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Due to the high transmission rate and high pathogenicity of the novel coronavirus (COVID-19), there is an urgent need for the
diagnosis and treatment of outbreaks around the world. In order to diagnose quickly and accurately, an auxiliary diagnosis
method is proposed for COVID-19 based on federated learning and blockchain, which can quickly and effectively enable
collaborative model training among multiple medical institutions. It is beneficial to address data sharing difficulties and issues
of privacy and security. This research mainly includes the following sectors: in order to address insufficient medical data and
the data silos, this paper applies federated learning to COVID-19’s medical diagnosis to achieve the transformation and
refinement of big data values. With regard to third-party dependence, blockchain technology is introduced to protect sensitive
information and safeguard the data rights of medical institutions. To ensure the model’s validity and applicability, this paper
simulates realistic situations based on a real COVID-19 dataset and analyses problems such as model iteration delays.
Experimental results demonstrate that this method achieves a multiparty participation in training and a better data protection
and would help medical personnel diagnose coronavirus disease more effectively.

1. Introduction

Epidemic novel coronavirus (COVID-19) [1] has being
spreading since 2019, with high morbidity, transmission,
and mortality rate. There is an urgent worldwide need for
a prompt and accurate diagnosis, together with an effective
treatment. Meanwhile, biomedical imaging has become an
indispensable diagnosis tool in clinical trials [2, 3]. Cur-
rently, human-induced analysis to numerous images alone
in medical institutions consumes a lot of human, material,
and financial resources. Deep learning, as a forefront tech-
nology in the smart healthcare system, is bound to find a
wide application in this field [4].

Implementing smart healthcare with traditional artificial
intelligence approaches requires cloud servers or data cen-
ters to share local datasets. Such cloud servers have a com-
puting power to provide efficient data training and
analysis, whose abuse and malfunction may result in leakage
of health information or compromise of sensitive data [5].
Even without authorization, attackers have a potential access

to AI centers or third parties, such as the cloud server, for
data. Similarly, they may control and modify data without
a client’s awareness or permission [6], while an efficient AI
model inevitably needs numerous data to support training
[7, 8]. Data exchanges among medical institutions partially
support model training, but diversified institutional policies,
privacy issues, and high costs hinder dataset sharing between
institutions for model training purposes [9]. Against this
background, current issues in smart healthcare manifest as
how to achieve a secure sharing of medical data, overcoming
data silos, and protecting sensitive private information.

Federated learning (FL), first put forward in 2016 [10],
enables data sharing as well as model coconstruction with-
out leaking respective data privacy. After that, smart
healthcare undergoes rapid development in the federated
learning ecosystem. Xu et al. [11] provide federated learning
application scenarios in biomedicine and confirmed its feasi-
bility in smart healthcare. In a federated learning-based
healthcare system, AI only needs to train local models to
upload parameters, while a central server updates the global
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picture, thus reducing the sensitive information leakage risk
[12, 13]. Being immutable and traceable [14], blockchain is
an effective tool to help decentralize federated learning.
Timely updates of local model parameters are uploaded by
clients to the blockchain’s distributed ledgers, and these
model updates are audited. All transaction records are
tamper-evident and repudiation-resistant, with or without
an authoritative inspection. In addition, differences in commu-
nicating and computing power of client devices cause model
iteration delays [15, 16]. Blockchain helps trace back and corre-
late with individual participants, analyze block generation
times, data block propagation times, and forking rates. Block-
chain applied in the healthcare sector also enables timely elec-
tronic healthcare data processing. It protects sensitive patient
information privacy and ensures secure data sharing among
multiple organizations. Federated learning and blockchain
jointly applied in the novel coronavirus diagnosis are likely to
achieve a globally secure epidemic data sharing without sensi-
tive information leakage, significantly contributing to epidemic
control together with life and property safeguarding [17].

