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Macrophages are phagocytic cells that play a broad role in maintaining body homeostasis

and defense against foreign pathogens; whereas tumor-associatedmacrophages (TAMs)

support tumor growth andmetastasis by promoting cancer cell proliferation and invasion,

immunosuppression, and angiogenesis, which is closely related to the poor prognosis

in almost all solid tumors. Hence, deep-insight knowledge into TAMs can provide an

opportunity to discover more effective strategies for cancer therapeutics. So far, a large

number of therapeutic agents targeting TAMs are in clinical trials. In this review, we

introduce an extensive overview about macrophages and macrophage-targeting agents.
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INTRODUCTION

Cancer, a global public health problem, is the first or second leading cause of death in most
countries, and its incidence andmortality are rapidly growing (1). Clinically it is well-acknowledged
that tumor sites contain not only cancer cells, but also immune cells, including macrophages,
regulatory T (Treg) cells (2), neutrophils (3), mast cells (4), natural killer (NK) cells (5), etc.
Macrophages, the main component of the mononuclear phagocyte system (6), are phagocytic cells
which play a broad role in maintaining body homeostasis and defense against foreign pathogens;
whereas there are a large number of TAMs in tumor microenvironment (TME), which support
tumor growth and metastasis by promoting cancer cells proliferation, immunosuppression,
invasion, and angiogenesis. Therefore, scientists pay special attention to TAMs when looking for
effective cancer treatment strategies. In recent decades, several types of immunotherapies targeting
TAMs are playing more and more important roles in the treatment of cancer.

This comprehensive review first summarizes most recent updates regarding macrophage
recruitments and functions in tumor, then focuses on the development and evaluation of cancer
immunotherapy strategies targeting TAMs including drugs in pre-clinical and clinical stages.
Finally, we would like to provide some views and visions of immunotherapy targeting TAMs.

ORIGINS AND POLARIZATION OF MACROPHAGES

Macrophages were first discovered and isolated by Ilya Metchnikoff in the nineteenth century
(7). For decades, most people thought that blood-circulating monocytes derived from adult
bone marrow (BM) continuously repopulate tissue-resident macrophages (TRMs). It is now well-
accepted that a large number of TRMs derive from embryonic precursors, which are from both
fetal yolk sac and fetal liver progenitors (8–12). All precursors seed different tissue and differentiate
into specialized TRMs on the basis of tissue-specific context (10, 13). Moreover, most tissues
also contain macrophages derived from monocytes after birth (13–15). However, some tissues are
different, such that monocytes derived from hematopoietic stem cells (HSCs) fleetly take the place
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of embryonic macrophages after birth in the colon, but microglia
are rarely frommonocytes derived fromHSCs under homeostatic
conditions (16, 17) (Figure 1A). In tumors, TAMs are usually
thought to primarily derive from circulating monocytes, and
most recent studies have shown that functions and phenotypes
of embryonic-derived and monocyte-derived macrophages are
different (13, 18, 19). For example, Pierre-Louis Loyher et al.
showed that embryonic-derived TAMs largely correlated with
tumor cell growth in vivo, while monocyte-derived TAMs
accumulation was associated with enhanced tumor spreading
(18). Furthermore, several studies have suggested that TRMs are
up to 50% in some murine models such as lung and brain cancer
(18, 20).

