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Abstract Introduction: Study outcomes can be measured repeatedly based on the clinical trial protocol before
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randomization during what is known as the “run-in” period. However, it has not been established how
best to incorporate run-in data into the primary analysis of the trial.
Methods: We proposed two-period (run-in period and randomization period) linear mixed effects
models to simultaneously model the run-in data and the postrandomization data.
Results: Compared with the traditional models, the two-period linear mixed effects models can in-
crease the power up to 15% and yield similar power for both unequal randomization and equal
randomization.
Discussion: Given that analysis of run-in data using the two-period linear mixed effects models al-
lows more participants (unequal randomization) to be on the active treatment with similar power to
that of the equal-randomization trials, it may reduce the dropout by assigning more participants to the
active treatment and thus improve the efficiency of AD clinical trials.
� 2019 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Keywords: Alzheimer’s disease; Linear mixed effects model; Run-in clinical trials; Unequal randomization; Two-period
models
1. Introduction

To facilitate the development of disease-modifying
therapies for Alzheimer’s disease (AD), trial-ready co-
horts have been established where participants provide
longitudinal measurements on clinical, cognitive, or other
measures while investigational drugs are being identified
[1,2]. In this prerandomization period, the primary end
points for the future clinical trials, such as clinical or
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cognitive tests, are assessed based on the master
protocol of the platform trials allowing for easy
incorporation of the prerandomization data into the
primary analysis. This longitudinal period before
randomization is historically referred to as the run-in
period during which potential participants who have
met all entry criteria for a randomized clinical trial are as-
signed no regiment or the same regimen (e.g., placebo)
[3]. Planning a run-in period before randomization has
been extensively implemented in many landmark clinical
trials [4–7] including trials for AD [7], and it is expected
to continue to be an essential design element [8]. The run-
in design has been implemented in the dominantly
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inherited Alzheimer network (DIAN) trial unit platform
trial [1] and the European Prevention of Alzheimer’s De-
mentia Proof of Concept Platform [2]. In these settings,
each participant’s duration and the number of primary
end point assessments in the run-in period may vary and
depend on the timing of enrollment.

The assessments of the primary outcome collected during
run-in can potentially be used in the primary efficacy anal-
ysis at the end of the clinical trials. However, it has not
been fully established how best to incorporate run-in data
into final analyses. When only a single assessment is
collected in the run-in period, the run-in data are often
used as a covariate in the primary analysis model [9],
whereas when multiple assessments are available, the rate
of change (slope) in the run-in period can be used as a covar-
iate [10] within linear mixed effects (LMEs) models or
mixed effects models for repeated measures frameworks.
Although these methods are helpful, they did not fully take
advantage of the run-in data especially when multiple run-
in assessments are present. In addition, when the run-in dura-
tion varies by individual, the variability of the run-in data
over time is not fully accounted for. In AD clinical trials,
the primary end points are continuous and the primary effi-
cacy inference is based on the slowing of the rate of decline
in cognition. For these types of end points, we propose a two-
period (run-in period and randomization period) LMEmodel
to simultaneously model the run-in data and the randomiza-
tion data. We investigated the behavior of the two-period
LME by simulating clinical trials using parameters esti-
mated from the DIAN study and evaluated the gain in power
compared with the LME models using run-in data (baseline
or rate of change) as a covariate.

The remainder of this article is as follows. Section 2 pre-
sents the model formulations of the LME with a covariate
and the two-period LME. Section 3 evaluates model
behavior through simulated hypothetical clinical trials. Sec-
tion 4 presents the power formulas, and Section 5 presents
the discussion.
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2. Methods

2.1. Using information from run-in period as a covariate

As mentioned, the traditional model to analyze clinical
trials with run-in data is LME model. The baseline assess-
ment or the rate of change estimated using the run-in assess-
ments will be included in the LME as a covariate. This
traditional model can be expressed as follows.
Let yijk denote the longitudinal assessments for sub-
ject i at time tij for treatment group k, and it can be
modeled as

yijk 5m01u0i1b1 � X1i1b2 � X1i � tij1ðm1k1u1iÞ � tij1εij

(1)

where u0i, u1i are the random effects for the intercept and the
slope and follow a bivariate normal distribution0@ u0i

u1i

1AeN
0@0;