At present, the bottleneck concerning intelligent
healthcare lies in the collection of multiple global datasets
with diverse features, which are inherently difficult to inte-
grate [18]. Healthcare organizations are also highly sensitive
to data privacy and security. It becomes a sharp issue to
guarantee large-scale model training accuracy and secure
data use. This paper accordingly designs a new federated
learning (FL) and Blockchain-Based COVID-19 Auxiliary
Diagnostic Model (FB-COVID-19 AD) with the following
research details and innovations.

(1) Federated learning is applied to COVID-19 diagno-
sis and partially breaks the bottleneck of low model
performance due to insufficient medical data. The
framework proposed here allows medical staff to
reap the benefits of the feature learning without pri-
vacy worries

(2) In response to federated learning’s reliance on third
parties, a blockchain-distributed ledger is introduced
to protect sensitive information. Moreover, a public
chain is adopted to ensure users’ rights and interests,
and the proof of work mechanism (PoW) is adopted
for transaction consensus. At the same time, the
model iteration delay is analyzed, and blockchain
forking is taken into account to maintain model per-
formance stability

(3) Based on real datasets to simulate actual situations,
an independently and identically distributed (IID)
experiment and nonindependently and nonidenti-
cally distributed (non-IID) experiment are designed
in this paper. It verifies the system model’s effective-
ness and applicability. Private data from multiple
medical institutions are soundly available and invis-
ible in the training process, with the training effi-
ciency significantly improved

The remaining paper follows this structure. Section 2
presents and compares relevant medical works in terms of

federated learning and other technologies. Section 3 intro-
duces the FB-COVID-19 AD model and algorithms for the
system operation in detail. Its effectiveness and applicability
are compared and analyzed with other research results in
Section 4. Section 5 summarizes the paper.

2. Related Works

2.1. Federated Learning-Related Medical Image Researches.
The healthcare industry has been profoundly undergoing a
digital transformation based on artificial intelligence and
big data. It triggers higher requirements for healthcare data
collection and sharing. With information silos being a pri-
mary challenge for smart healthcare, secure data sharing
becomes a real challenge as they are from worldwide hospi-
tals and other medical institutions. Federated learning shows
some promise for smart healthcare [19]. As multiple hospi-
tals store their datasets locally, the model’s updated parame-
ters uploaded to the central server alone complete a global
model update [20].

Federated learning expands dataset sources and results
in a significant improvement in medical data training qual-
ity. A horizontal federated learning (HFL) on medical
images confirms the framework’s outperformance over indi-
vidually trained models by 6.3% on average [21]. A vertical
federated learning (VFL) combined with deep learning used
external data to validate the model’s generalization ability
[22]. So, federated learning is liable for medical image pro-
cessing. Data privacy issues are tackled with a federated
learning framework to address and verify its good perfor-
mance on different neural network classification models
[23]. However, a federated learning framework alone is
adopted as a solution to data sharing and data security here.
Attention is not attached to the protection of model param-
eters in federated learning yet. Given the sensitivity and pri-
vacy of healthcare data, this model alone fails to meet
current and immediate needs. Huge system losses are also
possible if an attacker abuses model parameters to derive
data.

Privacy data from medical institutions may also get
leaked through the gradient information. Similarly, label
and membership information may be launched by an
attacker while issuing the uploaded model parameters. Dif-
ferential privacy techniques are commonly applied to feder-
ated learning with regard to various privacy securities at the
user’s end. Federated learning on medical devices and differ-
ential privacy techniques (DP) in the system are adopted to
protect information during model exchanges [24]. On this
basis, a trade-off between privacy cost and model accuracy
is implemented with Gaussian noise [25]. A Chinese study
applies model parameters with Gaussian noise on the server
side and adopts an adaptive gradient cropping strategy to
enhance model performance [26]. A multisource diffusion
image dataset accounts for variation between clients [27].
Each medical institution in these studies employs a genera-
tive adversarial network (GAN) to transform the original
images into the target space to address the cross-client pri-
vacy protection. These articles all deal with data privacy pro-
tection through federated learning models and break data
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barriers between different medical institutions. Some con-
sider algorithm optimization with differential privacy tech-
niques to achieve either client-side or server-side data
protection. Unfortunately, the central server itself remains
untouched once it fails or gets paralyzed by attacks. The
overall system model optimization also lacks, unable to
ensure a system model’s optimal performance.