Macrophages are a type of remarkable plastic cells and can
be easily induced by surrounding microenvironment (21, 22).
According to different activation methods, macrophages are
divided into two extremes (23), Classically activatedmacrophages
(M1 macrophages) and alternatively activated macrophages
(M2 macrophages). M1 and M2 macrophages have significant
differences in surface receptor expression, tissue distribution,
metabolism, cytokine and chemokine production, function, and
intracellular signal transduction. M1 macrophages are polarized
by lipopolysaccharide (LPS), which binds to the Toll-like
receptor 4 (TLR4). Then an inflammatory response is elicited
(24), and pro-inflammatory cytokines are released, such as
interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-
α). These downstream signals recruit more macrophages to
resist pathogenic insult (25). M2 macrophages are polarized by
cytokines such as IL-4 and IL-13, and release anti-inflammatory
cytokines including transforming growth factor-β (TGF-β)
and IL-10, inducing processes like membrane remodeling and
angiogenesis to promote tissue repair (26, 27). Depending
on specific inducing signals and their biological roles, M2
macrophages could be further divided into M2a, M2b, M2c, and
M2d (28–32) (Figure 1B). Generally speaking, M1 macrophages
mainly kill and clear cancer cells (33, 34), while M2 macrophages
mainly support tumor development (35, 36). This M1/M2
concept can easily explain macrophage heterogeneity, but it is
too simple to explain the complexity of macrophage activation.
Actually, TAMs seem to consist of various populations with a
wide range of polarization features or activation states, and their

Abbreviations: AMT, adoptive macrophages transfer; Arg-1, arginase-1; BM,

bone marrow; BTK, Bruton’s tyrosine kinase; CAR-M, chimeric antigen

receptor macrophage; CAR-T, chimeric antigen receptor T cells; CCL, CC

chemokine ligand; CCR, CC chemokine receptor; CSF-1R, CSF-1 receptor;

CXCL8, CXC chemokine ligand 8; ECM, extracellular matrix; FLT1, FMS-like

tyrosine kinase 1; HIF1α, hypoxia-inducible factor 1α; HSCs, hematopoietic

stem cells; IFN-γ, interferon-γ; iNOS, inducible nitric oxide; Jak2, Janus kinase

2; IL-1β, interleukin-1β; LPS, lipopolysaccharide; MAMs, metastasis-associated

macrophages; M-CSF/CSF-1, macrophage-colony stimulating factor; MHC II,

major histocompatibility complex class II; MPS, mononuclear phagocyte system;

MR, mannose receptor; NF-κB, nuclear factor-κB; NK, natural killer; PI3Kγ,

PI-3 kinase γ; PMN, pre-metastatic niche; SIRPα, signal regulatory protein α;

SR, scavenger receptor; STAT3, signal transducer and activator of transcription

3; TAMs, tumor-associated macrophages; TGF-β, transforming growth factor-

β; TH2, T helper 2; TIE-2, tumor endothelium releases angiopoietin-2; TLR4,

Toll-like receptor 4; Treg, regulatory T; TRMs, tissue-resident macrophages;

TME, tumor microenvironment; TNF-α, tumor necrosis factor-α; VEGF, vascular

endothelial growth factor.

function is determined by microenvironment. Hence, additional
studies are necessary to better classify macrophages, and there are
several articles about other classifications (37–39).

FUNCTIONS OF MACROPHAGES IN TME

Promoting Tumorigenesis and Progression
TAMs are believed to be the bridge between cancer and
inflammation. Some studies show that about 25% of all cancers
are related to chronic infection and inflammation (40). The
production of chemokines and cytokines are induced by key
transcription factors [such as nuclear factor-κB (NF-κB)],
hypoxia-inducible factor 1α (HIF1α), and signal transducer and
activator of transcription 3 (STAT3) when chronic inflammation
occurs, which activates the innate immune system and especially
macrophages (41). There is a lot of evidence that the
inflammatory microenvironment promotes genetic instability
of tumor epithelial cells and tumor-infiltrating immune cells
(42, 43). Recently, the inflammatory cytokines IL-23 and IL-
17 secreted by TAMs have been shown to be closely related
to human colorectal cancer progression (44). For instance,
Kupffer cells can promote the progression of hepatocellular
carcinoma by secreting mitogens, which relies on the NF-κB
signaling pathway (45). Other results show that IL-6 produced by
TAMs promotes the development of liver cancer through STAT3
signaling pathway (46), and IL-10 produced by TAMs promotes
the development of non-small cell lung cancer through STAT1
signaling (47).