24 s2
u0i

su0iu1i

su0iu1i s2
u1i

351A;

the residual follows normal distributions εijeNð0; s2eÞ, b’s
are the coefficients associated with the corresponding covar-
iate X1i, m0 is the baseline group mean and is assumed to be
the same for the treatment group and the placebo group
because of randomization, m1k represents the rate of change,
i51, 2, ., n, j50, 1, ., ni, and k51, 2 represents the pla-
cebo group and the treatment group. The primary efficacy
test is to compare the rate of change of the treatment group
(m12) to that of the placebo group (m11) during the randomi-
zation period.
2.2. Two-period LME

We propose the two-period LME to model the run-in
period and the randomization period simultaneously. We
investigate two scenarios: the slope of the placebo group
in the run-in period is the same as (scenario 1) or is different
from (scenario 2) that in the postrandomization period of the
placebo group.
2.2.1. Scenario 1
When the slopes are the same, the two-period LME

model can be presented as
where Dmk represents the treatment effect and equals to 0 for
the placebo group; tibl represents the baseline time of the
randomization period; (tij2 tibl)1 5 max (tij 2 tibl, 0); j 5
0, 1, ., bl, bl 1 1, bl 1 2, bl 1 3,.; ti0 5 0 represents the
baseline of the run-in period; m0, u0i, u1i, and εij are defined
in the same way as in Section 2.1; m1 is the slope of the
placebo group in the run-in period and the randomization
period.
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2.2.2. Scenario 2
Similarly, when the slopes are different, the two-period

LME model can be presented as
yijk5

8<: m01u0i1ðm11u1iÞ � tij1εij; tij � tibl
m01u0i1ðm1 1u1iÞ � tibl1ðm21Dmk1u2iÞ �

�
tij2tibl

�
1
1εij; tij. tibl

; (3)
where m1 and m2 are the slopes of the placebo arm during the
run-in period and the randomization period;Dmk, (tij2 tibl)1,
and tibl are defined as in equation (2); m0 and εij are defined in
the same way as in Section 2.1, whereas u0i, u1i, and u2i
follow a multivariate normal distribution:0BBB@ u0i

u1i
u2i

1CCCAeN
0BB@ 0

0
0
;
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1CCA:

The duration of the run-in period could be different for
each individual, and there can be multiple assessments dur-
ing the run-in period.
Table 1

Estimated simulation parameters for the cognitive composite using the

DIAN observational study

Variance-covariance matrix
3. Evaluation of the behavior of various LMEs

3.1. Participants from DIAN study

The DIAN study is an international, longitudinal observa-
tional study established in 2008. As of June 2018 it has
enrolled 529 participants from families with confirmation
of a causal autosomal dominant Alzheimer’s disease muta-
tion and a 50% chance of inheriting the mutation. The details
of participants’ demographics, clinical, cognitive, imaging,
and biochemical measures have been reported in previous
publications [11,12]. For this study, only mutation carriers
were included because mutation noncarriers are healthy
control subjects and are not allowed to be given any
treatment. The data include DIAN quality-controlled data
from July 2008 to June 2018 consisting of 310 mutation
carriers. As many clinical trials use a cognitive composite
score as the primary outcome [1,13], we formed a
cognitive composite consisting of a digit symbol
substitution task test from the Wechsler Adult Intelligence
Scale-Revised [14], the Mini-Mental State Examination
[15], the DIAN word list delayed recall test [16], and the
Wechsler Memory Scale-Revised logical memory delayed
recall test [17]. The cognitive composite is an average of
the z-score of these four tests [11,12].
Parameter Meanu0i u1i u2i

u0i 1.0656 0.09253 0.05674 20.6289

u1i 0.09253 0.02331 0.01678 20.09506

u2i 0.05674 0.01678 0.01888 20.08555

s2e 0.05160

Abbreviation: DIAN, dominantly inherited Alzheimer network.
3.2. Power comparison