2.2. Blockchain Involved Medical Image Researches. Section
2.1 discusses federated learning used to enable multiple
parties to share data, only which it has to address depen-
dency on third parties. Blockchain, as the underlying tech-
nology of Bitcoin, is essentially a decentralized database
[28, 29]. Also, it is a technical solution to collectively main-
tain a reliable database using decentralization and detrust.
Blockchain has brought together new technologies such as
cryptography, distributed storage, smart contracts, and con-
sensus algorithms. Blockchain combined in the healthcare
sector is in line with the technological needs to support com-
plex application scenarios [30]. The use of blockchain in a
distributed federated learning healthcare system has already
been studied to beat untrustworthy servers and external
attacks, coordinating global model update computations in
a peer-to-peer manner through institutions’ block consen-
sus [31].

Concerns in healthcare data mainly point to patient
information sensitivity and dataset finiteness [32]. Block-
chain has essential characteristics like “decentralization,”
immutability, and anonymity, which effectively make up
for the gap that federated learning relies on central nodes.
In the long run, combining federated learning and block-
chain helps artificial intelligence to develop in the medical
field. Consortium chain and block authorization methods
are used in federated learning, where each institution uses
the local COVID-19 dataset to train the model and only
uploads model parameters such as gradient updates [33].
In this method, a miner’s failure to complete learning affects
its connected clients in the blockchain. To deal with the
issue, the miner unites other miners’ clients to confirm the
transaction [34]. In addition, a reputation value calculation

method based on dual subjective logic is used in client
screening to incentivize clients to participate in training [35].

Concentrating information on one server potentially
brings about potential risks like attacks and unfairness to
the system. As an indispensable tool for doctors’ diagnosis,
medical images have high data privacy protection require-
ments. In view of these, federated learning and blockchain
combined well to meet diagnosis needs with medical images
[36]. FL opens new opportunities for smart healthcare, but
relevant literature is insufficient in terms of the system
model latency and block forking, etc. Besides an adverse
impact on the transaction confirmation time, they also have
negative impacts on the system stability and global model
accuracy.

This paper summarizes system solutions in medical
imaging utilizing the federated learning framework, as
shown in Table 1. A comprehensive comparison of existing
medical diagnostic researches based on federated learning
is presented in terms of technological coordination, client
side, aggregation side, and application scope, respectively.

As summarized in Table 1, most healthcare systems use
horizontal federated learning as the model framework to
combine multiple medical institutions with the same charac-
teristics for multisample learning. Most system models in
the literature use common medical image datasets to evalu-
ate the training effect and hopefully improve farsighted FL
healthcare systems. Besides, regarding data privacy protec-
tion, some researches compensate for the shortcomings of
FL in sensitive data protection by combining differentiated
privacy protection and blockchain technology, etc. In brief,
FL combined with other technologies is a very effective
learning approach to accelerate the AI model training accu-
racy rates.

3. Materials and Methods

3.1. FB-COVID-19 AD Model

3.1.1. Introduction. As shown in Figure 1, FB-COVID-19
AD sets multiple medical institutions as the client, the block-
chain composed of public chains as the server. Apart from

Table 1: Comparison of healthcare systems programs based on federated learning.

