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Abstract

Differential activation of neuronal populations can improve the efficacy of clinical devices such as 

sensory or cortical prostheses. Improving stimulus specificity will facilitate targeted neuronal 

activation to convey biologically realistic percepts. In order to deliver more complex stimuli to a 

neuronal population, stimulus optimization techniques must be developed that will enable a single 

electrode to activate subpopulations of neurons. However, determining the stimulus needed to 

evoke targeted neuronal activity is challenging. To find the most selective waveform for a 

particular population, we apply an optimization-based search routine, Powell’s conjugate direction 

method, to systematically search the stimulus waveform space. This routine utilizes a 1-D sigmoid 

activation model and a 2-D strength–duration curve to measure neuronal activation throughout the 

stimulus waveform space. We implement our search routine in both an experimental study and a 

simulation study to characterize potential stimulus-evoked populations and the associated selective 

stimulus waveform spaces. We found that for a population of five neurons, seven distinct sub-

populations could be activated. The stimulus waveform space and evoked neuronal activation 

curves vary with each new combination of neuronal culture and electrode array, resulting in a 

unique selectivity space. The method presented here can be used to efficiently uncover the 

selectivity space, focusing experiments in regions with the desired activation pattern.
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1. Introduction

By developing new techniques to selectively activate particular neurons within a population, 

stimulation devices can better control their direct effects on activated tissue, and thereby 

improve stimulus efficacy. Selective activation to modulate neuronal activity is crucial for 

many science and clinical applications because selectivity allows stimuli to target a specific 

population. In applications such as deep brain stimulation (DBS), which is used in treating 

Parkinson’s disease and epilepsy, targeted stimulation can guide a stimulus to alleviate 

symptoms due to disease or injury. A priority in designing stimuli is to reduce side effects 

resulting from the activation of off-target populations. During DBS, stimuli must be 

designed to specifically target a baseline activity level such that the stimulus evokes 

sufficient activity to provide a therapeutic effect, while not excessively activating tissue 

leading to side effects [1–4]. There is a therapeutic subspace in the strength–duration 

waveform space, between which side effects are reduced and stimulus efficacy is increased, 

and stimulation algorithms must incorporate feedback of the evoked activity to enable 

neuronal targeting within this subspace.

Improving the selectivity of electrical stimuli for targeted neuronal activation is also a 

critical step in the development of advanced neural prostheses. The prosthesis field is 

expansive, including peripheral and cortical prostheses, with applications including 

restoration of lost motor and sensory function in artificial limbs; cochlear prostheses for 

restoring audition [5,6]; retinal prostheses for restoring vision [7–9]; and cortical prostheses 

for inducing sensory percepts and reading motor intent directly from the brain [10–16]. An 

effective prosthesis must encode a variety of unique stimuli. For example, the hand senses 

surface texture, heat, pressure, and directionality of contact, all of which are encoded 

uniquely. An early pioneering team pursuing the development of selective stimulation 

techniques utilized the cable model to discover that monophasic cathodic stimuli could be 

used to selectively activate neuronal fibers over cell bodies [17]. There is a vast potential 

neuronal activation space available for exploitation to extend the repertoire of stimulus 

messages by activating various subpopulations of the accessible neuronal population. 

Studies have shown that by using cortical electrodes, patients are able to detect the activation 

of even a single neuron [18], suggesting even the smallest differences in the activated 

population of neurons are detectable.

Our goal is to develop a technique that facilitates the measurement of all accessible neuronal 

subpopulations and finds the waveforms most selective for a target group. Exploiting the 

spatial location and natural variation in stimulus-evoked activation probabilities assists in the 

preferential selection of neuronal populations. The activation probability, in response to a 

rectangular current-pulse, is described by a two-parameter strength–duration curve. 

Although a neuron will typically activate with greater probability as charge is increased, 
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some neurons activate preferentially to a long pulse-width, while others respond 

preferentially to a short-pulse-width, high-amplitude pulse [19]. For any given pair of 

accessible neurons, the inherent differences in their strength–duration curves can be 

exploited for delivering selective waveforms. However, searching a multi-dimensional 

parameter space, which could include stimulus strength and duration, electrode location or 

multiple electrodes and number of neurons in a population is technically challenging.

Closed-loop (CL) methods are well suited for fast searches through a large input parameter 

space to find an optimal stimulus waveform, owing to their online feedback of measured 

responses for determining subsequent stimuli [20–23]. Closed-loop techniques are 

advantageous over open-loop techniques in a multi-parameter space because CL techniques 

can learn from past data to rapidly locate the stimulus space that provides the most selective 

neuronal activation. A model-based search routine can guide the search and mitigate the 

inherent noise in the stimulus-evoked neuronal response. By utilizing CL search methods, 

Brocker et al. [24] used a computational model and genetic algorithm to develop non-regular 

temporal stimulation patterns for DBS, which, when tested experimentally, improved 

stimulus efficacy while reducing device power requirements. Additionally, Pais-Vieira et al. 

[25] implemented a brain-to-brain interface in rats that altered the stimulus waveform in one 

cortical prosthesis based on the actions of a separate rat, and the pair of rats learned to 

change their behavior to benefit them both. Numerous other studies have been conducted to 

investigate selectivity of electrical stimuli in humans, including for example, an investigation 

of human nerve stimulation thresholds [26], selective stimulation for improvement in motion 

control of musculoskeletal systems [27], selective stimulation of the human femoral nerve 

[28] and the optimization of selective stimulation parameters for multi-contact electrodes 

[29]. These developments in science and technology, many of which were successful due to 

the adoption of closed-loop methodologies, are not limited to neuroscience. For example, 

McMullen and Jensen [30] developed a model-based multi-dimensional optimization of a 

microreactor that monitors a chemical reaction where no a priori information is available on 

the reaction parameters. By utilizing real-time feedback of an estimate of the system state, 

CL techniques can improve on current technologies by increasing search efficiency to find 

optimal input parameters.

In this work, we have implemented an automated search technique, Powell’s conjugate 

direction method, to traverse the input parameter space. The difference in strength–duration 

curves among neurons creates regions in the waveform space that offer access to stimulus 

selectivity. Adopting Powell’s method for optimizing stimulus parameters allows for 

multiple parameters to be probed simultaneously in order to find the maximum in selectivity. 

