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Abstract 

Background  Disulfidptosis is an emerging form of cellular death resulting from the binding of intracellular disulfide 
bonds to actin cytoskeleton proteins. This study aimed to investigate the expression and prognostic significance 
of hub disulfidptosis-related lncRNAs (DRLRs) in R0 resected hepatocellular carcinoma (HCC) as well as their impact 
on the malignant behaviour of HCC cells.

Methods  A robust signature for R0 resected HCC was constructed using least absolute shrinkage and selection 
operator (LASSO) and multivariate Cox regression and was validated in an independent internal validation cohort 
to predict the prognosis of R0 HCC patients. Comprehensive bioinformatics analysis was performed on the hub DRLRs 
(KDM4A-AS1, MKLN1-AS, and TMCC1-AS1), followed by experimental validation using quantitative real-time polymer-
ase chain reaction (qRT‒PCR) and cellular functional assays.

Results  The signature served as an independent prognostic factor applicable to R0 HCC patients across different 
age groups, tumour stages, and pathological characteristics. Gene Ontology (GO) and gene set enrichment analysis 
(GSEA) revealed hub pathways associated with this signature. The high-risk group presented an increased abundance 
of M0 macrophages and activated memory CD4 T cells as well as elevated macrophage and major histocompatibility 
complex (MHC) class I expression. High-risk R0 HCC patients also presented increased tumour immune dysfunction 
and exclusion scores (TIDEs), mutation frequencies, and tumour mutational burdens (TMBs). Drug sensitivity analysis 
revealed that high-risk patients were more responsive to drugs, including GDC0810 and osimertinib. High expres-
sion levels of the three hub DRLRs were detected in R0 HCC tissues and HCC cell lines. Functional assays revealed 
that the three hub DRLRs enhanced HCC cell proliferation, migration, and invasion.

Conclusions  A signature was constructed on the basis of three DRLRs, providing novel insights for personalized 
precision therapy in R0 HCC patients.
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Graphical Abstract

Background
Hepatocellular carcinoma (HCC) is one of the most 
prevalent malignancies globally, ranking sixth among 
all cancers. In 2020, an estimated 900,000 new cases 
and 830,000 deaths were reported, accounting for 4.7% 
and 8.3% of all malignant cancers, respectively [1]. HCC 
accounts for approximately 75%-85% of primary liver 
cancers [1]. Risk factors for HCC include chronic hepa-
titis (caused by hepatitis B or C virus infection), alcohol 
abuse, and metabolic syndrome [2]. Currently, diverse 
treatment modalities have been employed for HCC, 
including surgical resection, liver transplantation, abla-
tion, transarterial chemoembolization, transarterial 
radioembolization, and systemic therapy [3, 4]. None-
theless, owing to organ scarcity, stringent liver trans-
plantation criteria, and a limited ablation range, liver 
resection remains the most frequently utilized curative 
method for early or partially intermediate HCC. How-
ever, the high rate of postoperative recurrence con-
tinues to impact the long-term overall survival (OS) 
of HCC patients, and the HCC recurrence rate within 
5 years following liver resection is nearly 70% [5]. R0 
resection denotes the absence of cancer cells along the 

resection margin in pathological sections. Currently, 
R0 resection remains the preferred treatment for early-
stage HCC patients, as it is considered the primary 
curative approach associated with favourable long-term 
outcomes and the absence of recurrence [6]. Hence, 
achieving R0 resection should be pursued to achieve a 
satisfactory comprehensive treatment effect. Addition-
ally, proactive treatment strategies, such as conversion 
therapy, aim to transform R1 and R2 resections into R0 
resections, converting unresectable tumours into surgi-
cally curable ones and thus fulfilling the surgical criteria 
for safe R0 resection [7]. However, the 5-year survival 
rate following R0 resection remains limited to 40% to 
65%. Recurrence affects more than half of the patients 
who undergo R0 resection [8], significantly compromis-
ing the long-term effectiveness of surgical intervention. 
Therefore, the exploration of potential therapeutic tar-
gets for R0 HCC holds tremendous clinical significance.

Disulfidptosis represents a novel mode of cell death 
distinct from traditional mechanisms [9]. Recent stud-
ies have revealed that during glucose deprivation, the 
abnormal accumulation of disulfides, such as cysteine, 
occurs within cells, triggering disulfide stress and 
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increasing the content of disulfide bonds in the actin 
cytoskeleton, ultimately leading to cell death. The pro-
cesses of intracellular disulfide bond formation and 
cleavage are closely associated with the onset and 
progression of cancer [10]. The disruption of disulfide 
metabolism also plays a role in promoting tumour cell 
proliferation, metastasis, and immune evasion in vari-
ous biological processes [11, 12].

Currently, there is limited research on disulfidptosis-
related lncRNAs (DRLRs) in tumours. Yang et  al. [13] 
developed a prognostic model comprising 11 DRLRs 
and confirmed the significant promotion of invasive and 
migratory abilities in cancer cells by the DRLR OGFRP1. 
Liu et  al. [14] established a novel DRLR model to pre-
dict the survival rate and chemotherapy drug sensitivity 
of cervical cancer patients, offering insights for person-
alized treatment approaches. However, few studies have 
investigated the prognostic relationship of DRLRs in 
HCC and their biological implications for tumour inva-
sion and metastasis. Particularly for patients who have 
undergone more favourable R0 curative resection for 
HCC, the identification of new DRLR predictive models 
and biomarkers holds substantial clinical significance.

Artificial intelligence (AI) and machine learning (ML) 
are at the forefront of a healthcare revolution, facilitat-
ing sophisticated modelling of complex biological data 
and enhancing both diagnostic accuracy and treatment 
strategies. AI involves computer algorithms that mimic 
human cognitive functions, which are thriving on sig-
nificant advancements in computational power and data 
availability. In medicine, AI applications include intel-
ligent screening, diagnostics, risk prediction, and sup-
portive care. Since the 1980s, the development of various 
ML algorithms, including decision trees, random forests, 
and support vector machines, has matured the field of 
medical AI. ML algorithms are categorized into super-
vised learning, unsupervised learning, and reinforce-
ment learning, with ML being the most widely used AI 
technique today and developed using vast training data-
sets. Currently, the medical field leverages AI to auto-
mate various steps in clinical practice, supporting clinical 
decision-making. Implementing AI in medical domains 
not only heightens diagnostic precision but also reduces 
time and resource expenditures. The extensive applica-
tion of AI technologies in medicine [15, 16] plays a piv-
otal role in early disease detection and intervention. In 
our research, AI and ML methodologies closely aligned 
with the analysis of DRLRs in HCC. AI and ML are used 
to categorize and assess large genomic datasets from 
The Cancer Genome Atlas (TCGA), enhancing analyti-
cal precision and advancing our understanding of HCC 
pathogenesis, potentially guiding personalized patient 
management and therapeutic strategies.