Ref. FL type Technology Clients Aggregator Dataset type Application

[19] HFL / Hospital Data center Acute neurological disorders Object detection

[21] HFL / Medical sites Federated sever Breast density classification Image classification

[22] VFL / Hospital Federated sever COVID-19 Object detection

[23] HFL / Hospital Federated sever Pneumonia Image classification

[24] HFL DP MRI machines Federated sever Brain tumour Image segmentation

[25] HFL DP Hospital Data center Diabetic retinopathy Image classification

[26] HFL DP Medical sites Federated sever Multitype lesion map Object detection

[27] VFL GAN Hospital Cloud sever Prostate cancer Image classification

[31] VFL/HFL Blockchain Smart service Blockchain / /

[33] HFL Blockchain Hospital Blockchain COVID-19 Image segmentation/class

[34] HFL Blockchain Medical sites Blockchain COVID-19 Image segmentation

[35] HFL Blockchain Hospital Blockchain MNIST Image classification
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that, data exchanges between the client and the server are
realized at an access node layer. Different medical institu-
tions are successfully united to train the pneumonia image
classification model. Each component is described in detail
as follows:

(1) Medical client layer: any owner of local medical
image datasets. Based on the local dataset, each client
trains models and uploads model parameters. At the
same time, clients in this layer also accept global
update parameters to export global model updates

(2) Access node layer: a communication infrastructure
with computing power. It receives model parameters
uploaded by individual medical institutions, as well
as downlinks block information from the blockchain
service layer

(3) Blockchain service layer: a complete transaction data
owner and verifier. Using distributed data storage,
several complete transaction data sets are stored in
each block, and parameters are authenticated using
consensus protocols

3.1.2. Training in Medical Institutions. In FB-COVID-19
AD, since multiple medical institutions jointly participate
in model training, they only need to provide model
parameters to data requestors. Given the practicalities,
datan,i = fxn,i, yn,ig is the local dataset belonging to each
medical institution, where xn,i is the input sample vector
of the nth hospital added to the current federated training.
Similarly, yn,i is its corresponding label vector. Data =
∑n∈N∑i∈Idatan,i is the total dataset participating in the cur-
rent federated training, where i ∈ I denotes sample i, n ∈N
denotes medical institution n, and N denotes the set of all

medical institutions. At the same time, Wn is the model
parameters of the nth medical institution participating in
the local training, and the local model update is uploaded
to the blockchain node miner Mt . Likewise, the set of
input samples and the corresponding set of tags are set
to Xn, Yn. In the model training process, Fn is the objec-
tive function of the nth medical institution, and f nðwÞ is
the corresponding local loss function, which is defined as
follows:

Fn ≜min
1
N

⋅ 〠
n∈N

f n wð Þ
( )

: ð1Þ

Using optimizers to find optimal values help solve the
above equation minimization and improve model accu-
racy. In a traditional FL setup, it is the local updates that
are uploaded to the federated server. For the FB-COVID-
19 AD system model, it is the updates that are saved in
the candidate blocks to be mined. Setting the learning rate
to e, the model parameters for the tth iteration update in
the kth round of the healthcare facility n are formulated as

wt,k
n =wt−1,k

n − e ⋅ ∇f wk−1
n , xn,i, yn,i

� �
: ð2Þ

At the same time, the k round updated global weights
are formulated as
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1
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Figure 1: FB-COVID-19 AD.
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The updated local model gradient parameter fwk
n,∇f

ðwkÞg is then uploaded to the server-side blockchain. The
federated averaging algorithm (FedAvg) [9] is used to com-
pute the global model gradient. When a new block is gener-
ated, the medical institution downloads the data about the
new block from the miner and uses its aggregated results to
compute wk to update the model. In FL setup, the medical
institution iterates the process until it satisfies the inequality:
j f ðwkÞ − f ðwk−1Þj ≤ δ, where δ ∈ R is the loss of precision.