Deterministic optimization methods, such as Powell’s method, generally start with an initial 

guess, and then iteratively improve on the solution according to a directional search 

algorithm. Our application of Powell’s method allows us to rapidly search through multiple 

variables to maximize the difference between activation curves. Resistance to noise is a 

design priority, given that neuronal responses are inherently noisy, and Powell’s method is 

more resistant to noise than gradient approaches since taking the derivative of noisy data 

leads to inaccuracy.
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2. Material and Methods

We designed a closed-loop system [31] for optimizing stimulus pulse parameters based on a 

model of neuronal activation and an experimental goal. Figures 1–3 have been reproduced 

from our previously published article [31] in order to allow the methods to be self-contained 

within this article. The system comprises hardware and software components that select and 

deliver stimuli designed to evoke a particular neuronal response. Each measured response is 

used to refine the model and the next stimulus is automatically chosen. The modular design, 

which separates data collection from both data analysis and decision-making, enables the 

user to select a model structure and an experimental goal in order to investigate a variety of 

questions. Each section of the system is described in more detail below.

2.1. Cortical Cell Culture

Embryonic Day 18 (E18) rat cortices were enzymatically and mechanically dissociated 

according to [32]. Cortices were digested with trypsin (0.25% w/EDTA) for 10–12 min, 

strained through a 40 μm cell strainer to remove clumps and centrifuged to remove cellular 

debris. Neurons were re-suspended in culture medium (90 mL Dulbecco’s Modified Eagle’s 

Medium (Irvine Scientific, Santa Ana, CA, USA, 9024), 10 mL horse serum (Life 

Technologies, Carlsbad, CA, USA, 16050-122), 250 μL GlutaMAX (200 mM; Life 

Technologies 35050-061), 1 mL sodium pyruvate (100 mM; Life Technologies 11360-070) 

and insulin (Sigma-Aldrich St. Louis, MO, USA, I5500; final concentration 2.5 μg/mL)) and 

diluted to 3000 cells/μL. Sixty electrode high density microelectrode arrays (MEAs; Multi 

Channel Systems, Reutlingen, Germany) were used for experimentation comprising 10 um 

TiN electrodes at a 30 um electrode spacing in a configuration of 2 grids of 6 × 5 electrodes. 

The MEA substrate was SiN and ITO (indium tin oxide) electrode tracks were chosen for 

their transparency during imaging. MEAs were sterilized by soaking in 70% ethanol for 15 

min followed by UV exposure overnight. MEAs were treated with polyethylenimine to 

hydrophilize the surface, followed by three water washes and 30 min of drying. Laminin (10 

μL; 0.02 mg/mL; Sigma-Aldrich L2020) was applied to the MEA for 20 min, half of the 

volume was removed, and 30,000 neurons were plated into the remaining laminin atop the 

MEA. A phase contrast micrograph of a culture atop a MEA can be seen in Figure 1. 

Cultures were protected using gas-permeable lids [32] and incubated at 35 °C in 5% carbon 

dioxide and 95% relative humidity. The culture medium was fully replaced on the first day 

in vitro (DIV) and then once every four DIV afterwards.

2.2. Electrical Stimulation

Electrical stimulation was performed using an STG-2004 stimulator and MEA-1060-Up-BC 

amplifier (Multi Channel Systems). MATLAB (Natick, MA, USA) was used to control all 

hardware devices, which were synchronized by TTL pulses sent from the stimulator at the 

beginning of each stimulation loop. In all stimulus iterations, a trigger pulse was first 

delivered to the camera to begin recording so that background fluorescence levels could be 

measured. An enable pulse was then delivered to the amplifier, which connected the stimulus 

channel to a pre-programmed electrode. A single cathodic square current pulse was then 

delivered to a single electrode centered under the camera field of view. Cathodic pulses were 
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chosen because they have been shown to be most effective at evoking a neuronal response 

[33].

2.3. Optical Imaging

As described by Kuykendal et al. [31] automated optical imaging was used to measure the 

stimulus-evoked neuronal response. All preparation procedures were conducted in the dark 

to lengthen experiments by minimizing photobleaching and phototoxicity. First, culture 

media was removed and neurons were loaded with Fluo-5F AM (Life Technologies 

F-14222), a calcium-sensitive fluorescent dye with relatively low binding affinity at a 

concentration of 9.1 μM in in DMSO (Sigma-Aldrich D2650), Pluronic F-127 (Life 

Technologies P3000MP) and artificial cerebral spinal fluid (aCSF; 126 mM NaCl, 3 mM 

KCl, 1 mM NaH2PO4, 1.5 mM MgSO4, 2 mM CaCl2, 25 mM D-glucose) with 15 mM 

HEPES buffer for 30 min at ambient 25 °C and atmospheric carbon dioxide. Before 

imaging, cultures were rinsed two times with aCSF to remove free dye. Cultures were 

bathed in a mixture of synaptic blockers in aCSF (15 mM HEPES buffer). This included 

(2R)-amino-5-phosphonopentanoate (AP5; 50 μM; Sigma-Aldrich A5282), a NMDA 

receptor antagonist; bicuculline methiodide (BMI; 20 μM; Sigma-Aldrich 14343), a 

GABAA receptor antagonist; and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 20 μM; 

Sigma-Aldrich C239), an AMPA receptor antagonist. This cocktail was shown to suppress 

neuronal communication [34] to ensure that the recorded neuronal activity was directly 

evoked by the stimulus. The culture was then kept in a heated amplifier (Multi Channel 

Systems TC02, 37C) within the imaging chamber. The stage position was calibrated with 

respect to the desired field of view using the electrodes as fiducial markers. A MATLAB 

graphical user interface was used to automatically position the field-of-view over the 

stimulation electrode. During an experiment neurons were illuminated using a light-emitting 

diode (LED; 500 nm peak power) and LED current source (TLCC-01-Triple LED; 

Prizmatix, Givat-Shmuel, Israel) through a 20× immersion objective and a fluorescein 

isothiocyanate (FITC) filter cube. Evoked activity was optically recorded using a high-speed 

electron multiplication CCD camera (30 fps; QuantEM 512S; Photometrics, Tucson, AZ, 

USA), which has a 512 × 512 pixel grid covering a 400 μm × 400 μm area. After an 

experiment concluded, three aCSF washouts were performed at three-minute intervals, the 

culture media was replaced, and the culture was returned to the incubator.

2.4. Detecting Action Potentials

For each neuron, the measured intensity of a 16 × 16-pixel (12.5 μm × 12.5 μm) field 

centered on the soma was spatially averaged. Calcium signaling is dynamic and continuous 

within both neurons and glia associated with a neuronal population; therefore, there exists a 

low-level fluorescence that can be measured within these cell bodies due to the action of the 

calcium indicator as a chelator trapped with all cells. However, numerous studies have been 

published demonstrating the use of calcium indicators to infer neuronal spiking enabled by 

both the relatively fast and large change in measurable fluorescence at a neuronal cell body 

immediately following an action potential [35–38].