Formation of the Immunosuppressive
Microenvironment
Macrophages cannot only kill tumor cells directly when they are
activated by interferon-γ (IFN-γ), but also recruit and activate
CD8+ cytotoxic T lymphocytes and NK cells by presenting
antigens and secreting cytokines to promote the adaptive
immunity (48). In addition, T cells can activate monocytes
through CD40-CD40L interplay to enhance their expression of
major histocompatibility complex class II (MHC II), inducible
nitric oxide (iNOS), and TNF (49). In fact, the T helper 2
(TH2) cells, dominating in the TME, activate macrophages to
be polarized toward M2 macrophages, which promotes the
development of immune suppression (50). Numerous studies
have shown that TAMs can directly or indirectly inhibit T cell
immune response through different mechanisms. The direct
mechanisms include TAMs expressing inhibitory receptors to
negatively regulate the activation of T cells by interaction with
CD94 (51), expressing T cell immune checkpoint ligands to
inhibit T cell functions (52, 53), producing cytokines to maintain
a immunosuppressive microenvironment through inducing Treg

cell expansion and inhibiting CD4+ and CD8+ T cells (54, 55),
and depleting L-arginine and tryptophan to inhibit cytotoxic T
cells (56, 57). The indirect mechanisms include TAMs regulating
the release of chemokines to control the recruitment of Treg

cells (58, 59), and blunting T cell recruitment by regulating the
extracellular matrix (ECM) (60).
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FIGURE 1 | Origins and polarization of macrophages. (A) Macrophages can have three different developmental pathways: fetal yolk sac, fetal liver, and bone marrow.

Precursors seed different tissues and differentiate into specialized tissue-resident macrophages on the basis of tissue-specific context, and they have dramatical

(Continued)
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FIGURE 1 | differences in their phenotypes and functions. In tumors, TAMs are usually thought to primarily derive from circulating monocytes. (B) According to

activation methods, macrophages are divided into M1 and M2 macrophages. M1 macrophages are polarized by LPS, which binds to TLR4. M2a macrophages are

induced by IL-4 and IL-13. M2b macrophages are polarized by immune complexes and some TLR ligands. M2c macrophages would increase in the presence of IL-10

or glucocorticoids. M2d macrophages are induced by TLR agonists and adenosine. They have significant differences in surface receptor expression, metabolism,

cytokine, and chemokine production. CD169+ macrophages, TCRαβ+, and TCRγδ+ macrophages are classified into neither M1 macrophages nor M2 macrophages.

Promoting Invasion and Metastasis
Cancer metastasis is a complicated event, which plays a crucial
role in the cause of morbidity and mortality (61, 62). It is
worth noting that macrophages play an important role in tumor
cells invasion and metastasis. They facilitate the escape of
tumor cells from the basement membrane through the dense
stroma by producing proteases to promote ECM degradation
(63). Furthermore, several factors, such as macrophage-colony
stimulating factor (M-CSF/CSF-1), can stimulate macrophages
to promote tumor invasion (64, 65). Metastasis-associated
macrophages (MAMs), a unique population of macrophages,
have been identified are found to be recruited by CC chemokine
ligand (CCL) 2 (66, 67). MAMs promote cancer cell invasion and
metastasis by FMS-like tyrosine kinase 1 (FLT1) receptor tyrosine
kinase signaling in a mouse model of breast cancer (68). In
addition, several studies show that the activation of the CCL2/CC
chemokine receptor (CCR) 2 axis is very important in MAM-
mediated metastasis (66, 67, 69). Recent studies have shown
that pre-metastatic niche (PMN) is a pre-requisite in mediating
tumor cell metastasis. Primary tumor cells are thought to initiate
the formation of PMN by the secretion of proinflammatory
cytokines, chemokines, and angiogenic factors that recruit BM-
derived cells into future metastatic sites, and these cells induce
PMN formation in reverse (70). For example, CXCL1 secreted by
TAMs was reported to recruit CXCR2+ myeloid suppressor cells
to promote liver PMN formation (71, 72).

