constructed a

BV vector bearing OVA in VP39, based on the hypothesis that in

this way OVA could enter into the MHC I pathway. Conse-

quently, the immunopotentiation properties and the antigen

delivery ability of BV would be combined in one single vector.

Consistent with this assumption, BV-OVA showed the capacity to

deliver OVA to the MHC I pathway, thereby activating naı̈ve

CD8 and inducing an OVA-specific cytotoxic response. In

contrast, recombinant BV displaying OVA in GP64 (BV-OVAsur)

failed to induce a cytotoxic response and IFNc-secreting CD8 T

cells. Furthermore, BV-OVAsur could not activate CD8 T cell

proliferation in an in vitro assay. All these data clearly establish the

convenience of capsid display over envelope display for CTL

triggering. In agreement with our results, Strauss et al. showed that

BV containing the Plasmodium falciparum circumsporozooite (CS)

protein coding sequence, under the control of the CMV promoter,

allowed transduction and the novo synthesis of CS expression in

the cytosol of human DCs, thus enabling induction of CD8 T cell

responses [14]. On the other hand, display of CS in the

baculovirus envelope by fusion to GP64 induced a poor activation

of CD8 T cells [14].

We have not yet elucidated the mechanism by which the OVA

displayed on the BV capsid is delivered to the MHC I pathway.

Nevertheless, as proposed above, it is possible that whole BV capsid

reaches the cytoplasm of DCs after a fusion event between the viral

envelope and the endosome membrane, thus generating MHC I

binding peptides by proteasome digestion of the entire capsid.

Another possibility is that BV viral particles experience controlled

endosomal degradation before reaching the cytoplasm for protea-

some processing. In fact, both alternatives may be taking place, as

BV-OVA also activate OVA-specific IFNc-secreting CD4 T cells.

Supporting this hypothesis we have observed in preliminary studies

using electron microscopy that recombinant BV-OVA capsids can

be found in the cytoplasm of BMDCs (data not shown).

Although it has been shown that BV have adjuvant properties

when they are co-administered with particulate structures such as

latex beads or virus-like particles (VLPs) [5] or tumor cells [7], in

the present study we have observed that the delivery of antigen

and adjuvant in the same BV particle rendered a stronger CTL

response. Indeed, when soluble OVA was coadministered with

BV-WT, it was necessary to immunize with 30 times more OVA

than the quantity of OVA displayed by BV-OVA to attain the

cytotoxic response achieved by BV-OVA. This result would

suggests that a differential pathway of antigen processing could

have taken place between both forms of OVA administration in

DCs, with one being more efficient for BV-OVA by direct access

to cytosol and other less efficient, requiring endosomal traffic for

soluble OVA coadministered with BV.

Figure 7. Prophylactic and therapeutic vaccinations with BV-OVA. (A, B) Prophylactic vaccination. Groups of eight C57BL/6 mice were
immunized by a single i.v. injection of 56107 PFU BV-WT, BV-OVA or PBS. Seven days later, immunized mice were challenged with a s.c. injection of
16105 syngenic OVA-expressing melanoma cells (MO5 cells). (A) Progression of tumor volumes and (B) survival are shown. (C, D) Therapeutic
vaccination. Groups of eight C57BL/6 mice were challenged with an s.c. injection of 16105 MO5 cells. Seven days later, mice showing palpable tumors
were treated with 56107 PFU BV-WT, BV-OVA or PBS by i.v. injection. At days 11 and 17 post-tumor cell inoculation, mice were s.c. injected near to the
tumors with 16107 PFU BV-WT, BV-OVA or PBS respectively. At day 21 post-tumor cell inoculation, mice were intratumorally injected with 16107 PFU
BV-WT, BV-OVA or PBS respectively. (C) Progression of tumor volumes and (D) survival are shown. Results are representative of three independent
experiments and are expressed as mean+/2 SEM (n = 8). *, p,0.05; **, p,0.01.
doi:10.1371/journal.pone.0024108.g007
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BV injection also induces a T cell immune response against BV

themselves, regardless the type of BV form, as shown by a high

secretion of IFN-c by CD4 and CD8 T cells. Strauss et al. [14]

also observed that splenocytes harvested from baculovirus-injected

mice routinely had a high frequency IFN- c-producing T cells.