The relative change in fluorescence, ΔF/F, was calculated by subtracting the baseline (an 

average of four pre-stimulus frames, 30 fps) from an average of four post-stimulus frames 
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(30 fps) and dividing the difference by the baseline. The post-stimulus frames were defined 

as those immediately following the delivered stimulus. Two fluorescence traces are shown 

across time in Figure 2.

Figure 2 shows two traces, one in which an action potential was generated, and one in which 

no action potential was generated. The standard deviation of the baseline frames was 

calculated in initial stimulus iterations and used as a measure of the fluorescence noise level. 

An action potential was assumed to have occurred if the ΔF/F was greater than three times 

the noise level within a particular neuron.

The average decay time constant of a stimulus-evoked fluorescence curve was 1.5 s. Because 

of this relatively slow signal decay, the experiment loop time was chosen to be 4.5 s (three 

decay time constants) to allow the signal sufficient time to return to baseline. The 

progression of ΔF/F for one neuron over the course of 1140 open-loop stimulus iterations is 

plotted in Figure 3, which illustrates the evoked signal decay with increasing light exposure. 

Stimuli were randomly presented from a range of stimulus strengths and durations, such that 

the neuronal response is mixed throughout the experiment. For the first 200 stimuli, the 

change in fluorescence resulting from an evoked action potential is unchanging. The signal 

then subsequently decays with each light exposure.

2.5. The Sigmoidal Activation Model

A saturating nonlinear curve was used to fit to the neuronal probability of firing an action 

potential in response to a varying stimulus current or pulse width. Specifically, a two-

parameter sigmoid was used to describe this 1-D activation curve for cathodic square-pulse 

stimuli:

p = 1
1 + b2e− x − b1 (1)

The sigmoid model provides an approximation for the stimulus needed to activate a 

particular neuron with a given probability. The input activation parameter, x, is either the 

stimulus current or pulse width, and the output is the probability, p, for a neuron to fire an 

action potential. The two parameters describing the sigmoid are b1, the midpoint of the 

sigmoid, and b2, the slope of the curve at the midpoint. Because the sigmoid describes a 

probability of activation, it spans from zero to one. Each stimulus delivered produces a 

binary output, either the neuron fired an action potential or it did not, however, along the 

transition region of the sigmoid curve, the same stimulus level that is delivered 10 times may 

have a 50% probability of activating the neuron under test. Previous work showed that the 

sigmoid curve is good fit for modeling neuronal activation [31].

2.6. Algorithm for Building One Dimensional Sigmoidal Activation Curves

The closed-loop search procedure was divided into two halves: First, the collected stimulus-

response data set was fit to the sigmoid model, and second, the sigmoid model was used to 

calculate the next stimulus to be delivered. The algorithm always first began with five open-

loop stimuli that divided the stimulation space evenly before any curve fitting was 
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performed. After the fifth iteration, the sigmoid model was analytically linearized, and a 

linear least-squares fit of the midpoint and slope parameters was performed to calculate a 

reasonable guess for the two sigmoid parameters—the sigmoid midpoint and the slope of the 

curve at the midpoint. All measured stimulus-evoked responses were equally weighted as 

zeros and ones. The output of the linear regression was used as an initial guess for a 

nonlinear least squares curve fit using the MATLAB Optimization Toolbox, which generated 

the best-fit sigmoid parameters. At this point, the sigmoid model has been fit to the dataset. 

The next stimulus value was then chosen in order to gain information about the sigmoid 

model midpoint and slope. To do this, the algorithm was designed to deliver the next 

stimulus along the slope of the sigmoid curve. A target neuronal activation probability goal 

was randomly chosen from the set of 0.25, 0.50 and 0.75, which spans the linear transition 

region of the sigmoid. The stimulus that was predicted to produce the firing probability goal 

was calculated using the sigmoid fit parameters and the activation probability goal. When a 

neuronal activation sigmoid had a nearly infinite slope, which was often the case when the 

dataset was still small early on in the experiment, the next stimulus chosen would be the 

same as the previously delivered stimulus. To ensure that the algorithm did not get stuck at 

one stimulus value, a random jitter was added to the stimulus up to 20% in either direction 

so that more data would be collected over the full range of the transition region of the 

activation curve. Stimulus currents and pulse widths were binned into 0.2 μA and 20 μs 

blocks, respectively. After every stimulus iteration, the linear and nonlinear curve-fits were 

run to update the model. All stimulus-evoked responses that were collected were included in 

the model, and data were never discarded. The search algorithm is presented below in 

pseudo-code form.

1. Collect data for five distinct stimulus levels.

2. Fit the sigmoid model to all available data points (zeros and ones).

a. Fit the linearly transformed sigmoid model to all zeros and ones in the 

dataset.

i. Use the linearly transformed sigmoid model, which derives 

from Equation (1), to solve for the fit parameters b1 and b2.

x = − ln (1/p − 1)/b2 + b1

b. Use the linear fit parameters as an initial guess for a nonlinear curve fit 

of the model in Equation (1)

i. Minimize the sum-squared error

ii. Use lsqcurvefit Matlab algorithm to calculate b1 and b2

3. Select the stimulus parameter for the next step

a. Select from the set of probabilities {0.25, 0.50, 0.75} using randperm 

Matlab function

b. Calculate from the sigmoid model the corresponding stimulus value
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i. Solve the linearly transformed sigmoid model described 

above, which derives from Equation (1), for x—the next 

stimulus value.

c. If stimulus value is same as previous step, add jitter up to 20% in 

stimulus value, according to a uniform random distribution.

4. Apply the calculated stimulus value in the experiment

a. Use calcium imaging and image processing determine if the stimulus-

evoked change in measured fluorescence surpassed threshold.

5. If convergence is not reached or if stimulus step count is not met, return to Step 

2, else stop

2.7. The Strength–Duration Activation Model

Probabilistic neuronal activation in the 2-D strength–duration waveform space was described 

according to Lapicque [39]:

I = r 1 + c
PW (2)

The stimulus pulse width, PW, is the input; the stimulus current, I, is the output, and the two 

model parameters are the rheobase, r, and the chronaxie, c. The rheobase describes the 

stimulus current below which a stimulus with infinite pulse width will not evoke an action 

potential, and the chronaxie describes the stimulus pulse width that corresponds to a 

stimulus current of twice the rheobase. A strength–duration curve must be defined for a 

particular activation probability, such that there are a set of non-intersecting probability 

strength–duration curves spanning the two-parameter waveform space.