Promoting Angiogenesis
Angiogenesis is necessary for tumor growth and metastasis,
which is regarded as a “hallmark” of cancer (73). Accumulating
evidence emphasizes the crucial roles of macrophages in
promoting tumor angiogenesis, and TAMs is closely related to
the number of blood vessels in the tumor (74). Hypoxia is the
primary driver of angiogenesis, and some studies show that
anoxic areas of tumors, especially the necrotic tissue, have large
numbers of macrophages due to the releasing of endothelins,
vascular endothelial growth factor (VEGF), high mobility group
1, CCL2, CXC chemokine ligand 8 (CXCL8), CXCL12, and
CSF-1 (75). The increased expression of hypoxia-inducible
transcription factors on TAMs up-regulates the transcription
of various genes in hypoxic tumor sites, which responds to
hypoxia and promotes tumor cells proliferation, metabolism,
and angiogenesis (75–77). In a CSF-1 knockout mice model,
macrophage number was found to significantly reduce in the
tumor site, accompanied by impaired vascular development (78).
In addition, tumor endothelium-released angiopoietin-2 (TIE-2)
was reported to play an significant role in tumor angiogenesis
by recruiting monocytes that express the TIE-2 receptor (79).
Furthermore, results of gene analysis indicated that TAMs could

up-regulate the expression of various factors, which participate in
tumor angiogenesis and provide nutrients for tumor growth (39).

IMMUNOTHERAPY-TARGETING TAMS IN
CANCER

Restoration of Macrophage Phagocytosis
CD47 has been found expressed on many tumor cells, and it can
bind with signal regulatory protein α (SIRPα) on the membrane
surface of macrophages, which down-regulates macrophage
phagocytosis of tumor cells (80, 81). In the past few years,
a number of clinical trials have been conducted to determine
various treatments that block CD47/SIRPα (Figure 2) (82). Anti-
CD47 antibody treatment could inhibit tumor growth in a
pediatric brain malignancies model (83). Anti-CD47 antibody
in combination with TTI-621, a SIRPα-Fc fusion protein that
could block the binding between SIRPα and CD47, promotes
phagocytosis of tumor cells in s B-cell lymphoma mouse model
(84). Hu5F9-G4, a humanmonoclonal antibody directing against
CD47 has been tested in a tumor therapy as a single agent,
as well as in combination with cetuximab. Nevertheless, anti-
CD47 therapies may increase the occurrence of transient anemia,
because HSCs and red blood cells extensively express CD47 (85,
86). Furthermore, there are other “don’t eat me” signals including
programmed cell death ligand 1 (PD-L1), MHC 1 component β2-
microglobulin, and CD24, and antibodies which direct against
the interaction of these signals with their macrophage surface
receptors have demonstrated therapeutic potential in several
cancers (87–89).

Inhibition of Macrophage Recruitment
Under tumor microenvironment, monocytes are rapidly
recruited into tumor (90). Chemokines CCL2, CCL3, CCL4
and cytokines IL-1β, and CSF-1 have proven to contribute to
the monocyte recruitment into tumors (91, 92). It is shown
that CCL2 expression is up-regulated by macrophages and
tumor cells in TME (93–95). Moreover, the high expression
of CCL2 has a correlation with the poor prognosis in many
human and murine tumors (96). CCL2 promotes monocytes
recruitment by stimulating CCR2. In fact, blocking CCL2/CCR2
not only inhibits the monocyte infiltration but also prevents
immunosuppressive polarization of macrophages (97, 98).
Currently, a number of treatments targeting CCL2/CCR2
are in clinical trials (99) (Figure 2). A CCR2 inhibitor, PF-
04136309, has been demonstrated to effectively inhibit tumor
growth in pancreatic cancer patients (100, 101). CCL2 antibody
treatment has proven to suppress tumor metastasis in a breast
cancer model (96). Moreover, IL-1β has been identified as a
chemoattractant target for cancer treatment. An IL-1 receptor
antibody has been demonstrated to suppress inflammatory
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FIGURE 2 | Targeting TAM strategies in cancer treatments. Several critical targets have been identified that regulate TAMs recruitment, polarization, survival, and

phagocytosis during tumor progression. Targeting key receptors or signaling molecules can modulate these macrophage properties and suppress tumor progression.