One single injection of BV-OVA was sufficient to induce an OVA-

specific CTL response, but more than one injection was necessary

for anti-tumor therapeutic vaccination. Interference between

responses to individual epitopes presented by MHC class I

molecules results in the well-established phenomenon of immu-

nodominance in multispecific CD8 T-cell responses, with this

immunodominance limiting the priming of responses with

extensive repertoire diversity [27–30]. Also, pre-existing antibodies

against the vector can limit the induction of immune response

against the inserted antigen (unpublished results). Therefore, a

strong immune response against BV might constrain the boosting

of the T-cell response against the foreign OVA inserted in BV.

Effectively, mice immunized with BV-WT cannot generate anti-

OVA CTL responses after immunization with BV-OVA

(Figure 5D). However, two homologous injections with BV-OVA

did not affect the quality of the anti-OVA CTL response. More

importantly, this CD8 T-cell response which decreased after the

peak on day 7 after initial priming was boosted with a second

immunization without de novo synthesis of antigen. Similar results

were reported by de Mare et al. [31]. Using recombinant Semliki

Forest virus (rSFV) expressing E6E7 antigen from human

papillomavirus, they demonstrated that secondary immune

responses against E6E7 are neither affected by vector-specific

antibodies nor by CTL-mediated killing of infected cells. Instead,

the presence of the antigen during the prime immunization

appeared to be the main determinant for the boosting efficacy.

However, both quantitative and qualitative differences in the CD8

T cell response generated by different viral vectors can be found

using homologous prime-boost regimens: homologous immuniza-

tion with SFV provided higher tumor protection than homologous

immunization with recombinant adenovirus [32].

We show here that BV are internalized by DCs and induce their

maturation and the production of the pro-inflammatory cytokines

IL-6 and IL-12. Similar results were obtained in other studies

using murine and human DCs [14,33]. Hervas-Stubbs et al.

showed that BV induced phenotypic maturation markers in vivo in

conventional and plasmacytoid DCs (cDC and pDC, respectively)

[5], apparently through the action of the BV DNA on DCs.

However, the mechanisms participating in DC activation by BV

are still not fully understood. Hervas et al. [5] reported that BV

DNA inactivation abrogates in vivo DC maturation and CTL

response in mice, suggesting that the adjuvancy of BV could be

based on the recognition of their DNA content rather than on

other molecules acting in BV such as GP64 [21]. Here we have

found that BV are much more effective than CpG-ODNs, other

DNA-like immunostimulators which bind TLR9. Indeed, an

injection of BV containing a 105 times lower content of CpG

motifs than a regular dose of CpG-ODN 1826 induces in vivo a

much higher up-regulation of CD86 in splenic DCs, revealing the

potential of combining a antigen delivery vector with an

immunostimulant. Related to this, type I IFN seems to be the

primary intermediary involved, although mechanisms indepen-

dent of type I IFN signaling are also implicated [5]. BV are

capable of inducing the production of type I IFNs in splenic DCs

through a partially MyD88/TLR9-independent pathway [3], in

which cytoplasmic RIG-1 and MDA-5 RNA receptors do not

participate [21]. In humans, only B cells and pDCs express TLR9

[34–36]. However, there is cumulative evidence that shows that

although human cDCs do not express TLR9, pDCs can be a key

cell for BV responses through two different, perhaps confluent

ways. First, pDCs can help cDCs to present antigens carried by

BV by, for example, type I IFN secreted by pDCs stimulated with

BV [37,38] or alternatively by Il-15, essential for CpG-induced

immune activation [39]. Second, pDCs could directly process and

present antigens carried by BV to CD8 T cells [40–42]. It is still

not clear whether, in a vaccinal study, pDCs have a significant

role, neither whether BVs can enter into human pDCs or any

other human DC and activate type I IFN through TLR9 ligation.

However, the current evidence supports a potential role for pDCs

in induction of immunity by BV.