Given the pivotal role of R0 resection in HCC, coupled 
with the high recurrence rates observed in HCC patients 
post-R0 resection, this study aimed to identify prognostic 
lncRNA biomarkers associated with R0 HCC. The objec-
tive of this study was to identify additional therapeutic 
targets for R0 HCC treatment, ultimately aiding in the 
selection of appropriate pharmacological interventions 
for future applications. This investigation further intro-
duces a newly discovered mode of programmed cell death 
termed disulfidptosis. Within the cohort of HCC patients 
who underwent curative R0 resection, we endeavoured to 
ascertain hub DRLRs through the robust construction of 
a prognostic risk model. This study focuses on examining 
potential biological pathways, immune landscapes, and 
clinical prognostic implications and influences the bio-
logical behaviour of HCC in association with these hub 
DRLRs. This foundation facilitates further exploration of 
the molecular mechanisms underlying hub DRLRs and 
their potential as therapeutic targets.

In this study, we conclusively identified the DRLRs that 
correlate with the prognosis of patients with R0 HCC. A 
prognostic risk model for DRLRs in R0 HCC patients was 
constructed via univariate Cox regression, least abso-
lute shrinkage and selection operator (LASSO) regres-
sion, and multivariate Cox regression. We subsequently 
explored the biological enrichment analysis, immune 
microenvironment status, mutation profile, and drug 
treatment response in the patient risk groups within the 
model. Furthermore, we conducted a comprehensive 
examination of the clinical characteristics, immune cell 
infiltration features, drug sensitivity, and potential bio-
logical roles of the hub lncRNAs in the model. In sum-
mary, our study provides a robust prognostic model 
that offers valuable insights into the various prognoses 
and immune landscapes of R0 HCC patients, as well as 
potential therapeutic strategies. Additionally, we experi-
mentally validated the oncogenic role of hub lncRNAs in 
promoting HCC cell proliferation, migration, and inva-
sion in R0 HCC.

Methods
Data acquisition
We obtained transcriptomic data from 320 HCC tumour 
tissues and 50 adjacent normal liver tissues from patients 
who underwent curative resection with negative surgi-
cal margins (R0 resection) from TCGA database (https://​
portal.​gdc.​cancer.​gov/). Tissue samples with a short-
term survival of 0 years and incomplete survival data 
were excluded from the analysis. Further comprehensive 
clinical data were obtained from the cBioPortal database 
(http://​www.​cbiop​ortal.​org/). Using the Perl program-
ming language (version Strawberry-5.30.1; https://​www.​
perl.​org), we processed the RNA sequencing (RNA-seq) 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://www.cbioportal.org/
https://www.perl.org
https://www.perl.org
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data of R0 HCC samples, resulting in the identifica-
tion of 16,876 lncRNAs and 19,938 mRNAs. Ten genes 
(GYS1, NDUFS1, OXSM, LRPPRC, NDUFA11, NUBPL, 
NCKAP1, RPN1, SLC3A2, and SLC7A11) were asso-
ciated with disulfidptosis. To examine the correla-
tion between these ten disulfidptosis-related genes and 
DRLRs, we performed rank-sum analysis via the Wil-
coxon test. The expression levels of these ten genes were 
assessed for their associations with lncRNA expression 
levels using the wilcox.test() function in R. DRLRs with a 
correlation (|cor|) greater than 0.4 and a p value less than 
0.001 were selected. Coexpression Sankey diagrams were 
constructed using the R packages "ggplot2" and "ggallu-
vial" to illustrate the coexpression patterns of the identi-
fied DRLRs and genes associated with disulfidptosis. As 
the patient information used in this study was obtained 
from TCGA database, we strictly followed the publication 
guidelines of TCGA; therefore, this study was exempt 
from ethical approval. Additionally, 18 HCC samples and 
corresponding adjacent normal tissues were collected 
from Jiangsu Provincial Cancer Hospital. Ethics approval 
was obtained from the ethics committee of Jurong Hospi-
tal affiliated to Jiangsu University (JRSRMYY-2023–042).

Construction and validation of prognostic lncRNAs 
for disulfidptosis
Initially, univariate Cox regression analysis was con-
ducted to identify DRLRs significantly associated with 
OS in R0 HCC patients (P < 0.05). DRLRs with a signifi-
cance level of P < 0.05 were further subjected to LASSO 
regression for dimensionality reduction. Multivariate 
Cox regression analysis based on the Akaike informa-
tion criterion value was subsequently performed to select 
the most clinically valuable lncRNAs and establish a 
prognostic model. The risk score (RS) was calculated via 
the following formula: RS = (expression level of DRLR 
A × regression coefficient) + (expression level of DRLR 
B × regression coefficient) + …. To validate the obtained 
prognostic risk model, the bootstrap resampling method 
was utilized to establish an internal validation cohort 
consisting of 320 new R0 HCC patients. The bootstrap 
resampling method is widely recommended for the inter-
nal validation of prognostic models [17–19]. After the 
internal validation cohort was established, a chi-square 
test was employed to assess whether there were any dif-
ferences in clinical characteristics between the training 
cohort and the internal validation cohort.

Using the median RS value as a threshold, the R0 HCC 
patients in the training cohort were subsequently strati-
fied into high- and low-risk groups. Kaplan‒Meier (KM) 
curve analysis was performed via the R packages “Sur-
vival” and “Survminer” to assess the survival disparities 
between the high- and low-risk groups. The R package 

“pheatmap” was employed to generate a risk score distri-
bution of DRLRs within the model as well as a heatmap 
illustrating the expression risks of DRLRs corresponding 
to the survival status of each patient.