2.8. Slices Through the Strength–Duration Waveform Space

We previously showed that when a one-dimensional slice is taken through the SD waveform 

space in either the horizontal or vertical direction, the activation probability could be 

modeled by a sigmoidal activation curve according to Equation (1) [31]. These slices are 

equivalent to constant-current and constant-pulse width curves, respectively, and are 

demonstrated by the green lines in Figure 4A,B. In a similar regard, slices can be taken 

along a positively sloped diagonal, and in that case, the stimulus strength is a combination of 

the stimulus current and pulse-width, but the sigmoid describing activation probability can 

be plotted as a function of either parameter, given that the slice line is defined to relate the 

two parameters. However, a slice with negative slope in the SD waveform space comprises a 

set of either zero, one or two sigmoidal activation curves depending on the number of times 

that the slice intersects with the probabilistic SD curves (Figure 4A). If all values of the 

input parameters lying along the slice fall below the probabilistic SD curves, then the 

activation model is zero for the entire slice. If the slice intersects once with the set of 

probability SD curves, then the activation model comprises a single sigmoid (Figure 4C). 

The sigmoidal parameters are estimated by fitting Equation (1) to the points where the slice 

intersects with the probabilistic SD curves. Lastly, if the slice intersects with the SD curves 
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twice, once along the left-hand portion of the SD curves and once along the right-hand 

portion, then the activation probability first increases through the first crossing and then 

decreases through the second crossing. The activation model for the negatively sloped slice 

comprises the addition of two sigmoids: a lower-threshold sigmoid with positive slope and a 

higher-threshold sigmoid with negative slope (Figure 4D). It is important to note that for 

monophasic cathodic current-controlled stimuli, neurons will activate according to the 

strength–duration curve, and the slicing through the waveform space is only a means by 

which searches can be performed. In the case of the negatively sloped D2sigmoid (red dotted 

line in Figure 4A,D) neuronal activation is still considered on the probability scale of zero to 

one. In the search routine implemented in these studies, three discrete probability SD curves, 

having probabilities of 0.25, 0.50 and 0.75, were used for constructing the activation models 

along a slice through the SD waveform space (Figure 4A).

2.9. Powell’s Conjugate Direction Method Search Routine

Powell’s conjugate direction method is a non-gradient search routine for finding the 

maximum (or minimum) of a function. It is especially applicable to multi-dimensional 

searches of noisy systems since its calculations do not rely upon derivatives, which are 

sensitive to noise. Powell’s method specifically dictates the direction of each search iteration 

through the input parameter space, which in this study is the strength–duration stimulus 

space, comprising a stimulus current and pulse-width for a rectangular pulse. An illustration 

of the generic search routine is depicted in Figure 5, which consists of a series of line 

searches through the input space. Each line search comprises one execution of the methods 

described above, in which the sigmoidal activation models are constructed for each of the 

neurons within the population. Along each line search, an objective function is evaluated. 

For this study, the objective function, f, measures the differences in sigmoidal activation 

curves such that the sum of off-target neuronal activation probabilities, for m neurons, is 

subtracted from the sum of target neuronal activation probabilities, for n neurons.

f = ∑i = 1
n Pi − ∑

j = 1

m
Pj (3)

The sigmoidal activation curves for the target population are summed such that as each 

target neuron activates, and the probability of firing transitions from zero to one, the 

objective function increases by one. As the off-target neurons begin to activate, and their 

probabilities of firing transition from zero to one, the objective function decreases by one. 

Therefore, along each line search, once all sigmoidal activation curves have been estimated, 

the on- and off-target activation curves are combined, and the maximum of the objective 

function is found.

Powell’s method begins with an arbitrary point, PT0, chosen from the input space. The first 

search direction (D1) is a vertical search crossing through PT0, which spans the extent of the 

space. For this implementation, D1 is a variable-current, fixed-pulse-width search bracketed 

by a minimum current of 0 μA and a maximum current of 25 μA. The maximum of the 

function is found at PT1, which is a measurement of the selectivity achievable between two 
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neurons. Point PT1 corresponds to the peak of the difference between the two neuronal 

activation curves, both modeled as sigmoids. Like PT1, all following points found during a 

search also correspond to the maximum of the objective function, which we have defined as 

the absolute value of the difference of sigmoid activation curves. The next search direction, 

D2, is perpendicular to D1 and crosses through point PT1. The search for the maximum of 

the selectivity curve (PT2) is repeated, but in this case, the search is a variable-pulse-width, 

constant-current search, which spans the entire pulse-width space. After the first two 

searches, the routine alternates between diagonal and horizontal searches. Search direction 

3, D3, is a multi-dimensional search in both current and pulse-width that passes through 

points PT0 and PT2. When the maximum of this search is found at PT3, the next search 

commences in direction D4, which passes through PT3 and is parallel to D2. The following 

search is in the direction that connects points PT2 and PT4. The search routine continues 

until the search goal is met. The implemented Powell method is presented below in pseudo-

code form.

1. Conduct line search, n, to find stimulus parameters that maximize difference in 

neuronal activation probabilities

a. Determine the waveform space search direction

i. Case n = 1: Search is vertical through the waveform space 

with constant stimulus duration (pulse-width)

1. Stimulus duration is pre-determined from setting 

“PT0”

ii. Case n = 2, 4, 6 … : Search is orthogonal to the first case 

through the waveform space with constant stimulus current 

(amplitude)

1. Stimulus current is determined from “PT(n − 1)”

iii. Case n = 3, 5, 7 … : Search is diagonal through the waveform 

space, both stimulus current and duration are varied

1. Direction is determined from line fit to “PT(n − 1)” 

and “PT(n − 3)”

b. Build activation curve models for neurons 1 to n

c. Evaluate the objective function: Find the maximum of the difference 

between neuronal activation curves

i. Define the next search result as a point within the stimulus 

waveform space with coordinates (stimulus duration, stimulus 

current), labeled “PTn”

2. If convergence is not reached based on the evaluation of the objective function, 

or a search count is not met, return to Step 1, else stop
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2.10. Simulations of Powell’s Conjugate Direction Method Search Routine

To augment the experimental studies, simulated neuronal activation models were generated, 

using experimentally identified strength–duration curves for each neuron in the population. 

To implement Powell’s method, a starting point was chosen from the input parameter space, 

similarly to what was described in the experimental study above. A “true” sigmoidal 

activation model was then constructed for each neuron along the first line search, in either 

the vertical or horizontal direction. This “true” sigmoidal activation curve was then 

estimated in simulation similarly to the experimental study. The closed-loop routine for 

building sigmoidal activation models was executed, delivering 50 simulated stimuli through 

the one dimensional input parameter space, and a simulated model of the activation sigmoid 

was defined for each neuron in the study. These simulation studies enabled consideration of 

additional scenarios and objective functions for the same population of neurons. In reality, 

the number of experiments that can be performed is limited, due to photobleaching.