For example, targeting CSF1R can suppress the survival of TAMs. Agonists of CD40 can promote TAMs toward a proinflammatory phenotype that can suppress

tumor. Inhibitors of CCR2 or CXCL2 can inhibit monocyte recruitment. Targeting CD47 on tumor cells can promote macrophage phagocytosis of tumor cells. These

therapeutic strategies are developed to promote effective antitumor immune responses and many drug candidates are currently investigated in clinical trials for cancer

therapy.

macrophage accumulation and tumor growth in lung and
breast cancer mouse models (100). Moreover, in combination
with fluorouracil and bevacizumab, Anakinra, an IL-1 receptor
antibody, has been shown to prolong patients’ life in a colorectal
carcinoma Phase II clinical trial (102) (Table 1).

Controlling Macrophage Proliferation and
Survival
CSF-1 receptor (CSF-1R), a tyrosine kinase receptor, plays a key
role in regulating macrophage proliferation and survival (103).
Several studies show that blocking CSF-1/CSF-1R inhibited
immunosuppressive macrophage polarization, reduced tumor
cell proliferation, and promoted apoptosis, therefore suppressing
tumor progression and prolonged life survival (104, 105)
(Figure 2). M279, a CSF-1R antibody, blocking both CSF-1 and
IL-34, has been shown to inhibit tumor growth and improve
survival rate in a spontaneous breast tumor model (106, 107).
BLZ945, a small-molecule CSF-1R inhibitor has been reported
to be therapeutically effective in glioma and breast cancer mouse
models (108). Moreover, a number of CSF-1R-specific inhibitors,
including PLX3397, PLX7486, and BLZ945, have been tested

in clinical trials (109, 110). Especially, PLX3397, exhibiting
higher affinity to CSF-1R, has demonstrated a better effect for
tenosynovial giant cell tumor therapy, and the drug has been
advanced into clinical trial phase III (111). In addition, several
FDA-approved tyrosine kinase inhibitors, such as targeting c-KIT
and VEGFR, have also been shown to have a binding activity with
the CSF-1R kinase (112).

Modulation of Macrophage Phenotype
PI-3 kinase γ (PI3Kγ) has been identified as a promising target
for modulating macrophage phenotype and proinflammatory
cytokine expression (113) (Figure 2). IPI-549, a PI3Kγ inhibitor,
is currently tested in Phase 1b clinical trials for several solid
tumors, in combination with nivolumab. Bruton’s tyrosine kinase
(BTK), a downstream of PI3Kγ, has been investigated as a
target for cancer treatment. In line with studies, ibrutinib, a
BTK inhibitor, has been advanced in Phase III clinical trials
for pancreatic adenocarcinoma treatment and in Phase II
clinical trials for relapsed or refractory solid tumor therapy in
combination with durvalumab. Janus kinase 2 (JAK2) and STAT3
also have been regarded as potential targets for macrophage
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TABLE 1 | Clinical trials of macrophage-targeting agents.

Drug Company Clinical trial

number

Tumor type Phase

CD47 Hu5F9-G4 Forty Seven NCT02953782 Advanced solid malignancies and colorectal

carcinoma + cetuximab

I

NCT02216409 Advanced solid malignancies I

TTI-621 Trillium NCT02663518 Small cell lung cancer I

NCT02890368 Relapsed and refractory solid tumors I

CD40 SEA-CD40 Seattle Genetics NCT02376699 Solid tumors + pembrolizumab I

APX005M

(Agonist antiCD40)

Apexigen NCT03389802 Pediatric CNS I

CP-870,893

(agonist antiCD40)

VLST Corporation NCT01103635 Metastatic melanoma + tremelimumab

(antiCTLA-4)