We first estimated the baseline mean (m0), the annual
slope (m1), and the variance-covariance for the random inter-
cept and the random slope
24 s2
u0i

su0iu1i

su0iu1i s2
u1i

35
and the residual s2e . Furthermore, we assume m2 5 0.9*m1,
s2u2i50:92s2u1i , the correlation between u0i and u2i is 0.4,
and between u1i and u2i is 0.8. The values of these variables
are presented in Table 1.

To evaluate the advantage of the two-period model rela-
tive to the traditional LME with/without run-in data as a co-
variate, we simulated clinical trials based on data of the
DIAN study to closely mimic AD trials. This creates four
models for comparison: (1) traditional LME without run-
in, (2) traditional LME with the first run-in assessment as
a covariate, (3) traditional LME with the slope of change
across all run-in visits included as a covariate, and (4) the
two-period model with run-in. Simulation SAS codes are
provided in the Supplementary Material. We simulated trials
with 1:1 and 3:1 treatment to placebo randomization ratio for
a total 400 patients. Overall, we make the following assump-
tions for our simulated trials:

� Four-year trial after randomization without/with run-in
period (Fig. 1).

� Individual duration of the run-in period: uniform distri-
bution (0.3, 1.2) (Fig. 1).

� Primary outcome measured every 0.5 year in the run-in
period until the individual was randomized to the treat-
ment, and then every 1 year in the randomization period.

� The last measurement in the run-in period is also the
first one in the randomization period, and it was
measured at the time of randomization regardless
how far this measurement was from the last measure-
ment in the run-in period (Fig. 1).

� The slopes of the placebo group in the run-in period and
the randomization periodwere the same and the primary
outcome was simulated based on formula (2).



Fig. 1. The run-in period and the randomization period. The run-in period was simulated using a uniform distribution (0.3, 1.2). The “BL” assessments of the

randomization period were measured at the time of randomization and could be very close to the last run-in assessments (participant 2). The run-in period had at

least one (participant 3) and up to three (participant 2) assessments. Abbreviation: BL, baseline.
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� The slopes of the placebo group in the run-in period
and the randomization period were different and the
primary outcome was simulated based on formula (3).

� Effect size (% reduction in the slope): 0%, 30%, 40%,
50%, and 60%.

For each of the models mentioned previously, we simu-
lated 1000 clinical trials, and calculated type I error and
power as the proportion of 1000 simulated trials per sce-
nario with P values less than .05. The 4-year trials without
run-in were used as the anchor point to demonstrate the
Fig. 2. Power/type I error for each design (with/without RI), different analysis mo

the RI period and the randomization period. Sample size for the left panel: 200/arm

baseline: with RI, LME with individual baseline value as a covariate. 300:100 RI/b

200 on placebo. Abbreviations: LME, linear mixed effect; RI, run-in.
power improvement of run-in trials. The power/type I er-
ror comparison is presented in Figs. 2 and 3. Each figure
includes the comparison among the four types of design/
models with 1:1 randomization (left panel) and the com-
parison between the 1:1 randomization and the 3:1
randomization (right panel). Fig. 2 represents the scenario
where the slope of the placebo group in the run-in period
is the same as that in the randomization period, whereas
Fig. 3 displays the case where the two slopes are different.
For both scenarios, the type I error is well controlled for
all models. The two-period LME leads up to 15% increase
dels, and different randomization ratios assuming the same rate of change in

. With RI/slope: with RI, LME with individual slope as a covariate; with RI/

aseline: 300 on treatment and 100 on placebo; 200:200:200 on treatment and



Fig. 3. Power/type I error for each design (with/without RI), different analysis models, and different randomization ratios assuming the different rates of change

in the RI period and the randomization period. Sample size for the left panel: 200/arm.With RI/slope: with RI, LMEwith individual slope as a covariate; with RI/

baseline: with RI, LME with individual baseline value as a covariate. 300:100 RI/baseline: 300 on treatment and 100 on placebo; 200:200:200 on treatment and