3.1.3. Blockchain Aggregation. By using the value representa-
tion and transfer function from blockchain, the value created
by a local medical institution is tagged while the benefits are
distributed. Each medical institution has its corresponding
miners, all of whom are used as nodes to form the block-
chain. The device uploads updated model parameters fwk

n,
∇f ðwkÞg and the computing time used Tk

local,n to its corre-
sponding miners. To prevent unauthorized block copying,
miners store the defined data structure Merkle trees and cre-
ate new blocks at specific times, which contain unique hash
values, block generation rate λ, Nonce values, timestamps,
etc. To achieve a consistent state of the chain, all miners
apply the consensus protocol PoW to implement mining to
verify the new blocks. When mining is complete, the verified
blocks are placed in candidate blocks and broadcast across
the network. At this moment, parameters in the local model
update are safely stored in the blockchain. The information
from those accepted blocks is then used to derive the param-
eters of the global model update fwk,∇f ðwkÞg for calcula-
tion. Clients in the model exchange local information via
the blockchain, which keeps track of individual model
updates and does not implement model aggregation via
third parties. Through decentralized learning, the global
model is constructed by local medical institutions or miners
with sufficient computational power. The global model cal-
culation is completed with individual medical institutions
in this paper.

The consensus mechanism is the blockchain’s core tech-
nology. It allows transactions to be conducted safely and
reliably in a centralized network [37]. A public chain is used
to achieve complete decentralization, and PoW is used as the
consensus protocol to achieve distribution in correspon-
dence to its workload. Miners compete for arithmetic power,
constantly searching for the random number Nonce through
their own arithmetic power [38]. Only the licensed miner
has the right for bookkeeping, who first finds the Nonce
value and broadcasts it to the whole network for recognition.
The packaged candidate block is broadcasted to the network
as a new block. Then, other miners stop computing and add
the new block to the local ledger once they receive the
message.

PoW provides a high degree of decentralization and
robustness for large-scale blockchain. But in the process, dif-
ferent nodes tend to have different perspectives towards the
blockchain due to differences in their arrival times. Hence,
the process is termed as “Fork” (Figure 2). A chain fork
may cause some clients to receive incorrect global model
updates. Inevitably, it brings a negative effect to the next

round of local model updates. Assuming that all miners
work in parallel, the probability of the fork is defined as

pf = 1 − e−λ M−1ð ÞβBP , ð4Þ

where λ is the block generation rate and 1/λ is the expected
time for a block generation. Besides, M is the number of
miners, and βBP is the block body propagation delay. So,
the block mining time is expressed as a Poisson process.

In the FB-COVID-19 AD process, the server-side block-
chain provides a credible incentive for contribution to
encourage more medical institutions to join and improve
the data processing accuracy. All medical institutions are
timely rewarded with a reference to their data quantity and
quality. Simultaneously, miners Mt are rewarded according
to the quantity and quality of datan,i from the local medical
institutions they are associated with. By writing the reward
resources into the blockchain, the blockchain openness and
transparency will attract more clients to join and improve
the collaboration efficiency among medical institutions.

3.2. FB-COVID-19 AD Algorithm

3.2.1. FB-COVID-19 AD Single Iteration Process. As shown
in Figure 1, decentralization is realized through federated
learning and blockchain combination. In FB-COVID-19
AD, FL clients’ devices interact with the local model update
parameters through the blockchain to achieve model aggre-
gation without a third-party server. A single iteration of
the local healthcare facility is implemented applying the fol-
lowing steps.

Local calculation: using the local dataset datan,i, each
medical institution calculates wk

n through a local optimiza-
tion mechanism.

Winner miner Miner

Block 
generation

Block 
generation

Block 
propagation

Block 
propagation

Figure 2: Blockchain fork.
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Data upload: a miner is randomly connected to medical
facilities which uploads the calculated parameters fwk

n,∇f
ðwkÞg and time Tk

local,n to the corresponding miner Mt .
Block generation: while waiting for enough transactions

to be received (determined by the maximum block size) or
exceeding the maximum waiting time τ, a candidate block
is generated for mining.

Block mining: with the consensus mechanism PoW, a
random number Nonce is calculated to determine the next
block to be added to the blockchain, or to receive a block
broadcast by another miner.

Block propagation: Mi ∈M is the first miner to complete
the calculation. Propagate Mi the candidate block upload
message through the P2P network.

Block download: the medical institution downloads the
latest block via the corresponding miner Mt .