Furthermore, the applicability of the model across clini-
cal characteristics was validated by employing KM curves 
to observe the disparities in OS between the high- and 
low-risk groups of R0 HCC patients with varying clinical 
features and pathological stages. Finally, the R package 
“timeROC” was utilized to generate a time-dependent 
receiver operating characteristic curve (timeROC) to 
assess the predictive performance of the prognostic 
model. Additionally, multi-ROC analysis was conducted 
to compare the predictive ability of the risk model with 
that of individual clinical variables and to observe the 
prognostic disparities between the risk model and single 
clinical variables. The R packages “dplyr”, “rms”, and “pec” 
were utilized to analyse the C-index, which assesses the 
probability of the model’s predicted outcomes aligning 
with the actual observed outcomes. Principal component 
analysis (PCA) was performed to visualize the groups and 
determine whether the lncRNAs involved in constructing 
the model could effectively distinguish between the high- 
and low-risk groups.

Evaluation of the prognostic independence 
of a disulfidptosis risk model
Univariate and multivariate Cox regression analyses were 
performed to evaluate the independent prognostic fac-
tors, accounting for patient sex, age, histological grade, 
clinical tumour node metastasis (TNM) stage, and RS. 
The R package "rms" was employed to generate a nomo-
gram for predicting the 1-year, 3-year, and 5-year survival 
rates of R0 HCC patients. Furthermore, a calibration 
curve was plotted to assess the concordance between the 
predicted values and the actual observed values.

Gene Ontology (GO) pathway enrichment analysis 
and gene set enrichment analysis (GSEA)
Gene expression in the high- and low-risk groups was 
compared to identify DEGs via the R package "limma" 
with the following criteria: log2 |fold change|> 1 and false 
discovery rate (FDR) < 0.05. GO analysis was conducted 
on the differentially expressed genes identified, and these 
genes are classified based on three components: biologi-
cal process (BP), cellular component (CC), and molecu-
lar function (MF). The significant enrichment criteria 
for GO analysis were defined as P < 0.05 and FDR < 0.05. 
GSEA was performed on the high- and low-risk groups 
to explore the significantly enriched biological func-
tions and pathways associated with R0 HCC. The gene 
sets selected for GSEA were c2.all.v2022.1.Hs.symbols.
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gmt, c5.all.v2022.1.Hs.symbols.gmt, and h.all.v2022.1.Hs.
symbols.gmt. A significance level of P < 0.05 and an 
FDR < 0.05 was considered statistically significant. The 
aforementioned enrichment analyses were conducted 
via the R packages "clusterProfiler", "org.Hs.eg.db", and 
"enrichment plot".

Tumour immune microenvironment, immunotherapy, 
and tumour mutation burden (TMB) analysis
To investigate the associations between risk scores and 
immune cells and their functions, we employed the R 
packages "limma," "reshape2," "ggpubr," "GSVA," "GSEA-
Base," and "CIBERSORT." Single-sample gene set enrich-
ment analysis (ssGSEA) and the CIBERSORT algorithm 
were utilized to evaluate the infiltration and functionality 
of tumour immune cells, and box plots were generated. 
The tumour immune dysfunction and exclusion (TIDE) 
algorithm was applied to simulate tumour immune 
escape mechanisms and predict the efficacy of immune 
therapy. Patient scores were calculated, and the response 
to immune therapy was analysed in two subgroups. Fur-
thermore, the TMB and genetic variations across groups 
were assessed via the R package "maftools." We com-
pared the differences in TMB between the high- and 
low-risk groups and generated waterfall plots for the top 
15 genes with the highest mutation frequency in both 
groups. Finally, we performed an analysis of TMB and 
assessed the disparities in OS among R0 HCC patients 
on the basis of the combination of TMB and high-risk or 
low-risk groups.

Sensitivity analysis of potential drugs
The oncoPredict package [20] was employed to predict 
the therapeutic response of patients in the high-risk and 
low-risk groups to commonly used anticancer medica-
tions. The R packages "limma" and "ggpubr" were uti-
lized to predict drug sensitivity by considering the half 
maximal inhibitory concentration (IC50) and to assess the 
disparities in drug sensitivity between the high- and low-
risk groups.

Hub DRLR bioinformatics analysis of the model
To validate the prognostic value of the DRLR model in 
R0 HCC, we conducted further bioinformatics analysis 
on the hub DRLRs within the constructed model. First, 
the R packages "limma," "plyr," "reshape2," and "ggpubr" 
were employed to perform pancancer analyses of the dif-
ferential expression of hub DRLRs across 32 other can-
cer types. Subsequently, Pearson correlation analysis was 
performed using the R packages "limma," "tidyverse," 
"ggplot2," "ggpubr," "ggExtra," and "ComplexHeatmap" 
to identify significantly correlated coexpressed genes, 
which were visualized via a coexpression heatmap. The 

selection criteria were a correlation coefficient > 0.4 and 
p < 0.001. The coexpressed genes were then subjected 
to GO enrichment analysis via R packages, and the hub 
DRLRs were categorized into high- and low-expression 
groups on the basis of the median expression for GSEA. 
The selection criteria were FDR < 0.05 and P < 0.05. R 
packages were utilized for drug sensitivity analysis and 
immune cell infiltration analysis for each hub DRLR. The 
R packages "ggplot2" and "reshape2" were employed to 
explore the expression levels of the three hub DRLRs in 
various clinical and pathological subgroups of R0 HCC 
patients in the risk model. Finally, on the basis of the 
median expression of prognostic hub DRLRs, the patients 
were divided into high- and low-expression groups, and 
KM survival analysis was conducted. Furthermore, the 
differences in expression between the hub DRLRs in R0 
HCC patients and normal liver tissue were analysed, 
and receiver operating characteristic (ROC) and time-
dependent ROC analyses were performed to assess their 
predictive performance.

Cell culture and quantitative real‑time polymerase chain 
reaction (qRT‒PCR) detection
In this study, we collected 18 pairs of clinical R0 HCC 
samples and their corresponding adjacent normal tissue 
samples. The expression of prognostic hub DRLRs was 
validated in HepG2, Hep3B2.1–7, and HCC-LM3 HCC 
cell lines, with the L02 cell line serving as the normal con-
trol for cell validation. The 18 pairs of R0 HCC samples 
and their corresponding adjacent normal tissue samples 
were obtained from Jiangsu Cancer Hospital. Total RNA 
was isolated and extracted via TRIzol reagent following 
the manufacturer’s protocol, followed by cDNA synthe-
sis. Finally, qRT‒PCR experiments were performed using 
cDNA as a template. The relative expression levels of 
the hub DRLRs in the HCC cell lines and L02 cells were 
calculated using the 2 − ΔΔCt method, with glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH) used as the 
reference gene. The primer sequences for the hub DRLRs 
and GAPDH are presented in Supplementary Table 1.