3. Results

To selectively activate a subpopulation of neurons, we experimentally implemented Powell’s 

method, using a series of model-based line searches to locate the optimal combination of 

stimulus strength and duration. In the first study, we applied our system to an experimental 

setting of cultured neurons to analyze the selectivity achievable between two neurons. We 

then extended this study by experimentally measuring strength–duration curves for a 

population of five cultured neurons. The selectivity space was mapped for the five neurons 

and the CL search routine was then used in simulation to conduct further studies based on 

models generated by the experimentally derived neuron activation curves. In the simulation 

studies, the robustness of the CL search method was explored to target subpopulations 

consisting of multiple neurons.

3.1. Powell’s Method Applied Experimentally to Find the Most Selective Waveform 
between a Pair of Neurons

Five iterations of Powell’s method were experimentally performed to find the most selective 

waveform between two neurons, labeled N1 and N2. In all five line searches, activation 

curves were constructed using the sigmoid model in Equation (1). Stimulus-evoked 

responses were collected at each stimulus point, and the sigmoid model was fit to all 

available data for each neuron according to the methods. The search algorithm applied 50 

stimuli designed for each neuron, along the line defined online by the closed-loop search 

routine. As the stimulus space was divided and binned into 0.2 μA and 20 μs resolution 

blocks according to the methods for building one-dimensional sigmoid activation curves, 

numerous stimuli were delivered at each stimulus value. In this experiment, the 50 stimuli 

were delivered in order to construct a one-dimension activation curve, and after each search 

was performed for both neurons, the difference between the activation curves for N1 and N2 

was determined according to Equation (3) and a maximal selectivity point was calculated in 

real time.

The search routine automatically executed five complete multi-neuron search routines 

beginning from a starting point near the middle of the range of stimulus currents and pulse 
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widths (600 μs, 12.0 μA), denoted as PT0 in Figure 6A. The first search was a stimulus 

current search from the starting point (D1, Figure 6A), with the stimulus pulse width fixed at 

600 μs. This appears as a vertical line in Figure 6. The maximum of the objective function f, 
which is the difference in sigmoids produced by neurons N1 and N2, was calculated online 

to have occurred at 10.7 μA, and is depicted as point PT1. The sigmoid parameters (b1, b2) 

derived from the first search were (11.2 μA, 20.1 μA−1) for N1 and (6.80 μA, 0.67 μA−1) for 

N2. According to the Powell search method, the second search was a perpendicular (Figure 

6C), horizontal stimulus pulse-width search (D2) crossing through PT1. The current was 

fixed at 10.7 μA, and the sigmoid search spanned the range of durations from 0 to 1000 μs. 

Again, the maximum of the difference of sigmoids for neurons N1 and N2 was calculated 

online to be located at 375 μs, point PT2 (375 μs, 10.7 μA). The sigmoid parameters (b1, b2) 

derived from the second search were (673 μs, 0.06 μs−1) for N1 and (349 μs, 3.06 μs−1) for 

N2. The third search direction was then calculated by the routine as a line connecting points 

PT0 and PT2 (Equation (4)), where I is the current (μA) and PW is the pulse width (μs).

I = 5.77 × 10−3PW + 8.53 (4)

The algorithm continued the automated search process. The activation curves were measured 

along the third search direction and the difference in sigmoids was again calculated. The 

maximum was measured at a pulse-width of 511 μs and current of 11.5 μA. The sigmoid 

parameters (b1, b2) derived from the third search were (574 μs, 0.75 μs−1) for N1 and (343 

μs, 0.15 μs−1) for N2. The fourth search direction was then conducted parallel to the 

horizontal pulse-width search. The current was fixed from the previous point at 11.5 μA, and 

the stimulus pulse-width was allowed to vary through the entire range from 0 to 1000 μs. 

The maximum of the difference of sigmoids for neurons N1 and N2 was measured as point 

PT4, at 455 μs and 11.5 μA. The sigmoid parameters (b1, b2) derived from the fourth search 

were (501 μs, 1.05 μs−1) for N1 and (326 μs, 0.30 μs−1) for N2. The fifth and final selectivity 

search was a two-parameter diagonal search connecting points 2 and 4 along the line defined 

in Equation (5). The maximum difference between sigmoids was measured at a pulse width 

of 524 μs and a current of 12.1 μA. The sigmoid parameters (b1, b2) derived from the fifth 

search were (550 μs, 0.56 μs−1) for N1 and (345 μs, 0.41 μs−1) for N2.

I = 10.11 × 10−3PW + 6.95 (5)

The two neuronal activation curves were sufficiently steep and far apart that the maximum 

selectivity achieved was nearly unity. Had a stopping criterion been imposed on the routine, 

it would have stopped the search after the second iteration. Although applying Powell’s 

method to the case of two neurons is relatively straightforward, the true utility of Powell’s 

method becomes apparent in higher dimensions, such as a larger population of neurons or a 

greater number of stimulus parameters.

3.2. Experimentally Measured Strength–Duration Curves for the Neuronal Population

During the experimental implementation of the search routine for neurons N1 and N2, three 

additional neuronal activation curves were measured. As described previously, 50 targeted 

Kuykendal et al. Page 12

Processes (Basel). Author manuscript; available in PMC 2021 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



stimuli were delivered, per neuron, in each of the stimulus search directions. These stimuli 

were delivered in order to increase the probability measurement resolution along the 

transition region (0.25–0.75) of each neuron. At the conclusion of the search routine, the 

algorithm had collected measurements for the each of five neuronal activation curves 

through the strength–duration waveform space. Each sigmoid provided estimates of the 0.25, 

0.50 (midpoint, or activation threshold) and 0.75 probabilities along the experimental search 

directions; these points were used to construct probability strength–duration curves fit to 

Equation (2). This means that a separate strength–duration curve was calculated for each 

neuron at each of the three probability levels. For other search directions through the 2-D 

strength–duration space, a sigmoid activation curve could be approximated by fitting the 

model in Equation (1) to the points where the search line intersected the 0.25, 0.50, and 0.75 

probability strength–duration curves. Therefore, the sets of strength–duration curves could 

be used to approximate the activation probability for each neuron at any point in the 

strength–duration waveform space. For these five neurons, the strength–duration parameters 

(rheobase, r; chronaxie, c) for the 50% activation curves shown in Figure 7 are as follows: 

N1 (2.91 μA, 5153 μs), N2 (1.73 μA, 3046 μs), N3 (8.17 μA, 1951 μs), N4 (7.34 μA, 3079 

μs), N5 (2.58 μA, 4079 μs).

All possible neuronal activation combinations were mapped in the strength–duration 

waveform space (Figure 7). This selectivity map shows that regardless of the goal, neuron 

N2 will always be activated before other neurons. The activation spaces between the four 

other activation curves are more nuanced because they intersect each other. The strength–

duration curves cross because some neurons preferentially activate at shorter stimulus pulse 

widths and higher currents, while other prefer longer stimulus pulse widths and lower 

currents.