I

R07009879

(selicrelumab,

agonist antiCD40

Roche NCT02760797 Advanced solid tumors + anti-PDL1 I

NCT02665416 Advanced solid tumors + bevacizumab or

vanucizumab

I

NCT02588443 PDAC + gemcitabine + nab-paclitaxel II

CSF1R BLZ945 Novartis NCT02829723 Advanced solid tumors single agent I

Advanced solid tumors + PDR001 II

Emactuzumab Hoffman La Roche NCT02323191 Advanced solid tumors + atezolizumab I

NCT03708224 Advanced HNSCC + atezolizumab I

NCT03193190 PDAC + additional therapies I

IMC-CS4 (antiCSF1R) Lilly NCT01346358 Advanced solid tumors I

NCT02265536 Advanced breast, prostate cancer I

NCT03153410 PDAC + cyclophosphamide pembrolizumab,

GVAX

I

CCR2 BMS-813160 Bristol Meyers Squibb NCT02471716 Tenosynovial giant cell tumor II

NCT03158272 Advanced malignancy + nivolumab I

NCT02526017 Advanced solid tumors + nivolumab I

CCX872-B ChemoCentryx NCT03778879 PDAC + SBRT II

MLN1202 (antiCCR2

antibody)

Millennium NCT01015560 Bone metastases II

IL1Ra Anakinra Swedish Orphan Biovitrum NCT0255032 7 PDAC + abraxane, gemcitabine, cisplatin I

TLR4 GSK1795091 GlaxoSmithKline NCT03447314 Advanced solid tumors + GSK3174998

antiOX40) or (GSK3359609 anti-ICOS) or

pembrolizumab

I

Stat3 TTI-101 Tvardi Therapeutics NCT03195699 Advanced cancers I

PI3Kγ IPI-549 Infinity Pharmaceuticals NCT02637531 Advanced solid tumors + nivolumab Ib

BTK Ibrutinib Pharmacyclics/AbbVie NCT02599324 Renal cell, urothelial, gastric, colon, pancreatic

adenocarcinoma

III

NCT02436668 PDAC, gemcitabine + nab-paclitaxel Ib/II

NCT02403271 Relapsed or refractory solid tumors +

durvalumab

III

repolarization (114). The STAT3 inhibitor TTI-101 is currently
investigated in a Phase I clinical trial for advanced cancers, and
the JAK2 inhibitor has been applied for the treatment of psoriasis,
myelofibrosis, and rheumatoid arthritis in clinic (115).

CD40 is mainly expressed on antigen presenting cells,
monocytes, and some tumor cells. CD40 ligation in macrophages
induces secretion of proinflammatory cytokines and
promotes macrophage polarization toward a proinflammatory
macrophage. Several anti-CD40 antibodies and CD40 ligands,

such as RO7009789, APX005M, are currently under test
and evaluation in clinical trials for solid tumors (Figure 2).
Interestingly, unlikely other activatory Fc receptors, the antibody
Fc domain with inhibitory FcγRIIb is required for anti-40
antibody because of its agonistic immunostimulatory activity.
In particular, CP-870893, a Pfizer anti-CD40 antibody of
IgG2 subclass, has been shown to be more competitive in
immunostimulation compared to other drugs in clinical trials
(116). Moreover, TLR agonist treatment has been studied and
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developed for cancer therapy because TLRs stimulation can
polarize macrophages toward a proinflammatory phenotype.

Metabolic Modulation of TAMs
To support specialized cellular activities, macrophages use
diverse metabolic pathways for energy and metabolite at
different states (117). Metabolic changes contribute to the
regulation of macrophage polarization, and TAMs display an
immunosuppressive phenotype that is defined by the production
of ornithine and polyamines through the arginase pathway as well
as by expression of TH2 cytokines that include IL-10 (118–120).
Several studies have shown that the tumor microenvironment,
featured poor nutrient and acidic environment, directly
induced macrophages to adopt immunosuppressive phenotypes
(121–123). For example, lactate, a byproduct of tumor
cells, can promote monocytes and macrophages toward to
immunosuppressive macrophage polarization in B16 melanoma
and lung carcinomas mouse model (121). Moreover, the tumor
microenvironment in melanomas characterized by acid has
been reported to promote immunosuppressive polarization of
TAMs, including upregulating arginase and VEGF expression
(124). Collectively, these studies have shown that altering the
metabolic pathways of TAMs to repolarize macrophages might
be an effective strategy for antitumor functions.