Cell proliferation assays
For the colony formation assay, 500 HCC cells were 
seeded into 6-well plates for culture. After 14 days, the 
HCC cells in the 6-well plates were fixed with 4% para-
formaldehyde for 20 min and subsequently stained with 
0.1% crystal violet solution for 15 min. For the 5-ethy-
nyl-2’-deoxyuridine (EdU) experiment, HCC cells from 
different groups were cultured with 50 nmol/L EdU 
(RiboBio, China) for 2 h and fixed with 4% formaldehyde. 
Next, the cells were treated with 1 mL of Cell LightTM 
EdU Apollo 488 (RiboBio, China). Nuclear staining was 
achieved by treating the cells with DAPI for 30 min. 
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Finally, the fluorescence intensity was measured via an 
inverted microscope.

Wound healing assay
HCC cells were cultured in 6-well plates. When the cell 
density was greater than 90%, a pipette tip was used to 
scratch the middle of each well. The cells were washed 
twice with phosphate buffer saline (PBS), and medium 
without foetal bovine serum (FBS) was added to each 
well. Images were obtained with an inverted microscope, 
and the distance between the two sides of the scratch 
was measured with a calliper. After 48 h of culture, the 
cells were photographed, and the distance was measured 
again.

Cell migration and invasion assays
Cell migration and invasion were assessed via Transwell 
chambers. For the cell invasion assay, 50 µL of Matrigel 
(BD Biosciences) was added to the upper chamber. After 
24 h of incubation in the cell incubator, the migrated cells 
were fixed with 4% paraformaldehyde for 15 min and 

stained with 0.1% crystal violet for 15 min. Five images 
were randomly taken from each sample and counted.

Results
Construction and internal verification of a prognostic 
model based on DRLRs associated with poor prognosis 
in R0 HCC
After coexpression analysis, a total of 1142 differen-
tially regulated DRLRs were identified (Fig.  1a). Sub-
sequent univariate Cox regression analysis revealed 
265 DRLRs with significant prognostic value. These 
DRLRs were then subjected to LASSO regression 
(Fig.  1b and c) and multivariate Cox regression analy-
sis (Fig.  1d), resulting in the selection of 3 hub lncR-
NAs for inclusion in the prognostic model. The RS 
was calculated as follows: RS = (0.48956 × KDM4A-
AS1 expression) + (0.28384 × TMCC1-AS1 expres-
sion) + (0.36186 × MKLN1-AS expression). All 3 DRLRs 
included in the model were identified as risk factors. The 
correlation heatmap in Fig.  1e displays the associations 
between these DRLRs and disulfidptosis-related mRNAs. 
The training cohort and internal validation cohort 

Fig. 1  Construction of an R0 hepatocellular carcinoma (HCC) prognostic necroptosis-related lncRNA (DRLR) risk model. a Sankey diagram 
of the coexpression of 9 disulfideptosis-related genes with 1142 DRLRs in R0 HCC. b, c Prognostic prediction model constructed via least absolute 
shrinkage and selection operator (LASSO)-Cox regression analysis. d Coexpression of 10 disulfideptosis-related genes and 3 prognostic hub 
disulfideptosis-related lncRNAs. e Coexpression of 10 disulfideptosis-related genes and 3 prognostic hub disulfideptosis-related lncRNAs. f Kaplan‒
Meier (KM) survival curves for the high-risk and low-risk groups in the training and validation cohorts. g Risk score distribution and survival status 
of HCC patients in the training and validation cohorts. h Risk heatmap of 3 hub prognostic DRLRs in the training and validation cohorts. Significant 
differences are indicated by *P < 0.05, **P < 0.01, and ***P < 0.001
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presented comparable clinical characteristics (P > 0.05, 
Supplementary Table  2). R0 HCC patients in the high-
risk group had significantly shorter OS than those in the 
low-risk group did. KM analysis of the internal validation 
cohort yielded consistent results (both P < 0.01) (Fig. 1f ). 
Fig. 1g shows the distribution of RSs and the survival sta-
tus of patients, indicating a higher mortality rate in the 
high-risk group among R0 HCC patients. The heatmap in 
Fig. 1h depicts the expression levels of the 3 hub DRLRs 
in the training and internal validation cohorts.

The disulfidptosis risk model predicts OS according 
to clinical characteristics
To evaluate the prognostic significance of the risk score 
for OS in R0 HCC patients with diverse clinical and 
pathological features, we stratified R0 HCC patients on 
the basis of age, sex, pathological grade, TNM stage, T 
stage, tumour family history, tumour vascular invasion, 

and other variables. The outcomes (Fig.  2a-t) revealed 
that, within distinct subgroups, R0 patients classified in 
the high-risk group had significantly inferior OS com-
pared with those classified in the low-risk group across 
the following subgroups: age < 60 years (P = 0.004), 
age ≥ 60 years (P = 0.010), male sex (P < 0.001), grade 1–2 
(P = 0.001), stage I-II (P = 0.003), stage III-IV (P = 0.012), 
T1-2 stage (P = 0.005), T3-4 stage (P = 0.006), tumour 
family history (P = 0.035), no tumour family history 
(P = 0.003), tumour vascular invasion (P = 0.028), alpha-
fetoprotein (AFP) levels ≥ 25 ng/mL (P = 0.002), serum 
albumin levels ≤ 4.0 g/dl (P < 0.001), Eastern Coopera-
tive Oncology Group (ECOG) score < 1 (P = 0.022), and 
Eastern Cooperative Oncology Group (ECOG) score ≥ 1 
(P = 0.021). These findings suggest that the DRLR risk 
model we developed effectively predicts the prognosis 
of R0 HCC patients within diverse clinical or pathologi-
cal subgroups. Nevertheless, it is unfortunate that the 

Fig. 2  KM survival curve analysis of overall survival (OS) between the high-risk and low-risk groups in the HCC clinicopathological feature 
subgroups via the 3-DRLR signature. a Age < 60 years, b Age ≥ 60 years, c Female, d Male, e Grade 1–2, f Grade 3–4, g Stage I-II, h Stage III-IV, (i) T1-2, 
j T3-4, k tumour family history, l no tumour family history, m vascular invasion, n no tumour vascular invasion, o alpha-fetoprotein (AFP) level ≤ 25 
ng/mL, p AFP level > 25 ng/mL, q serum albumin level ≤ 4.0 g/dl, r serum albumin level > 4.0 g/dl, s Eastern Cooperative Oncology Group (ECOG) 
score < 1, t Eastern Cooperative Oncology Group (ECOG) score ≥ 1
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prognostic value of the risk model was insufficient in 
the following subgroups: female, grade 3–4, no tumour 
vascular invasion, AFP levels < 25 ng/mL, and serum 
albumin levels > 4.0 g/dl. These results demonstrate the 
applicability of our 3-DRLR prognostic model for pre-
dicting the prognosis of R0 HCC patients with distinct 
clinical and pathological characteristics.