Global model aggregation: local medical institutions use
the information in the accepted blocks (local model updates)
to calculate and derive global model updates.

The above operation steps continue until inequality j f
ðwkÞ − f ðwk−1Þj ≤ δ is satisfied. In step 7 of the above itera-
tion, a global model update is done by the client, based on
the differences in the miners’ computing power. In fact, a
failure is liable to affect the global model’s update. For the
IID dataset, the global model is initially downloaded by
each medical institution itself and then updated using local
data. Once the local model is updated, values of the model
update parameters are uploaded to the blockchain to gener-
ate a new block to mine. The latest block will contain the
global model parameters updated using all the local update
parameters, so the block size is adapted to fit all update
values. For the non-IID dataset, the medical institution sub-
mits the model update parameter values asynchronously
after completing the local model update. A new block is
generated when enough transactions have been received
or when the maximum wait time τ has been exceeded.
The specific algorithms for the FD-COVID-19 AD system
model for the IID dataset and the non-IID dataset are
shown in Algorithm 1 and Algorithm 2.

In the above steps, a block generation is determined by
block size SB and waiting time τ. Block size SB is an impor-
tant parameter in FB-COVID-19 AD. The larger the block
size, the higher the information quality provided by a single
iteration in federated learning, but the higher the fork rate
and iteration latency time. Setting the block size correctly
will affect the blockchain throughput and thus the comple-
tion time of federated learning. Block size optimization does
not fall within the focus of this paper and is ignored for the
time being.

3.2.2. FB-COVID-19 AD Iterative Latency Analysis. Due to
equipment performance differences, the network, and other
factors, this section will focus on analyzing the running time
of the FB-COVID-19 AD single iteration process in Section
3.2.1 and defining following delay time parameters:

(1) Block fill delay βBF : a block is filled with data from
step 2 to upload the local update. This contains the

local model computation time (i.e., the time it takes
for the client to update the local model gradient).
Also, this includes the local model upload time (i.e.,
the time it takes for the client to hand over the model
to the miner)

(2) Block generation delay βBG: the time miners spend
looking up random values of Nonce, or waiting to
receive a new valid block, as calculated by the PoW
consensus mechanism

(3) Block propagation delay βBP: the full network prop-
agation of the mined blocks is achieved through a
P2P network, assuming that all miners receive the
propagated blocks at the same time

(4) Global model aggregation delay βAG: the block
downloading process in step 6 is executed first, and
then, the client aggregates the local model informa-
tion from the newly mined blocks to calculate the
global model update

Initialize: n∊N , е, time = 0, wk =w0, δ
1. while ∣f ðwkÞ − f ðwk−1Þ ∣ >δ:
2. for k∊K :
3. for ∀n∊N :
4. wn

k+1 ← LocalUpdate(wk, е, xn, yn)
5. UploadLocalUpdate(Sn, Cn)
6. end
7. MineBlock(λ, γtM)
8. TransmitBlock(SB, CCap)

9. wk+1 ← GlobalUpdate(wk,wn
k+1, е)

10. k = k + 1
11. end
12.end

Algorithm 1: FB-COVID-19 AD (IID).

Initialize: n∊N , е, time = 0, wk =w0, δ
Medical Institutions(Asynchronous):
1. while ∣f ðwkÞ − f ðwk−1Þ ∣ >δ:
2. wn

k+1 ← LocalUpdate(wk, е, xn, yn)
3. un

k ← LocalUpdate(Sn, Cn)
BlockChain(Synchronous):

4. if SB ≤ ∣ut ∣ or time > τ:
5. MineBlock(λ, γtM)
6. TransmitBlock(min ð∣ut ∣,SBÞ, CCap)

7. wk+1 ← GlobalUpdate(wk,wn
k+1, е)

8. k = k + 1
9. Restart time
7. else:
8. Wait
9. end
10.end

Algorithm 2: : FB-COVID-19 AD (non-IID).
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(5) Block download latency βBD: the client downloads
the latest block propagated from the miner, which
contains either the local model updated in the last
iteration or the global model. It depends on the
model aggregation method

By calculating all delay times in the FB-COVID-19 AD
process, and by considering the effect of bifurcation pf , the
expected iteration delay time was defined as:

Tk
iter =

βBF + βBG + βBPð Þ
1 − pf

+ βAG + βBD: ð5Þ

As block filling, block generation, and block propagation
are all affected by the fork, these steps will be repeated once a
conflict occurs.