3.3. Powell’s Method Applied in Simulation to Find the Most Selective Waveform for a 
Population of Neurons

Simulation studies were performed in order to investigate the behavior of Powell’s method 

for various neuronal subpopulations. As a first example, we chose a target region within the 

population strength–duration space defined in Figure 7 that promotes the activation of 

neurons N2, N3 and N5, while suppressing the activation of neurons N1 and N4 (colored 

orange). The region within the stimulus waveform space that maximizes the objective 

function is closed. We chose this region because we predicted that it would be the most 

difficult region to locate using Powell’s method. The theoretical maximum of the objective 

function is 3, which occurs when the three target neurons are activated and the two off-target 

neurons are not. As the stimulus strength increases and the target neurons activate, the value 

of the objective function increases, but as the off-target neurons activate, the value of the 

function decreases. For example, if an off-target neuron activates while the three target 

neurons activate, then the objective function will evaluate to 2. However, if none of the target 

neurons activate along a particular line search, but both off-target neurons activate, then the 

objective function will evaluate to −2, which is the theoretical minimum. The objective 

function for each line search was defined according to Equation (3). For the target 

population N2, N3 and N5, the objective function was
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f = − PN1 + PN2 + PN3 − PN4 + PN5 (6)

As shown in Figure 8, we found that there was variation in possible outcomes of the search 

routine, depending on two initial conditions: the starting point, PT0, in the strength–duration 

space, and the orientation of the first search direction, D1. In the first study, the initial search 

direction was a horizontal line crossing through the point PT0 (600 μs, 12.0 μA). On the first 

search, the theoretical maximum of the objective function was found. This point was located 

in the lower corner of the target region in the SD waveform space at 535 μs and 12.0 μA.

For the second study, the starting point was shifted to a region where a line search in either 

direction could not yield an objective function value of 3. This point was located at 700 μs 

and 10.0 μA. The first horizontal line search crossed the waveform space where target 

neurons N2 and N5 activated first, however, neuron N3 only activated after neuron N1. The 

maximum of the objective function was 2. As the experimental search routine demonstrated 

earlier, the maximum of the objective function became the point through which the next 

search direction would cross. The search routine was iterated until the theoretical maximum 

of 3 was found at 366 μs and 14.8 μA, after search direction D3. To confirm that the result 

was stable in the target region, an additional three searches were run, and all results 

remained within in the target area.

For a second target population, we chose an objective function that promotes the activation 

of neurons N1, N2 and N5 (brown region in Figure 7), while penalizing the activation of 

neurons N3 and N4:

f = PN1 + PN2 − PN3 − PN4 + PN5 (7)

As in the implementation of Powell’s method for the experimental two-neuron search 

routine, we chose to use the starting point, PT0 (600 μs, 12.0 μA), which was located in the 

middle of the strength–duration waveform space, as shown in Figure 9. The first search was 

a stimulus current search with fixed stimulus pulse-width. The maximum of the objective 

function was found at PT1 (600 μs, 10.1 μA) and was approximately 2. Through this vertical 

search line, there was no region where all three target neurons were ON while the two off-

target neurons were OFF. There existed, however, a stimulus region where two of the target 

neurons activated, but the third neuron would not activate until after one of the off-target 

neurons turned ON. As the stimulus value increased, the first two neurons activated, and the 

objective function evaluated to 2; then as an off-target neuron activated, the objective 

function decreased to 1; next the third target neuron activated, which brought the objective 

function close to 2 again, until the final off-target neuron activated and pulled the objective 

function back down to 1. At the highest allowed stimulus value, the function would always 

evaluate to one.

The next search was simulated in the variable-pulse-width, constant-current direction. Again 

a sigmoid model was constructed for each neuron and the objective function was evaluated. 

The maximum was 3, the maximum that was theoretically possible, and was found at PT2 
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(807 μs, 10.1 μA). Although the maximum was found after the second search, the routine 

was continued to evaluate its stability. The third search was along the line that connected 

PT0 and PT2. In this search direction, the models constructed for N1, N2 and N5 were 

single positively-sloped sigmoids because the slice only crossed the left side of the neurons’ 

set of SD curves, similarly to a horizontal search. The model constructed for N3 was a set of 

two sigmoids (described in Figure 4D) and for N4 was zero because the slice did not cross 

the set of SD curves for that neuron. The maximum of the objective function, combining all 

five neuronal activation models according to (7) was found at PT3 (870 μs, 9.5 μA). The 

fourth search was horizontal, parallel to the second search, and the maximum of the function 

was found at PT4 (990 μs, 9.5 μA). Finally, the fifth search was again in a negative slope 

direction and the maximum selectivity was found at PT5 (954 μs, 9.6 μA).

As the search progressed, the waveform at the maximum selectivity shifted toward long-

pulse-width stimuli. As is observable within the set of SD curves, at longer pulse widths, the 

activation of neurons N2 and N4 converge toward a higher level, while neurons N1, N2 and 

N5 all tend lower. This produces a selectivity region exhibiting larger stimulus pulse widths.

4. Discussion

4.1. The Choice of Powell’s Method

Deterministic search methods, like Powell’s Method, have a great strength in optimization 

because they converge quickly with a good initial starting point; the downside of 

deterministic methods is that the search can be trapped in local minima if a poor initial 

starting point is used. A gradient-based search method, such as gradient descent, is an 

undesirable method for finding the selective region between populations of neurons because 

there exists a plateau of maximum selectivity between neuronal strength–duration curves. 

Additionally, a gradient-based search routine is susceptible to instability when applied to 

noisy data. Other non-gradient search methods could conceivably be implemented for 

optimizing neuronal stimulation parameters including, Nelder-Meade, simulated annealing, 

or a genetic algorithm. The significance of this experiment was to demonstrate the feasibility 

of an optimization method applied directly to the experiment. In the experimental 

implementation, the neuronal activation curves were relatively far apart in the strength–

duration waveform space, resulting in a large region between the two P = 0.5 curves where 

selectivity of neuron N2 over N1 is high. For that reason, the algorithm was able to quickly 

converge and find a stimulus solution where the absolute value of the difference in activation 

sigmoids was approximately 1, the theoretical maximum of the two-neuron objective 

function, after only two search iterations.