The efficacy of the strong CTL and innate immune response

elicited by BV was examined by the capacity of BV-OVA to

confer protection against the classical MO5 melanoma tumor

model. This model, although not relevant to any natural occurring

tumor, has been extensively employed to test the efficacy of

vaccination protocols. BV induced a 100% protection against

MO5 murine melanoma cells in immunized mice under a

prophylactic scheme of immunization. Moreover, when BV-

OVA was used as a therapeutic vaccine, a decline in tumor growth

speed and a prolongation in survival were observed, demonstrat-

ing that the acquired immune response induced by BV is strong

enough to eliminate tumor cells. Kitajima et al. [6] reported that

injection of BV one day after tumor cell inoculation induced a NK

cell-dependent antitumor immunity. More recently, Suzuki et al.

showed that DCs pre-cultured with BV were able to activate NK,

thus demonstrating an indirect means of activation [33]. In the

present study, we have reported that BV injection induced high

levels of IFN-c soon after immunization, which were principally

secreted by NK and NKT cells. Although we did not conduct

experiments to evaluate the participation of NK cells in the anti-

tumor immune response induced by BV-OVA, T cells rather than

NK cells seem to be the main cytotoxic cells involved in tumor cell

destruction, as the parameters of tumor growth and survival in

BV-WT-injected mice were quite similar to those observed in

PBS-injected mice. NK and NKT cells may cooperate with DCs to

establish the CTL response elicited by BV. There is evidence

showing that NK and NKT cells maintain bidirectional interac-

tions with DCs [43]. Release of IFN-c by NKT cells induces DC

maturation [44] and the DC maturation induced by TLR stimuli

is enhanced by NKT cells [45,46]. Thus, it is possible that NKT

cell interactions with DCs early after BV injection could contribute

to the outcome of the immune response against an antigen carried

by BV, a very interesting hypothesis that remains to be

investigated.

It is generally accepted that CD8 T cells, with the ability to

directly lyse tumour cells and to secrete interferon IFN-c and

TNFa, are important T cell components of the adaptive tumoral

response [47,48]. Sometimes, this CD8 T cell response is triggered

independently of the presence of a tumor specific CD4 T cell

response [49] whereas in other cases the CD4 and CD8 T cells can

act separately in tumor rejection as in the case of VLPs [50]. BV

induce the development of IFN-c-secreting OVA-specific CD4

and CD8 T cell responses and the presence of a cytotoxic

response. However, we have not yet determined which of these cell

populations are mediating tumor eradication nor the mechanisms

involved in the prophylactic and therapeutic settings. Nevertheless,

the strong secretion of IFN-c could be one important mediator, as

IFN-c has been reported to have a direct antiproliferative effect on

the melanoma cells and to be the most relevant mediator in tumor

eradication rather than perforin and TNFa in a model of

vaccination with an adenoviral vector [49].

Among the enlarging body of candidate vectors for vaccination,

which have the capacity to extend survival in mice bearing tumors
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or even eradicate them when employed in combination with other

strategies [51], BV capsid display system has several additional and

potential advantages as a vaccine. The use of purified virions as

immunogens alleviates the need for additional adjuvants to the

vaccine formulation due to the intrinsic immunostimulatory effect

of BV. Furthermore, BV can display large polypeptides in VP39,

which are able to hold multiple epitopes, thereby rendering BV

suitable for a broad diversity of MHC haplotypes and conse-

quently for potential use in humans and animals. The combination

of several BV carrying different tumoral antigenic proteins, with

each being applied at different times could also be a strategy to

limit the immune editing that cancer cells carry out under the

selective pressure of a strong immune response [52]. A significant

advantage of BV is that, up to now, they have revealed being

unable to replicate in mammals and therefore do not need any

inactivation or attenuation procedures. We have found that the

injection of mice with BV did not lead to the release of hepatic

enzymes to blood or to any visible (with light microscopy)

alteration of the hepatic histology at least up to day 7 post BV-

injection (data not shown), suggesting that BV represent a safe

alternative. Finally, another attractive feature of this vector system

is that it is possible to produce large amounts of BV in serum-free

medium at low cost.

Summing up, its ability to impact on the innate immune system

and to induce CTL responses, together with the lack of pre-existing

anti-BV immunity in humans [14], its inherent inability to replicate

in mammal hosts and the low cytotoxicity, make BV capsid display

an appropriate candidate for the development of a vaccine vector.

Materials and Methods

Mice, cells and CpG-ODN
Six to eight week-old female C57BL/6 mice (H-2b) were

obtained from Fundación Facultad de Ciencias Veterinarias

(UNLP, La Plata, Argentina). C57BL/10 ScCr (TLR4-deficient)

mice were generously provided by Dr. M. Maccioni (CIBICI-

CONICET, Córdoba, Argentina). OT-I ones, expressing a

transgenic T cell receptor designed to recognize ovalbumin

residues 257–264 in the context of H-2Kb [53], were kindly

provided by Dr. F.A. Goldbaum (Fundación Instituto Leloir,

Buenos Aires, Argentina) and bred in our animal facility. They

were maintained in our animal facilities, which met the terms of

the Guide to the Care and Use of Experimental Animals,

published by the Canadian Council on Animal Care (with the

assurance number A5802-01 being assigned by the Office of

Laboratory Animal Welfare (NIH)). All animals were maintained

under specific pathogen-free conditions.