200 on placebo. Abbreviations: LME, linear mixed effect; RI, run-in.
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in power for the same slope scenario with 1:1 randomiza-
tion. When comparing the 3:1 with the 1:1 randomization,
the two-period LME yields almost identical power,
whereas the traditional LME yields more power for the
equal randomization. For the two-slope scenario, the po-
wer improvement for the two-period model is up to 11%
compared with the LME with a covariate. The 3:1
randomization has slightly less power than 1:1, but the
discrepancy for two-period LME is much smaller than
that for the traditional LME.
4. Power estimation of the two-period LME

Under the framework of LME, we first presented
the power estimation formulas for the two-period model
assuming no dropout and no intermittent missing data,
then proposed the algorithm to account for the dropout.

4.1. The same slope for the placebo group in the run-in
period and the randomization period

To get a closed formula, we rewrote the treatment group
of equation (2) as
yijk5

8<:m01u0i1ðm11u1i Þ � tij1εij; tij � tibl
m01u0i1ðm11u1i Þ � tij1Dmk �

�
tij2tibl

�
1
1εij; tij . tibl
Further simplification yielded

yij 5m01u0i1ðm11u1i Þ � tij1Dmk �
�
tij2tibl

�
1
1εij:

The null hypothesis is H0: Dm250 and the alternative is
H1: Dm2s0. For the fixed effects, the design matrix (X)
of the treatment group is
X5

0BBBBBBBBBBBB@

1 ti0 0
1 ti1 0
« « «
1 tibl 0
1 tij tij2tibl
1 tij11 tij112tibl
« « «
1 tini tini2tibl

1CCCCCCCCCCCCA
;

although it only includes the first two columns for the pla-
cebo group. The design matrix for the random effect also in-
cludes only the first two columns. Thus E (Yi|Ui) 5 Xb 1

ZUi, where b5

0BB@ m0

m1

Dm2

1CCA represents fixed effects,

Ui5

0@ u0i
u1i

1A represents the random effects, Ui~N (0,G).

The fixed effect can be estimated by: b^ 5 (X
T

S21X)21

XTS21Y, and V (b^ ) 5 (X
T

S21X)21, where S 5 R 1 ZGZ’,
R is the diagonal residual matrix. To determine the power
for a complex run-in design, we adopted the same strategy
as in a previous study [10]. This is to calculate the vari-
ance/standard deviation (s) for a single subject and then es-
timate the standard error for a given sample size. Briefly,
first, using pilot data or published results, we estimated the
residual variance R and the covariance of the random



G. Wang et al. / Alzheimer’s & Dementia: Translational Research & Clinical Interventions 5 (2019) 450-457 455
intercepts and random slopes. Then plugging the design ma-
trix X and Z for a single subject intoS and V(b^ ) sequentially
to estimate s for Dm. Next, the power for a trial with NT sub-
jects in the treatment group and NP subjects in the placebo
group can be determined from

12g5Pr

����� Dm2

s
� ffiffiffiffiffiffi

NT

p
���� � za=2

����H1 : m25d

�
5Pr

�
Z � za=22

d

s
� ffiffiffiffiffiffi

NT

p
�

1Pr

�
Z � 2za=22

d

s
� ffiffiffiffiffiffi

NT

p
�
;

where a is the type I error and is often set to be 5% and g is
the type II error and is often set to be 20%; za is upper ath
quantile of the standard normal distribution.