4. Results and Discussion

4.1. The Dataset and Evaluating Indicators. A CT map data-
set of COVID-19 is used (Figure 3) from the reference [39],
created by collating from several public databases as well as
recently published articles. A typical COVID-19 patient’s
chest image appears white on CT, and the shade depth cor-
relates to its lesion gravity. At an earlier stage of the symp-
tom, there may be multiple small patchy shadows as well
as interstitial changes. Then, it would develop into multiple
ground-glass shadows, infiltrative shadows, and lung consol-
idation in severe cases [3]. Accordingly, this dataset is fil-
tered which contains 1313 CT maps of normal chests, 1316
CT maps of novel coronavirus diseases and 1171 CT maps
of COVID-19 diseases. The entire dataset is divided into a
training set, a test set, and a validation set. Accordingly,
the basic information on the division of the dataset is shown
in Table 2.

In this paper, the accuracy ACC is set as the evaluation
index. The larger the ACC value, the higher the accuracy
of the model’s classification. As long as the samples are cor-
rectly predicted, the formula numerator will automatically
increase by one, and the denominator will still represent all
samples.

ACC = TPn + TNn

TPn + FPn + FNn + TNn
, ð6Þ

where TPn, TNn, FPn, and FNn represent true positive, true
negative, false positive, and false negative for the corre-
sponding healthcare facility clients, respectively, where n is
the nth hospital. The confusion matrix is shown in Table 3.

4.2. Numerical Results and Discussion. The information
about the implementation of our software and hardware
platforms is shown in Table 4. The local medical institution
uses residual networks to train model. Some training hyper-
parameters were set as: the initial learning rate is 0.005,
momentum is 0.5, and a ReLu function serves as the activa-
tion function. To ensure the comparison accuracy of exper-
imental results, the time for each block generation in the
model blockchain should remain as consistent as possible
with the time for the parameter aggregation using the central
server in FL based on FedAvg.

(a) Normal (b) Viral (c) COVID-19

Figure 3: Images in the dataset.

Table 2: Dataset distribution.

Normal Viral COVID-19 Total

Train 1113 1116 971 3200

Test 180 180 180 540

Valid 20 20 20 60

Table 3: Confusion matrix.

Prediction Labe
Real label

Positive Negative

Positive True positive False positive

Negative False negative True negative

Table 4: Software and hardware environments.

Term Total

CPU INTEL I9-12900K

GPU NVIDIA RTX3090

Video memory 48G

Internal memory 128G

Operating system Ubuntu 20.04

Development language Python 3.7
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To verify the effectiveness of FL to address the data
silos, an experiment of training 20 clients with different
sized IID samples is conducted. As is shown in Figure 4,
we compare the classification accuracy of the proposed
model using all distributed samples with the best model
and the worst model of the local training clients. It is
apparent that the model obtained from the joint multi-
party participation training is better than the one trained
by medical institutions alone. In terms of accuracy, the
model training accuracy in this paper has a 1.01% margin
higher than that of the medical institution with the best
training effect on average. At the same time, the model
training enjoys a 4.61% effectiveness margin on average
in this paper over that of the worst institution’s training
effectiveness. It soundly confirms multiparty participation
training with apparent improvements of the model train-
ing effect.

As is shown in Figure 5, an experiment is conducted to
compare the centralized training model, the proposed
model, and the FL model. Clients of FL models upload
model parameters through parallel training and carry out
aggregated computation through the FedAvg algorithm. It
is clear that a blockchain introduction to FL for decentraliza-
tion does not cause a negative impact on the classification
performance from these accuracy curves.