Methods for global optimization of deterministic systems are fairly advanced [40], but they 

require a lot of function evaluations, and usually this number is many more than could be 

feasibly delivered in a biological experimental setting. For stochastic systems like the 

neuronal system presented here, the problem is much more difficult [41]. Local optimization 

methods are often used in the stochastic experimental context, although global optimization 

could be used in principle. Optimization routines such as these that require a very large 

number of evaluations are often implemented in non-biological or simulation environments, 

which is impractical for the experimental limitations presented here. Biological models often 
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require many parameter estimations, and the problem of using experimental data in 

optimization often comes up in parameter estimation for biological systems [42]. While 

another approach may benefit from the implementation of a different optimization method 

and search technique, the use of Powell’s Method should be extendible to more parameters 

to include a more complex stimulus space, e.g., additional parameters such as stimulus 

frequency, and a larger population of neurons.

4.2. Weighting the Objective Function

As the objective function complexity increases, there is an increasing likelihood that the 

theoretical maximum of the objective function is unachievable. For these cases, the goal is to 

find the stimulus that will be most selective for one subpopulation over another. For 

example, there is no perfect waveform region for an objective function that targets neurons 

N1, N2 and N3 while not activating neurons N4 and N5 (Figure 7). However, the objective 

function is still higher in some regions of the space, compared to others. The objective 

function would evaluate to 2 in the region where neurons N2 and N3 are fully activated (P1 

+ P2 + P3 − P4 − P5 = 0 + 1 + 1 − 0 − 0) because there is a penalty for not activating neuron 

N1. In the waveform space where neurons N1, N2, N3 and N5 activate, the objective 

function would again evaluate to 2 (P1 + P2 + P3 − P4 − P5 = 1 + 1 + 1 − 0 − 1). In this 

waveform region, all three target neurons were activated, but there was a penalty because the 

off-target neuron N5 was also activated. The preference for one waveform region over 

another will require additional factors to be included into the objective function. Various 

neuronal probability combinations will result in the same function evaluation without the 

inclusion of weighting to emphasize an experimental goal of activating a particular set of 

neurons. For example, in a three neuron set, activation of neuron 1 and 2, or neuron 1 and 3, 

or neuron 2 and 3 would all evaluate to the same value if all three neurons were equally 

weighted. However, the objective function could emphasize the activation of on-target 

neurons by applying additional weight to P1, P2 and P3. This weighting would bias toward 

the second waveform region, in which all three target neurons are activated because the 

increase in the objective function from activating the third neuron would outweigh the 

penalty for activating the off-target neuron. Conversely, the objective function could 

minimize off-target activation by applying an increased penalty for activating off-target 

neurons. This increased penalty would naturally select the first waveform region, in which 

only neurons N2 and N3 are activated, because the penalty for activating neuron N5 would 

outweigh the benefit of activating neuron N1.

For an in vivo study the objective function may be governed by a larger population, for 

example, a study’s goal could be to maximize the beneficial desired behavior while 

minimizing side effects. The evaluation of a function in an experiment like that may weigh 

the activation intensity of an entire neuronal subpopulation. A similar search routine could 

be implemented in which there is defined a maximum stimulus that is allowable due to both 

safety precautions and due to the complementary activation of an unwanted larger 

population than is desired. That maximum stimulus could then be used to bracket the 

stimulus waveform space and a search could be performed in which wanted and unwanted 

populations are weighted differently.
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4.3. Choosing the Selectivity Point after Each Iteration

We chose an objective function that maximized the difference of sigmoids. However, this 

function is susceptible to sudden shifts in the output when there is a plateau between the 

neuronal activation curves, because the value of the objective function changes very slightly 

across the plateau. For example, given a pair of neurons in which one has a very steep 

activation curve and the other has a shallower curve, the maximum of the difference in 

sigmoids will occur very close to the steep neuron’s transition region. This result occurs 

because the steep activation curve will evaluate to nearly one very near to the transition 

region, while the shallower sigmoid will more slowly transition from zero to one; the 

maximum of the objective function will appear as far from the shallower sigmoid as 

possible. The resulting maximum of the objective function occurring so close to the steep 

neuronal activation curve may not be the ideal place to stimulate for selectivity. It may be 

preferable instead to stimulate closer to the midpoint of span of stimuli that produce 

difference in sigmoids, as quantified by f, above a predetermined fixed value. In selecting a 

stimulus at the midpoint of the span, the chosen stimulus will maximize the distance 

between the selected neurons. As a selectivity point, the midpoint will have greater 

robustness because any variation in the internal state of either neuron is less likely to cause 

the neuronal activation probability to deviate significantly. Accounting for this factor is of 

greater import for longer term studies or those in which synaptic blockers are not used, 

where drifting of the culture is more likely to occur.

4.4. Limitations in the Approach

The advantage of simulation studies is the sheer number of function evaluations that are 

possible where those possibilities are extremely limited in a biological experimental system. 

Further studies will be necessary to elaborate on, and advance, the techniques presented 

here. In this work, we are proposing and demonstrating a new concept and approach, 

however the specific simulation studies performed in this work were not directly validated 

with experimental testing due to the limitations inherent in an experimental approach.

We utilized an in vitro model neuronal system to specifically study only the direct activation 

of neurons. While other systems, including in vivo neuronal structures, may not have the 

simplicity of a synaptically silenced system like that which is presented here, we are 

interested in studying the way in which stimulus waveforms directly evoke activity in a 

given neuron. By eliminating down-stream synaptic communication in the model culture, we 

have essentially made a black box of the network. This then allows us to assume, for 

example, that in a scenario where neuronal communication is in tact downstream the 

expressed purpose of delivering stimuli through an array of micro-electrodes in only to 

activate an initial target neuron in a culture. In this study, the neurons were uncoupled from 

the surrounding network using synaptic blockers. While the CL system can estimate a 

neuronal activation threshold, the algorithm will require modification for application to 

tracking potentially non-stationary activation curves in a coupled network. In the studies 

presented herein, neuronal activation curves proved to be stable over the experiment, 

however, a particular neuron’s activation curve may not be stationary in the presence of 

synaptic network input.
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5. Conclusions and Future Directions

In this work we demonstrated that a closed-loop search routine implemented according to 

Powell’s method could be used to find the waveform region that is most selective for a 

subpopulation of accessible neurons. We used a model-based search method for optimizing 

stimulus parameters in the strength–duration space to target an arbitrary set of neurons. The 

success of this technique is attributable to exploiting the natural variation in strength–

duration curves between neurons. In our experimental system, we use wide-field optical 

imaging as a measurement tool; it is likely that in other applications non-optical methods 

will be used to record evoked activity. The findings in this work are independent of 

measurement method, and so also apply to non-optical recording methods. Ultimately, any 

stimulation routine needs to implement a technique to probe and characterize the population 

response in order to design targeted stimuli that will enable more sophisticated control of the 

evoked response. In the experimental application and in biological systems in general, there 

is variability in population size, absolute neuron position, and relative position of the cells to 

the micro-electrode arrays. It must therefore be assumed that each experimental application 

will have a unique response. It is the uniqueness of each application that requires that the 

accessible neuronal population be learned, and this accessible population be probed for 

response in the stimulus parameter space.