It is noted that the variance of Dm2 is estimated using
all the data from the NT1NP subjects, but the standard
error (sONT) is only related to NT. Thus, theoretically,
given the total sample size, the larger the NT, the
more power the run-in design has, leading to more po-
wer for the unequal randomization than the equal
randomization. This benefit is attributed to two facts:
(1) the same slope for the placebo group in both pe-
riods; and (2) the run-in data help estimate the slope
of the placebo group and the variances of the random
effects and the residuals.
4.2. Different slopes for the placebo group in the run-in
period and the randomization period

In this scenario, we rewrote equation (3) as
yijk5

8<: m01u0i1ðm1 1 u1i Þ � tij1εij; tij � tibl
m01u0i1ðm1 1 u1i Þ � tibl1ðm2k1 u2i Þ �

�
tij2tibl

�
1
1εij; tij . tibl

;

where m2k 5 m21Dmk, k51, 2 represent the placebo group
and the treatment group. The null hypothesis is H0: m21 2
m22 5 0 and the alternative is H1: m21 2 m22s0. Then the
design matrices for the fixed effects and the random effects
for formula (3) are the same, and they are also the same for
both groups:

X5

0BBBBBBBBBBBB@

1 ti0 0
1 ti1 0
« « «
1 tibl 0
1 tibl tij2tibl
1 tibl tij112tibl
« « «
1 tibl tini2tibl

1CCCCCCCCCCCCA
;

bk 5

0BB@ m0

m1

m2k

1CCA; and Ui5

0BB@ u0i
u1i
u2i

1CCA:

Like Section 4.1, V (b^k) can be obtained for a single subject
using the aforementioned formulas forS and forV (b

^

). Thepo-
wer for a total sample size of NT1 NP can be estimated from

12g5Pr
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s
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p !
;

where a, g, and za are defined as in Section 4.2.

4.3. Algorithm to account for dropout

For scenarios with dropout, the sample size in
the power formulas can be approximated by
Ndropout5ðNno�dropout=ð12mÞnÞ, where m is the annual
dropout rate, n is the total duration in years, Ndropout and
Nno-dropout are the sample sizes for each treatment group
with/without dropout. This method assumes that participants
who drop out before the end of study do not contribute to the
estimate of the treatment effect and its variance at all, and
thus will underestimate the power and overestimate the sam-
ple size. An alternative method that accounts for the contri-
bution of the early dropout participants has been proposed in
previous research [10,18]. Briefly, assuming the proportion
and the sample size for each dropout pattern are pi and ni
for a given treatment group, then the total sample size for
that treatment group is approximated by [10,18]

N5
1

ðp1=n11/1pk=nkÞ;

where k is the total number of dropout patterns for this given
treatment group. This method, however, assumes no inter-
mittent missing data within each dropout pattern, or data af-
ter the intermittent missing data do not contribute.
5. Discussion

In this article, we proposed the two-period LMEmodel to
analyze clinical trials with run-in design when the efficacy
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inference is based on the rate of change. This two-period
LME model offers two important benefits when compared
with a traditional LME that uses measures from run-in as co-
variates: (1) model the run-in data directly instead of using
them as covariates; and (2) assign more participants to the
active treatment without losing power compared with the
traditional equal randomization clinical trials because of
the fact that the run-in data serve as placebos. The first
advantage allows the luxury to fully account for the run-in
information in terms of the number and the frequency of as-
sessments, and yields more accurate estimation of the
variance-covariance matrix of the random effects and the
within-subject error. The latter may greatly appeal to partic-
ipants to enroll and remain the trials and maintain drug
compliance (as they are more likely to be assigned to the
treatment arm), which is especially important for diseases
without any effective treatments such as AD. Furthermore,
we also provided concise power estimation formulas for
the two-period LME model by manipulating the design
matrices of the fixed effects and the random effects. Similar
manipulation of the design matrices will generalize the two-
period model to other variation of run-in designs such as all
participants in the run-in period are given the active treat-
ment.

The proposed two-period model is very flexible, in that it
allows the fixed effects (slopes), the random effects, and
even the ancillary parameters to be different in the two pe-
riods. The flexibility can alleviate various concerns about
the run-in design. For example, assuming the slope in the
run-in period to be different from that in the randomization
period takes care of the concern that participants may behave
differently before and after randomization. Using the param-
eters estimated from the DIAN study, we conducted exten-
sive simulations to evaluate the model behavior mimicking
real AD clinical trials. Also we showed that the two-period
LMEmodel yielded accurate estimations of the treatment ef-
fect, controlled type I error, and led to large increases in po-
wer compared with models that used the run-in data as
covariates. An additional advantage of the two-period
LME is that it can be implemented using the well-
established SAS procedures such as PROC NLMIXED
(see Supplementary Material for details), which makes these
models easier to use.