B3Z, a CD8 T cell hybridoma specific for OVA257-264 epitope

in the context of Kb [54], was a generous gift from Dr. N. Shastri

(University of California, Berkeley, CA). Murine B16 melanoma

cell line was obtained from ATCC. MO5, a melanoma cell line

expressing OVA [55], was a kind gift from Dr. Claude Leclerc

(Institut Pasteur, Paris, France).

The CpG-ODN used was 1826 (TCCATGACGTTCCT-

GACGTT) (Operon Technologies, Alameda, CA, USA) and

was complexed with the liposomal transfection reagent N-[1-

(2,3-Dioleoyloxy)propyl]-N,N,Ntrimethylammonium methylsul-

fate (DOTAP, Roche Diagnostics Corporation, Indianapolis,

IN). The optimal ratio of the CpG-ODN to DOTAP for complex

formation was determined by dose titration (data not shown).

Ethics Statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. Our

Institutional Experimentation Animal Committee (authorization

# 15-07-62010 and HCD resolution 450/07) approved the animal

handling and experimental procedures. All experimental proce-

dures were performed under isofluorane anesthesia. Sacrifice was

carried out by CO2 inhalation. All efforts were made to minimize

mice suffering.

Capsid display vector
To construct a general BV vector for capsid display, the region

corresponding to nt 468–1509 of the vp39 gene (GenBank

Accession No. M22978) was amplified from purified DNA of

AcMNPV by PCR using 59ATCTAGAGGAGGTGGGG-
GATCGGCGCTAGTGCCCGTGGGT39 (specific sequence for

nt 468-486 of vp39 gene, flexi peptide in bold and XbaI site

underlined, without start codon) as the forward primer and 59

AAAGCTTTTAGACGGCTATTCCTCC39 (specific sequence

for nt 1491–1509 of vp39 gene, stop codon in bold, HindIII sites

underlined) as the reverse primer. The amplified fragment was

digested with XbaI and HindIII and cloned into XbaI/HindIII-

digested pFastBAC1 vector (Invitrogen), with the resulting plasmid

being named pFBcap. The nucleotide sequence was confirmed by

DNA sequencing, and the cDNAs encoding OVA and EGFP were

amplified using specific primers to allow in frame fusions to the N-

terminus of the VP39 protein. Forward primer 59 TTCTAGAG-

TATGGTGAGCAAGGGC39 (specific sequence for nt 1–15 of

gfp, start codon in bold, XbaI site underlined) and reverse primer

59TTCTAGACTTGTACAGCTCGTC39 (specific sequence for

nt 705–717 of gfp, XbaI site underlined), forward primer 59

AGGATCCAATATGCCTTTCAGAGTGACT39 (specific se-

quence for nt 653–671 of ova, start codon in bold, BamHI site

underlined) and reverse primer 59ATCTAGAAGGGGAAACA-

CATCTGCC39 (specific sequence for nt 1206–1223 of ova, XbaI

site underlined) were used. The amplified fragments were cloned

into the XbaI (gfp) or XbaI/BamHI (ova) sites of the XbaI-

pFBcap or XbaI/BamHI-pFBcap. The resulting plasmids were

named pFBGFPcap or pFBOVAcap. Recombinant pFBcap

constructs were individually transformed into E.coli DH10Bac

cells (Invitrogen) to generate the corresponding recombinant

bacmids, as suggested by the manufacturers. Spodoptera frugiperda 9

insect cells (Sf9, Invitrogen) were transfected with the recombinant

bacmid DNA with Cellfectin (Invitrogen), and the recombinant

BV vectors were amplified by repeated passages. Recombinant

BV-OVAsur carrying the same OVA sequence than in BV-OVA

but as a fusion protein to GP64 to allow surface display, was

constructed as previously described [12].