Identification of independent prognostic indicators
To validate whether the risk score and other clinical 
data can function as independent prognostic factors, we 
performed univariate and multivariate Cox regression 
analyses. The findings of the univariate analysis demon-
strated that tumour TNM stage and the risk score were 
independent prognostic factors (Fig.  3a) (P < 0.001). 
The multivariate analysis findings revealed that the 
risk score remained an independent prognostic fac-
tor among the five clinical features (Fig. 3b) (P < 0.001). 
KM analysis of progression-free survival (PFS) in the 

training cohort (Fig.  3c) and internal validation cohort 
(Fig.  3d) indicated that patients in the high-risk group 
with R0 HCC exhibited significantly shorter PFS than 
those in the low-risk group did (P = 0.004 and P = 0.024, 
respectively). The area under the curve (AUC) val-
ues for the prediction of the 1-, 2-, and 3-year survival 
rates of all patients using the prognostic model were 
0.758, 0.685, and 0.624, respectively (Fig. 3e), suggesting 
that the prognostic model has greater predictive value 
for short-term overall survival at 1 year. The AUC for 
predicting the 1-year survival rate via the prognostic 
model was greater than that obtained for the independ-
ent prognostic factors of sex, age, histological grade, 
and tumour TNM stage, indicating that the constructed 
prognostic model outperformed these clinical param-
eters in survival prediction (Fig. 3f ). Moreover, C-index 
analysis revealed that the RS exhibited significantly 
greater predictive ability than other clinical features did 
(Fig.  3g). A nomogram was created to predict the 1-, 

Fig. 3  Independent prognostic analysis, validation of the risk model and principal component analysis (PCA). a Univariate Cox analysis. Statistically 
significant differences in the TNM stage and risk score were noted. b Multivariate Cox analysis. Statistically significant differences in the TNM 
stage and risk score were noted. c KM survival curve of progression-free survival (PFS) for the high-risk and low-risk groups in the training cohort. 
d KM survival curve of PFS in the validation cohort. e A time-receiver operating characteristic (timeROC) curve was used to predict the 1-, 3-, 
and 5-year OS of R0 HCC patients. f MultiROC curve analysis revealed that the predictive accuracy of the risk model is superior to that of other 
clinical parameters. g C-index showing that the predictive accuracy of the risk model is superior to that of other clinical parameters. h Nomogram 
for predicting prognosis based on the 3-DRLR signature score and calibration curve for predicting 1-year, 3-year, and 5-year overall survival. PCA 
between the high-risk and low-risk groups was performed on the basis of (ia) all genes, (ib) disulfideptosis-related genes, (ic) DRLRs, and (id) 3-DRLR 
prognostic markers
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3-, and 5-year survival rates of patients on the basis of 
the RS, age, sex, pathological characteristics, and TNM 
tumour stage (Fig. 3h). As an example of a clinical appli-
cation, the corresponding score for the 20th patient was 
132. According to this score, the patient’s estimated sur-
vival rates at 1, 3, and 5 years were 91.3%, 79.5%, and 
68.6%, respectively. The calibration curve demonstrated 
concordance between the predicted and actual survival 
rates (Fig.  3h). These findings substantiate the stability 
and accuracy of the nomogram, which integrates the 
clinical features and prognostic features of DRLRs, ena-
bling the clinical application of this tool for monitoring 
R0 HCC patients. The PCA results revealed effective 
discrimination between the high- and low-risk groups 
using the prognostic model (Fig. 3i(d)), which surpassed 
the performance of the models based on all the genes 
(Fig. 3i(a)), disulfidptosis-related genes (Fig. 3i(b)), and 
DRLRs (Fig. 3i(c)).

GO analysis and GSEA of risk DEGs
A GO pathway analysis was conducted to perform a 
functional enrichment analysis of the 1,345 genes that 
were differentially expressed between the high- and 
low-risk groups. Significant enrichment was detected 
for BPs, including nuclear division, chromosome segre-
gation, organelle fission, mitotic nuclear division, and 
nuclear chromosome segregation (Fig.  4a, b). GSEA 
was performed on the high-risk and low-risk groups of 
R0 HCC patients, which were classified on the basis of 
their prognostic risk scores. The results revealed that 
the gene sets in the high-risk group were significantly 
enriched in processes such as andersen cholangiocar-
cinoma class 2 and basaki ybx1 targets up within the 
c2.all.v2022.1.Hs.symbols.gmt gene set (Fig.  4c). Con-
versely, the genes in the low-risk group were primar-
ily involved in pathways such as fatty acid metabolism 
and poor survival in the low-risk group as demon-
strated by KEGG pathway analysis (Fig.  4d). For the 
c5.all.v2022.1.Hs.symbols.gmt gene set, the high-risk 
group was predominantly associated with pathways 
such as gobp regulation of animal organ morphogen-
esis and the external encapsulating structure (Fig.  4e). 
In contrast, the low-risk group was primarily involved 
in pathways such as gobp mitochondrial electron trans-
port of cytochrome c to oxygen and high-density lipo-
protein particles (Fig.  4f ). For the h.all.v2022.1.Hs.
symbols.gmt gene set, the gene sets in the high-risk 
group demonstrated significant enrichment in path-
ways such as hallmark e2f targets and hallmark epithe-
lial mesenchymal transition (Fig.  4g). Conversely, the 
gene sets in the low-risk group presented no significant 
pathway enrichment.