It is important to note that our focus is to propose an
optimal model for analysis of run-in clinical trials, it was
not our intent to compare trials with and without run-in
design although we anchored the comparison based on the
trials without run-in. For such comparison, extensive
research has been done by Frost et al. [10]. Under the frame-
work of LME and using three data points (one run-in assess-
ment, baseline assessment, and one postrandomization
assessment), Frost et al. demonstrated that given the same
follow-up duration the run-in designs can be more efficient
(requiring smaller sample size) than designs without run-in
provided that true between-subject variability in the rate of
change (slopes) is large relative to within-subject error
[10]. Our study was inspired by theirs, but different in that
the two-period LME is more general, and its power calcula-
tion formula can handle any number of assessments and any
assessment schedule both in the run-in period and the
randomization period. Because both studies are under the
same framework, the conclusions of Frost et al. also apply
to the two-period LMEmodel. For AD clinical trials, the pri-
mary outcome is usually a cognitive test [19–21] or a
composite of multiple cognitive tests [1,13]. For these
cognitive outcomes, the between-subject variability in the
rate of change (slopes) is typically smaller relative to
within-subject error, thus given the same follow-up duration
and the same sample size, trials without the run-in design
should have larger power than those with run-in because
the former put participants on the treatment from the begin-
ning and the latter after the run-in period. Of course, it is al-
ways optimal to start participants on a treatment as soon as
possible. In other words, a 4-year AD trial with 1 year of
run-in (in which treatment only begins after the first year)
is always less powerful/optimal than a 5-year AD trial
without run-in (in which treatment begins from the base-
line). However, our results show that if run-in data are avail-
able (e.g., from a prior observational study) or if some
cognitive data can be collected when other aspects of the
clinical trial are still being developed (e.g., when a drug is
being finalized) then the two-period model provides an
optimal way to combine run-in data with trial data to maxi-
mize the probability of detecting a significant treatment
effect.

Our study has some limitations. First, the two-period
LME assumes the rate of change during the follow-up is
linear. Although multiple studies have shown that the
decline in cognition was linear, especially within a rela-
tively short period like 2 years [22,23], it is not clear if
this linearity assumption is still true over a longer course
of follow-up or under the influence of disease-modifying
treatments. Second, although some clinical trials with
run-in designs have been conducted, we were not able to
obtain these real clinical trial data to validate the
two-period LME model. Instead, we simulated clinical
trials using parameters estimated from a longitudinal
observational AD study to mimic real clinical trials as
closely as possible.

In summary, the two-period LME model optimizes the
use of run-in data, is flexible to account for design varia-
tions, can increase the power of clinical trials, and allows
more participants (unequal randomization) to be on the
active treatment without losing power compared with the
equal-randomization trials. It may serve as a superior pri-
mary analysis model for platform clinical trials where
“trial-ready” populations are enrolled in longitudinal obser-
vational studies waiting for randomization to clinical trials
such as DIAN and European Prevention of Alzheimer’s
Dementia.
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RESEARCH IN CONTEXT

1. Systematic review: We reviewed the existing litera-
ture about statistical models that can be used to
analyze clinical trials with run-in design. Most
methods use the run-in data as a covariate, leading to
inefficient use of the run-in data.

2. Interpretation: The proposed two-period linear
mixed effects models jointly model the run-in data
and the double-blinded randomized data, can lead up
to 15% power increase, and allow unequal random-
ization without losing significant power compared
with equal randomization.

3. Future directions: The generalization of the two-
period models to other mixed effects model such as
the mixed effects model for repeat measures using
time as categorical is of great interest as mixed ef-
fects model for repeat measures does not have the
linearity assumption.
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