The PI3K/Akt/mTOR myeloid signaling pathway plays a
key role in regulation of TAMs metabolism by promoting
L-arginine metabolism, a curial section that could promote
immunosuppression. The gene and protein expression of
Arginase-1 (Arg-1) in TAMs up-regulates and inhibition
of PI3Kγ can suppress Arg-1 expression and activity (90).
Additionally, the deletion of PI3Kγ promotes the expression of
the enzyme NOS, which promotes the production of the free
radical and NO to function as anti-tumor. Kaneda et al. reported
that IPI-549, a PI3kγ inhibitor, inhibited lung carcinoma and
breast tumors by promoting TAM-immunostimulatory response
(125). Moreover, mTORC1 and mTORC2 also play a key role
in the metabolic programming of macrophages by sensing
nutrients, oxygen, and metabolites. Rapamycin, an mTORC1
inhibitor, has been reported to promote macrophages toward
the proinflammatory phenotype with an anti-tumor effect (126)
(Figure 2).

Adoptive Macrophages Transfer
Adoptive cell transfer is an emerging method of immunotherapy,
which kills and removes cancer cells by the infusion of
immune cells (127). Macrophages have the capacity to penetrate
tumors (128), which may kill tumor cells where CAR-T
therapy has fallen (129). Therefore, adoptivemacrophage transfer
(AMT) has become a hot research field for tumor detection
and treatment lately. Amin Aalipour et al. used engineered
macrophages as diagnostic sensors to successfully detect tumors
as small as 4mm in diameter and show better sensitivity
than traditional cancer biomarkers (130). Recently, Michael
Klichinsky et al. described an anti-HER2 CAR-macrophage

(CAR-M) that significantly reduced metastatic tumor burden
(131). A cellular IFN-γ “backpack” for macrophages was reported
to promote phagocytosis and polarize macrophages toward the
M1 phenotype, which further slows down the tumor growth in a
murine breast cancer model (132). Overall, the adoptive transfer
therapy of macrophages is still in the research stage, and there
are many problems to be solved, such as the establishment of
pre-clinical models to evaluate the efficacy and safety of AMT.
In addition, the way to efficiently transfer genes into human
macrophages is still challenging and needs further study.

DISCUSSION

Various strategies targeting TAMs have been studied for cancer
therapy, and some treatments have been advanced into clinical
trials. However, because of complexity of tumors, a combination
therapy is usually adopted to maximize the anti-tumor effect;
whether currently targeted signaling pathways therapeutically
overlap or synergize in vivo remains to be explored. More
importantly, current researches do not have a thorough
understanding of these targets, and their other functions are often
overlooked in cancer treatment. Besides, with multiple targets
being identified and drugs being tested for the modulation of
TAMs, drug delivery technologies have been advanced to further
enhance the efficacy of these drugs, through the way of improving
stability, selectivity, and intracellular delivery efficiency, etc.
CAR-M, as an emerging strategy for cancer therapeutic, is still
in research stage. Currently, overcoming the challenge that genes
transfer into human macrophages and finding effective solid

tumor targets are the main tasks. Perhaps CAR-M in the future is
to adopt multiple macrophages having different functions rather
than a single population.

TAMs represent a heterogeneous population with different
functions according to different origins and contexts.
Consequently, it is necessary to understand this heterogeneity

and how it evolves during the progression of cancer and also
following therapy in human, not mouse, models. In this context,

the extensive use of single-cell RNA sequencing, multiplex
immunohistochemistry, and mass cytometry will considerably
increase our knowledge about TAMs, which is essential for the
adoption of precision medicine and good prediction of patient
responses. Admittedly, many questions remain regarding to

properties and functions of macrophages in TME. However,
with the deeper understanding of macrophage diversity through
single-cell sequencing and other technologies, we believe that
TAM-targeted treatment will be an important addition for
cancer immunotherapy.
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