Immune landscape analysis of the high‑ and low‑risk 
groups in the model
Immune infiltration analysis revealed a significant 
increase in the abundance of M0 macrophages and mem-
ory CD4 T cells activated in the R0 HCC high-risk group 
compared with the low-risk group. Conversely, the abun-
dances of resting memory CD4 T cells, activated natural 
killer (NK) cells, and monocytes were significantly lower 
in the high-risk group than in the low-risk group (Fig. 5a). 
The immune function score revealed that the number 
of macrophages and major histocompatibility complex 
(MHC) class I expression were significantly greater in 
R0 HCC patients in the high-risk group than in those in 
the low-risk group. On the other hand, B cells, cytolytic 
activity, mast cells, neutrophils, NK cells, plasmacytoid 
dendritic cells (pDCs), tumour infiltrating lymphocytes 
(TILs), the type I interferon (IFN) response, and the type 
II IFN response were significantly lower in the high-risk 
group than in the low-risk group of R0 HCC patients 
(Fig.  5b). Our findings provide valuable insights into 
the potential of immunotherapy for R0 HCC patients. 
Finally, the TIDE score significantly differed between the 
high-risk and low-risk groups, indicating that immuno-
therapeutic efficacy was superior in the low-risk group 
compared with the high-risk group (P < 0.001, Fig. 5g).

Analysis of the TMB of the 3‑DRLR risk model in R0 HCC 
patients
The waterfall plot illustrates the top 15 genes with the 
highest mutation frequencies in both groups. Fig.  5c, d 
shows mutation rates of 86.08% and 76.13% in the high- 
and low-risk cohorts, respectively. TP53 presented the 
highest mutation score in the high-risk group, whereas 
TTN presented the highest mutation score in the low-
risk group. Furthermore, compared with patients in the 
low-risk cohort, those in the high-risk cohort had sig-
nificantly increased frequencies of mutations in TP53, 
CTNNB1, MUC16, PCLO, RYR2, APOB, LRP1B, XIRP2, 
CSMD3, ABCA13, OBSCN, and FLG. Conversely, the 
mutation frequencies of TTN and ALB showed the oppo-
site trend. KM curve analysis indicated that R0 HCC 
patients with high TMB had significantly lower overall 
survival than those with low TMB (Fig.  5e, 5 = 0.003). 
Combined survival analysis using TMB and RSs yielded 
composite survival curves. The population was divided 
into four groups according to the median RS and median 
TMB: high TMB + high risk, high TMB + low risk, low 
TMB + high risk, and low TMB + low risk. Among these 
groups, patients with low TMB + low risk presented the 
most significant survival advantage, whereas those with 
high TMB + high risk presented the poorest overall sur-
vival rate (Fig. 5f ).



Page 10 of 19Gu et al. BMC Cancer         (2024) 24:1068 

Drug sensitivity analysis of R0 HCCs
The oncoPredict package was utilized to predict the 
IC50 scores of R0 HCC patients in response to antican-
cer drug therapies. The findings revealed that patients 
in the high-risk group displayed heightened sensi-
tivity to drugs such as GDC0810 (Fig.  6a), MK-8776 
(Fig. 6b), osimertinib (Fig. 6c), paclitaxel (Fig. 6d), and 
YK-4–279 (Fig.  6e). Conversely, patients in the low-
risk group demonstrated increased sensitivity to drugs, 

including JAK1_8709 (Fig.  6f ), JQ1 (Fig.  6g), Nutlin-
3a (-) (Fig.  6h), PF-4708671 (Fig.  6i), and SB505124 
(Fig. 6j).

Bioinformatics analysis of the hub DRLRs in the risk model
The three hub DRLRs in our constructed risk model 
were further subjected to pancancer differential expres-
sion analysis of 32 cancer types from TCGA database. 
The results are shown in Supplementary Figs. 1a. Further 

Fig. 4  Gene Ontology (GO) and gene set enrichment analysis (GSEA). a Bar chart of the top 10 enriched GO terms. b Circle diagram of the GO 
enrichment analysis results. GSEA revealed significant differences in enrichment in the TCGA R0 HCC cohort for the c2.all.v2022.1.Hs.symbols.
gmt gene set between the 3-DRLR signature high-risk group (c) and low-risk group (d) and for the c5.all.v2022.1.Hs.symbols.gmt gene 
set between the high-risk group (e) and low-risk group (f). Significant enrichment in the h.all.v2022.1.Hs.symbols.cmt gene set was found 
in the high-risk group (g)
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coexpression analysis identified genes that were coex-
pressed with the three hub lncRNAs used in the risk 
model, suggesting their potential regulatory value. The 
heatmap displays the top 50 most significant genes 
(Supplementary Fig.  1d-f ). GO analysis revealed sig-
nificantly enriched pathways and processes associated 
with the genes coexpressed with the three hub DRLRs 

(Supplementary Figs. 2−4). GSEA confirmed the involve-
ment of active functional pathways in the groups with high 
and low expression of the three hub DRLRs (Supplemen-
tary Figs.  2–4). Spearman correlation analysis revealed 
a relationship between the expression of the three hub 
DRLRs and immune cell infiltration (supplementary Fig. 1 
g-f ). Finally, we examined the drug sensitivity of the three 

Fig. 5  Immune landscape of HCC patients and the relationship between tumour mutation burden (TMB) and the risk score. a Percentages 
of 22 immune cells in the high- and low-risk groups were calculated via the CIBERSORT algorithm. b Immune function scores of patients 
in the high- and low-risk groups. c, d Waterfall charts of somatic mutation features for both groups. e KM survival curves of the high- and low-TMB 
groups. f KM survival curves of the four groups. g Analysing immune escape on the basis of tumour immune dysfunction and exclusion (TIDE) 
scores. Significant differences are indicated by *P < 0.05, **P < 0.01, and ***P < 0.001
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hub DRLRs in the risk model, and the top 5 drugs in terms 
of sensitivity and resistance are shown in Supplementary 
Figs.  5−7, providing valuable insights for drug develop-
ment. The expression levels of the three hub DRLRs in the 
risk model were found to be associated with the clinical 

and pathological characteristics of R0 HCC patients (Sup-
plementary Fig.  8a-k). These three hub DRLRs were 
significantly differentially expressed in terms of patho-
logical grade, TNM stage, and survival status. R0 HCC 
patients with high expression of the hub DRLRs exhibited 

Fig. 6  Drug sensitivity of HCC patients in the high-risk and low-risk groups on the basis of the 3-DRLR signature. The top 5 drugs in terms of drug 
sensitivity and drug resistance are shown. The HCC patients in the high-risk group were more sensitive to (a) GDC0810, (b) MK-8776, (c) osimertinib, 
(d) paclitaxel, and (e) YK-4–279 and more resistant to (f) JAK1_8709, (g) JQ1, (h) Nutlin-3a (-), (i) PF-4708671, and (j) SB505124