In a practical scenario, samples of the dataset are distrib-
uted at different medical institutions with distinct quality,
quantity, and nonindependent identically distribution. The
difference in the training samples makes it difficult to ensure
that the model update operation is consistent for each par-
ticipant. In Table 5, centralized training using all samples
has higher accuracy than both the proposed and FL model
based on FedAvg using distributed samples. However, there
is a potential for the asynchronous method in the FL process
since it achieves similar performance when using non-IID
datasets.

Due to PoW operation, the performance of the FB-
COVID-19 AD model can be hindered by forks. The fork
splits the BC into different states and potentially undermines
the overall agreement between participants. In the experi-
ment, different numbers of miners are set as M = f10, 100,
500g, and consider different link capacities Cap = f1Mps, 5
Mps, 20Mpsg. As is shown in Figure 6, the fork rate
increases with the number of federated learning participants,
which requires a change in the block size to contain more
parallel transactions. At the same time, with the same num-
ber of miners, the fork rate decreases as the link capacity
increases. This phenomenon becomes more pronounced
when the number of miners M = 100 and M = 500, respec-
tively. These results confirm that in larger model networks,
the link capacity needs to be increased for the exchange
between miners to reduce the fork rate. Thus, it helps to
reduce exchange time during the process.

0 10 20 30 40 50 60 70 80 90 100
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0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

A
CC

Medical institution-all
Medical institution-best
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Figure 4: Differences in training accuracy of medical institutions.
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Centralization
FB-COVID19 AD
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Figure 5: Three methods to train curves.
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The relationship between iteration delay time T iter, fork
rate pf , and block generation rate λ was analyzed for different
link capacities. As is shown in Figure 7, Cap = f1Mps, 20
Mps, 50Mpsg have three cases with different link capacities.
In these cases, the fork rate is rising with the block generation

rate increase. Meanwhile, the iteration delay time decreases,
and the trend manifests a concave shape. The comparison of
the three link capacities illustrates that the link capacity
increase leads to a reduced impact of the fork rate. The itera-
tion delay time decreases as the link capacity increases.

Table 5: The accuracy of three methods on COVID-19 dataset.

Method Centralized training FB-COVID-19 AD IID FL-FedAvg IID FB-COVID-19 AD non-IID FL-FedAvg non-IID

Epoch = 20 0.901 0.903 0.881 0.728 0.738

Epoch = 40 0.931 0.923 0.892 0.847 0.835

Epoch = 60 0.960 0.931 0.923 0.917 0.903

Epoch = 80 0.946 0.933 0.929 0.932 0.923

Epoch = 100 0.963 0.947 0.940 0.933 0.923
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Figure 6: Fork rate versus number of clients and number of miners.

9Computational and Mathematical Methods in Medicine



5. Conclusion

This paper mainly designs a method for auxiliary COVID-
19 diagnosis through a combination of federated learning
and blockchain technologies. Federated learning is used to
address data barriers as well as insecure data sharing. Block-
chain achieves decentralization, protects medically sensitive
information, and encourages more medical institutions to
participate in collaborative training. The proposed method
is tested on a COVID-19 image dataset and achieves the
expected training results. Compared with the centralized
training, FB-COVID-19 AD model achieves collaborative
cooperation among multiple participants without significant
sacrifice of diagnostic accuracy. At the same time, experi-
ments also investigate the single iteration latency of the sys-
tem model and analyze the relationship between parameters
such as fork rate, number of miners, block generation rate,
and block capacity. In the future of smart healthcare, feder-

ated learning combined with other privacy and security
technologies such as blockchain and differential privacy are
expected to provide more innovative ideas for a secure shar-
ing of healthcare data. Amidst the current global epidemic
situations, federated learning and blockchain combined
points to an important breakthrough for algorithmic models
designed to assist epidemic diagnosis.
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Figure 7: Delay time versus fork rate and block generation rate.
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