Insect cell culture and virus amplification and purification
AcMNPV virus was obtained from BaculoGold (Becton

Dickinson Argentina S.R.L., Buenos Aires, Argentina). Briefly,

BV were propagated in Sf9 cells in SF900 medium culture (2%

FCS, 27uC). Then, the supernatants were harvested and cell debris

removed by centrifugation (4,0006 g, 15 min, 8uC). Infectious

virus titers were calculated by end point dilution assay and

converted to PFU/ml as described elsewhere [19]. Viruses were

concentrated by centrifugation onto 25% sucrose cushion at

57,0006g (60 min, 8uC) in PBS. Virus stocks were considered free

of endotoxin (,0.01 endotoxin U/ml) using the Limulus

amebocyte lysate test, (E-TOXATE, Sigma). The amount of

OVA incorporated per viral particle was estimated by the

densitometry of bands in a western blot of serial dilutions of a

known number of purified baculovirus particles and by comparing

this with known amounts of ultrapure OVA protein, in a way very

similar to that used by Kukkonen et al. [17]. The number of viral
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particles was estimated by FACS, as previously described [56].

Viral suspensions were routinely prepared from low passages and

checked for the presence and quantity of OVA associated to viral

particles. Recombinant BV yielded viral titers similar to BV-WT,

suggesting that the viral cycle was not significantly affected by the

presence of an additional capsid protein. The viral progeny

exhibited similar viral titers and quantities of OVA associated to

the nucleocapsid for at least five passages.

Electron microscopy
For immunoelectron microscopy, BV-OVA particles treated

with 1% Triton X-100 (Sigma) were bound to formvar-coated

nickel grids, before being incubated with 0.1% BSA/PBS followed

by an anti-OVA antibody. Grids were then incubated with a

second antibody conjugated to gold particles (10 nm in diameter)

and stained with 2% uranyl acetate. Samples were examined using

a JEOL - SVC electron microscope.

Flow Cytometry
Cells were labeled using standard procedures [57]. The

following mAbs were used: anti-CD3e (145-2C11 clone), anti-

CD4 (L3T4, GK 1.5 or RM4-5 clone), anti-CD8a (Ly-2, 53-6.7

clone), anti-CD11c (HL-3 clone), anti-CD86 (B7.2, PO3.1 clone),

anti-CD40 (HM40-3 clone), anti-MHC II (I-A/I-E, M5/114.15.2

clone) and anti-CD49b (DX5 clone), all purchased from BD

Biosciences or eBioscience. Intracellular IFN-c was measured by

using the BD Cytofix/CytopermTM Plus Kit with GolgiStop,

following the manufacturer’s protocol. Cells were stained with

anti-CD4-PE or anti-CD8-PE, and then with anti-IFN-c-APC

antibody (clone XMG1.2). Cells were either acquired in

FACSCalibur or in FACSCanto II flow cytometers and analyzed

using CellQuest (BD Biosciences) or FlowJo (Tree Star, Inc.,

Ashland, OR) software. In all cases, appropriate isotype controls

were included.

Antibodies and cytokine detection assays
Specific antibodies against OVA were determined by ELISA as

detailed in Maletto et al. [58]. The levels of IL-6, IL-12 p40 and

IFN-c were measured in culture supernatants and serum samples

by sandwich ELISA, following instructions from the manufactur-

ers (BD Biosciences). The following antibodies were used for

capture and detection, respectively: MP5-20F3 and MP-32C11

clones for anti-IL-6, C15.6 and C17.8 for anti-IL-12 p40 and

XMG1.2 clones for anti-IFN-c.

Generation of Bone Marrow-derived Dendritic Cells
(BMDC)

BMDCs were prepared according to Inaba et al. [59], with a

few modifications. Briefly, bone marrow cells were collected from

the femurs and tibias and then cultured (2.56105/ml) in 60 mm

plates containing complete RPMI medium supplemented with

7.5% of GM-CSF from supernatant of the stably transfected GM-

CSF-J558 cell line. Additional GM-CSF supernatant was added

on days 3 and 7 of culture. Then, non-adherent and loosely-

adherent BMDC were used at day 8 (.90% of the harvested cells

expressed CD11c).

DC purification
DCs were purified from spleen as reported Morón et al. [57].