While CL systems, such as the one presented here, enable learning about the nervous 

system, they are also essential for clinical applications. For example, in delivering sensory 

stimuli from prosthesis back to the brain, message encoding algorithms must be developed 

that measure evoked activity online. Online feedback of the evoked activity will enable the 

controller to find the most separable stimuli. Closed-loop techniques are indispensable for 

guiding a stimulus to be most efficacious in a neuronal environment. In order to control the 

activity of a particular population, it must be characterized online to measure how it is 

changing and evolving with each stimulus presentation.

The use of a model-based closed-loop search routine shows greatest benefit in larger 

dimensional spaces. Multiple stimulating electrodes can be used to further increase 

selectivity; each additional electrode doubles the dimension of the input parameter space. 

Future studies will examine the increase in selectivity achievable using multiple electrodes 

and more complex stimulus waveforms, which will result in even higher dimensional spaces. 

Future medical devices will use many electrodes in order to encode more complex messages, 

which will require optimization routines similar to the work presented here, which are 

effective in higher dimensional spaces. Although the Powell search routine was implemented 

in this work, other search methods could be implemented including Nelder-Meade, 

simulated annealing, or a genetic algorithm. These alternative search algorithms may offer 

advantages over Powell’s method depending on the specific stimulation configuration and 

recording environment.
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Figure 1. 
Phase contrast micrograph of the high-density electrode array, on which healthy neurons are 

growing. The HD array consists of two 6 × 5 electrode grids (10 μm diameter, 30 μm 

spacing). The distance from center-to-center of the two electrode arrays is 200 μm.
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Figure 2. 
Stimulus-evoked fluorescence traces. Two traces are shown in which an action potential was 

evoked in response to the stimulus (bold line) and no action potential was evoked (light 

line). The stimulus timing with respect to the evoked signal is denoted by the bold arrow and 

is expanded below to show the two stimulus pulse control variables, the current (μA) and the 

pulse width, or duration (μs). Action potentials were assumed to occur if the post-stimulus 

change in fluorescence (ΔF/F) was greater than three times pre-stimulus levels (threshold 

shown as a horizontal bar). The pre-and-post-stimulus fluorescence levels were calculated as 

a time-average of four frames (represented with transparent gray bars).
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Figure 3. 
Evoked fluorescence decays due to photobleaching. The progression of the relative 

fluorescence change, ΔF/F, is shown across an experiment.
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Figure 4. 
(A) Cartoon depiction of vertical (Dvertical), horizontal (Dhorizontal), and negatively-sloped 

cross sections (D0sigmoid, D1sigmoid, D2sigmoid) through the strength–duration waveform 

space; (B) The vertical and horizontal slices cross the set of SD curves once, which is 

modeled by a positively sloped sigmoid. (C,D) The negatively-sloped slices can cross the set 

of SD curves either zero times (model not shown), which produces a zero probability of 

firing across the range of stimulus inputs; one time (C); which is modeled by a single 

negatively-sloped sigmoid; or two times (D); which is modeled by a probability space 

comprising a lower-threshold positively-sloped sigmoid and a higher-threshold negatively-

sloped sigmoid.
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Figure 5. 
Depiction of the first four searches in Powell’s method. An initial point (PT0) is chosen in 

the 2-D search space. A search is performed in the vertical direction, D1, locating the 

maximal selectivity at PT1. Point PT1 becomes the starting point for a search orthogonal to 

the first search in direction D2. The maximal selectivity of the second search is found at 

PT2. The third search is performed in the direction connecting points PT0 and PT2, 

direction D3, and resulting in a new maximum PT3. The search continues with another 

horizontal search parallel to D2 and intersecting PT3; a subsequent search is performed in 

the direction that connects the newly found point, PT4, to PT2. The algorithm iterates until 

the search goal reached.
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Figure 6. 
(A) Implementation of Powell’s method to search the strength–duration waveform space. 

The thin lines denote the five search segments. The stimuli applied along each stimulus path 

is color coded such that the darker the point, the greater the selectivity between the two 

neurons. The maxima found along the search lines are highlighted with open circles; (B) the 

objective function (solid line) was evaluated along each line search in the search routine of 

(A) according to Equation (3). The objective function for each of the first four searches is 

plotted in each panel, and the maximum of the objective function is denoted with an open 

circle, similarly to (A). The sigmoidal activation functions for each of the two neurons, N1 

and N2, are plotted with dotted lines. The outputs from the first four are depicted here. In all 

five searches, activation curves for neurons N1 and N2, dotted lines, were estimated from 

data; (C) The implementation of the search routine, magnified from the dashed box in panel 

(A). The starting point, PT0, was chosen near the middle of the range of stimulus currents 

and pulse widths (600 μs, 12.0 μA); (D) a cartoon depiction of the search routine, shown in 

panel (C). Each of the search directions and measured peak selectivity points is highlighted.
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Figure 7. 
A map of selectivity regions accessible using one stimulating electrode. The strength–

duration curves associated with P = 0.5 are plotted for each of the five neurons, and the 

regions in between the curves are color coded to define the population that is activated 

within that waveform region.
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Figure 8. 
Two simulation studies were performed to find the selective region for the subpopulation of 

neurons including neuron N2, N3 and N5. (A) The selective region is highlighted with 

stripes. For the first study, a horizontal search through the starting point, PT0 (600 μs, 12.0 

μA) yielded the theoretical maximum of the objective function (open red circle at 535 μs, 

12.0 μA); (B) the objective function value is plotted along the first line search, D1. The 

individual neuronal activation sigmoids are plotted alongside the objective function (dotted 

lines). The first three target neurons activated before the off-target neurons activated; (C) 

The output from the second stimulation study, in which the starting point, PT0, was shifted 

to 700 μs and 10.0 μA; (D) After the 3rd line search, the theoretical maximum was found for 

the objective function.
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Figure 9. 
(A) The strength–duration curves from a fit to Equation (2) with P = 0.5, are plotted for five 

neurons using the experimental data collected during the CL search routine. The simulated 

target population of neurons was chosen, including N1, N2 and N5, and an objective 

function was created to promote the activation of the target neurons while penalizing the 

activation of the off-target neurons, Equation (7). The five searches resulting from a 

simulated search routine are marked with faint lines, and the objective function maxima are 

labeled and highlighted with open circles; (B,C) the objective function along each search 

direction is plotted with a solid black line. The maximum of the function is found at the 

open circles in each plot, which correspond to the various search directions in Powell’s 

method.
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