Fig. 7  Validation of prognostic hub lncRNA expression levels in the 3-DRLR model in clinical samples and HCC cell lines. KDM4A-AS1 (a), 
MKLN1-AS (b), and TMCC1-AS1 (c) expression levels in paired clinical samples of R0 HCC and paracancerous tissues. KDM4A-AS1 (d), MKLN1-AS (e), 
and TMCC1-AS1 (f) expression levels in the HCC cell lines HepG2, Hep3B2.1–7, and HCC-LM3 and normal liver tissue L02. Significant differences are 
indicated by *P < 0.05 and **P < 0.01, whereas # denotes no significant difference
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significantly shorter survival (Supplementary Fig.  9a-c). 
The timeROC analysis comprehensively assessed the 
prognostic accuracy of the three hub DRLRs and revealed 
that they had greater predictive value for short-term over-
all survival at one year (Supplementary Fig. 9d-f ). Addi-
tionally, the expression levels of the three hub DRLRs in 
R0 HCC patients were significantly greater than those in 

adjacent normal tissues (Supplementary Fig. 10a-c). Fur-
ther ROC analysis was conducted to evaluate the ability 
of these three hub DRLRs to distinguish R0 HCC from 
normal tissues (Supplementary Fig. 10d-f). These results 
indicate that the expression levels of the three hub DRLRs 
exhibit good discriminatory power and high diagnostic 
value for R0 HCC.

Fig. 8  Effects of three hub lncRNAs on the biological functions of HCC cells in vitro. The knockdown efficiency in HepG2, HCC-LM3 and Hep3B2.1-7 
cells was detected using quantitative real-time polymerase chain reaction (qRT‒PCR) (a). Colony formation assay of HCC cells transfected with si-NC 
and si-RNA (b). EdU assay of HCC cells transfected with si-NC and si-RNA (c). Wound healing assay of HCC cells transfected with si-NC and si-RNA (d). 
Transwell assays of HCC cells transfected with si-NC and si-RNA (e). Significant differences are indicated by *P < 0.05 and **P < 0.01.
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Validation of hub DRLR expression levels in the risk model
The expression of the three hub DRLRs in paired samples 
of clinical tumours and adjacent tissues was analysed via 
qRT‒PCR. The results demonstrated that KDM4A-AS1, 
MKLN1-AS, and TMCC1-AS1 expression levels were 
significantly greater in R0 HCC than in adjacent tissues 
(Fig.  7a-c). Furthermore, the expression of these three 
hub DRLRs was assessed in three HCC cell lines (HepG2, 
HCC-LM3, and Hep3B2.1–7) and a normal liver cell 
line (L02) via qRT‒PCR. The findings revealed that both 
KDM4A-AS1 and MKLN1-AS expression was higher in 
all three HCC cell lines than in the normal liver cell line 
L02 (Fig. 7d-f ). Moreover, the expression of these DRLRs 
was significantly greater in the highly invasive HCC-LM3 
cell line than in the Hep3B2.1–7 and HepG2 cell lines, 
both of which exhibit considerably lower levels of inva-
siveness. Conversely, although TMCC1-AS1 expression 
was significantly elevated in HepG2 and HCC-LM3 cells 
compared with L02 cells, TMCC1-AS1 expression was 
not significantly altered in the Hep3B2.1–7 HCC cell 
line. Additionally, the increase in TMCC1-AS1 expres-
sion in the highly invasive HCC-LM3 cell line was less 
pronounced than that in the HepG2 cell line. These find-
ings suggest that TMCC1-AS1 expression and function 
may be influenced by tissue specificity and HCC cell 
specificity. These results provide initial evidence that our 
risk-associated hub DRLRs not only are highly expressed 
in HCC but also may play a role in regulating the malig-
nant biological behaviour of HCC cells. Therefore, we 
will employ in vitro experiments to silence the expression 
of the three hub DRLRs and investigate their impact on 
HCC cell proliferation, migration, and invasion.

The effects of hub DRLRs on the biological functions 
of HCC cells in vitro
TMCC1-AS1, KDM4A-AS1 and MKLN1-AS expres-
sion was knocked down via small interfering RNAs (siR-
NAs), and the relative lncRNA expression in HCC cells 
was measured via qRT‒PCR (Fig.  8a). The siRNA with 
the most significant knockdown efficiency was selected 
for subsequent functional experiments. To test the prolif-
erative capacity of the HCC cells, we performed a colony 
formation assay. The results revealed that the number of 
clones formed by the si-TMCC1-AS1, si-KDM4A-AS1 
and si-MKLN1-AS groups was significantly lower than 
that formed by the control group (Fig. 8b). We also further 
verified the proliferative capacity of the HCC cells by per-
forming EdU experiments (Fig.  8c). The results of these 
experiments revealed that the knockdown of TMCC1-
AS1, KDM4A-AS1 and MKLN1-AS expression signifi-
cantly inhibited the proliferative capacity of HCC cells. 
To assess the invasion and migration ability of HCC cells 

after the knockdown of TMCC1-AS1, KDM4A-AS1 and 
MKLN1-AS, we performed wound healing and Transwell 
assays. In the wound healing assay, the si-TMCC1-AS1, 
si-KDM4A-AS1 and si-MKLN1-AS groups presented 
significantly decreased migration ability compared with 
the control group (Fig. 8d). Transwell assays revealed that 
invasion and migration were inhibited in the si-TMCC1-
AS1, si-KDM4A-AS1 and si-MKLN1-AS groups (Fig. 8e).