Briefly, spleens were removed and treated with 0.4 U/ml

collagenase and 100 U/ml DNase I (both from Roche Diagnos-

tics). After inhibition of collagenase, the cell suspension was mixed

with colloidal super-paramagnetic microbeads, conjugated to anti-

CD11c mAb (magnetic-activated cell sorting [MACS]–anti-

CD11c, N418 clone; Miltenyi Biotec). CD11c+ cells were

positively selected with LS columns (Miltenyi Biotec). In some

experiments, enriched DC populations were then purified by flow

cytometry on a FACSAria II by co-labeling spleen cells with

MACS and fluorescent anti-CD11c antibodies, as explained

elsewhere [57].

Antigen presentation assays
Splenic DCs from C57BL/6 mice (26105/well) were co-

cultured with B3Z (105/well cells) and recombinant BV-OVA or

BV-GFP for 18 hours in 96-well culture microplates in a final

volume of 0.2 ml of RPMI 1640, 2 mM GlutaMAX-I (all from

Invitrogen), 561025 M 2-ME (Sigma), 100 IU/ml penicillin,

100 g/ml streptomycin (both from PAA laboratories GmbH,

Pasching, Germany), and 10% FCS (RPMI 10%). The activation

of B3Z T cell hybridoma was monitored by testing the b-

galactosidase activity using a colorimetric reaction with 0.15 mM

chlorophenolred-b-D-galactopyranoside (CPRG, Roche Diagnos-

tic Corporation), 100 mM 2-ME, 9 mM MgCl2, 0.125% IG-PAL

CA 630 (Sigma) in PBS and measuring the OD at 595 nm.

T-cell proliferation
T-cell proliferation was performed using OT-I T cells co-

cultured with splenic DCs incubated with BV-OVA or BV-GFP.

Splenic T cells from OT-I mice were purified by flow cytometry

on a FACSAria II by labeling with anti-CD8b-PE antibody (53-

5.8 clone, BD Biosciences). After sorting, OT-I cells were stained

with 2.5 mM carboxyfluorescein diacetate, succinimidyl ester

(CFSE) 2.5% FCS PBS and then washed extensively. Purified

splenic DCs were incubated in the presence of BV at 37uC for

2 hours in a final volume of 0.2 ml of RPMI 10% FCS and then

washed. OT-I cells were added to DCs and cultured for 72 hours.

Then, cultured cells were harvested, labeled with anti-CD8, anti-

CD3 and anti-CD25 antibodies and 7AAD to exclude dead cells,

and analyzed by flow cytometry. Proliferation was determined by

the dilution of CFSE content in CD3+ CD8 7AAD- cells.

In vivo killing assay
Naı̈ve syngenic splenocytes were pulsed with 10 mg/ml

OVA257–264 peptide (SIINFEKL) (30 min, 37uC), washed exten-

sively and labeled with a high concentration (3 mM) of CFSE

(Invitrogen). A non-pulsed control population was labeled with a

low concentration (0.5 mM) of CFSE. Then, CFSEhigh- and

CFSElow-labeled cells were mixed at a 1:1 ratio (16107 cells of

each population) and injected i.v. into immunized mice. The

number of CFSE+ cells remaining in the spleen after 20 hours was

determined by flow cytometry. Cytotocixity was expressed as

percentage of lysis, calculated from [1-(rimmune/rcontrol)]x100,

where r is given by the expression of%CFSElow/%CFSEhigh cells

for immune and non-immunized (control) mice, respectively.

In vivo tumor protection experiment
Prophylactic vaccination: Groups of eight C57BL/6 mice were

immunized by a single i.v. injection of 56107 PFU BV-WT, BV-

OVA or PBS. Seven days later, immunized mice were challenged

with an s.c. injection of 16105 MO5 cells. Therapeutic vacci-

nation: Groups of eight C57BL/6 mice were s.c. injected with

16105 MO5 cells. Mice showing palpable tumors were then

injected with PBS, BV-WT or BV-OVA as follows: days 7 (i.v.,

56107 PFU), 11 and 17 (s.c. near tumor, 16107 PFU) and day 21

(i.t. 16107 PFU). Mice were monitored periodically, recording

tumor volume and survival. Mice with tumors longer than 2.5 cm
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were sacrificed. The tumor volume was calculated from (d2 6D)/

2, where D = longest diameter and d = diameter perpendicular to

D.

Statistics
Statistical analysis was performed using the Bonferroni post test,

one way ANOVA analysis, Student’s t test and comparison of

survival curves was done using Logrank test with GraphPad Prism

(La Jolla, CA). Values of p,0.05 were considered significant.
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