Discussion
R0 resection is the most effective treatment for HCC, 
with significantly higher survival rates observed in 
patients who undergo surgical resection than in those 
who are ineligible for surgery. However, the rate of 
recurrence in patients who undergo curative liver resec-
tion remains high [21], with a higher risk of postop-
erative recurrence within the first year [22]. Therefore, 
identifying effective early diagnostic and prognostic 
factors is crucial. In recent years, our understanding of 
cell death mechanisms has improved. The discovery of 
new programmed cell death pathways has broadened 
our understanding of tumour occurrence and develop-
ment and has provided new prospects for treatment. 
Disulfide-induced cell death, known as disulfidptosis, 
is distinct from well-known forms of cell death, such as 
ferroptosis, necrotic apoptosis, apoptosis, and pyropto-
sis. It represents a novel cell death pathway that lacks 
common features observed in other forms of cell death, 
such as caspase-3 cleavage or adenosine 5’-triphosphate 
(ATP) depletion, and is not associated with the forma-
tion of cysteine crystals in the context of cystinuria or 
cystinosis [23, 24]. Disulfidoptosis is characterized by 
the excessive accumulation of intracellular disulfide 
molecules and the depletion of nicotinamide adenine 
dinucleotide phosphate (NADPH), with disulfide stress 
inducing cell death [9]. Disulfides, as crucial regulators 
of oxidative metabolism, can influence various cellular 
activities in tumour cells, including survival and metas-
tasis [25]. Aberrant regulation of disulfidptosis may 
also contribute to tumour progression and drug resist-
ance [26]. Understanding the intricate mechanisms con-
trolling these pathways provides new strategies for the 
development of innovative therapeutic approaches tar-
geting disulfidptosis [27, 28].

In our study, we developed a prognostic risk model 
for R0 HCC patients incorporating three differentially 
expressed lncRNAs known as hub DRLRs (KDM4A-
AS1, MKLN1-AS, and TMCC1-AS1). This model dem-
onstrated the ability to predict the risk of mortality, OS, 
and PFS in R0 HCC patients, with improved outcomes 
observed in the low-risk group. Currently, few DRLR 
models have been constructed for HCC patients, particu-
larly prognostic models involving lncRNAs, which could 
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offer a novel perspective for targeted tumour therapy 
focused on lncRNAs.

Prior investigations have indicated that KDM4A-AS1 
promotes in  vitro proliferation, migration, and inva-
sion of liver cancer cells as well as in  vivo liver cancer 
growth and lung metastasis through the KDM4A-AS1/
KPNA2/HIF-1α pathway [29]. Shen et  al. [30] demon-
strated that KDM4A-AS1 facilitates tumour formation 
in vivo via the phosphoinositide 3-kinase (PI3K)/protein 
kinase B (AKT) pathway. Moreover, the peptide encoded 
by KDM4A-AS1 attenuates the viability and migra-
tory capacity of oesophageal squamous cell carcinoma 
cells and plays a role in fatty acid metabolism and redox 
processes [31]. Our qRT‒PCR experiments revealed 
elevated expression of KDM4A-AS1 in clinical sam-
ples and HCC cell lines. Additionally, in vitro functional 
assays confirmed the malignant biological behaviour 
of KDM4A-AS1 in promoting HCC cell proliferation, 
migration, and invasion. These findings are consistent 
with previous research conducted on HCC. Similarly, 
MKLN1-AS depletion leads to reduced viability, prolif-
eration, and invasion and attenuated epithelial‒mesen-
chymal transition (EMT) effects in HCC cells, suggesting 
that MKLN1-AS is transcriptionally regulated by SOX9 
and mediates the influence of SOX9 on HCC cell prolif-
eration and EMT [32]. Chen et  al. [33] reported a cor-
relation between the upregulation of MKLN1-AS and 
vascular invasion, decreased disease-free survival, and 
OS in HCC patients. Notably, MKLN1-AS knockout sig-
nificantly inhibited HCC cell migration and growth and 
enhanced the proapoptotic effect of lenvatinib. Addi-
tionally, MKLN1-AS promotes in  vivo HCC tumour 
growth through modulation of the miR-22-3p/E-twenty-
six (ETS)1 axis [34] and the MKLN1-AS/miR-654-3p/
hepatoma-derived growth factor (HDGF) axis [35]. These 
findings are consistent with our conclusions and lend 
support to our research results. Furthermore, TMCC1-
AS1 has been linked to OS [36, 37] and recurrence-free 
survival in patients with HCC [38]. Fu et al. [39] discov-
ered that TMCC1-AS1 is important in constructing a 
predictive model for the early recurrence of HCC, and a 
nomogram combining TMCC1-AS1 with AFP and TNM 
clinicopathological features can guide clinical decision-
making. A study conducted by Chen et al. [40] also dem-
onstrated that TMCC1-AS1 knockdown significantly 
inhibited the proliferation, migration, and invasion of 
HepG2 and SNU-182 cells, whereas TMCC1-AS1 over-
expression had the opposite effect. TMCC1-AS1 pro-
motes HCC cell proliferation, migration, and invasion 
through EMT. Our findings are consistent with those of 
previous studies, indicating that TMCC1-AS1 knock-
down suppresses HCC cell proliferation, migration, and 
invasion.

On the basis of the RS, we further compared the 
immune microenvironments in the high-risk and low-
risk groups using the model. The results revealed signifi-
cantly enhanced immune functions, such as macrophages 
and MHC class I, in the high-risk group. Conversely, 
immune cell infiltration analysis revealed significant 
enrichment of M0 and T memory-activated immune cells 
in the high-risk group, whereas CD4 memory resting T 
cells, activated NK cells, and monocytes were more abun-
dant in the low-risk group. This difference may be attrib-
uted to T-cell exhaustion caused by prolonged exposure 
to persistent antigens and inflammatory environments in 
R0 HCC patients, resulting in the loss of memory T-cell 
characteristics and the emergence of T-cell exhaustion, 
reducing the antitumour ability of the tumour [41]. Our 
study indicated that the high-risk group presented a 
higher TMB than did the low-risk group. The high-risk 
group also presented a significantly greater frequency of 
TP53 mutations, and TP53 presented the greatest dif-
ference in mutation frequency. Previous studies have 
also demonstrated a positive correlation between TP53 
mutation and prognosis in patients with HCC [42]. Our 
survival analysis further revealed that the best progno-
sis was associated with low TMB combined with a low 
risk score. Future research should investigate whether 
the poor prognosis can be attributed to increased TP53 
mutations. In the experimental validation section of this 
study, we confirmed the high expression of three hub 
DRLRs (KDM4A-AS1, MKLN1-AS, and TMCC1-AS1) 
in R0 HCC clinical specimens and HCC cell lines via 
qRT‒PCR. Clonogenic, EdU, cell scratch, and Transwell 
assay results demonstrated that KDM4A-AS1, MKLN1-
AS, and TMCC1-AS1 knockdown increased HCC cell 
proliferation and inhibited their migration and invasion. 
The downregulation of these three hub DRLRs affects the 
malignant biological behaviour of HCC cells, suggesting 
that they may serve as candidate targets for the prognosis 
and treatment of HCC patients.

Recently, the landscape of medical treatment for HCC 
has undergone significant transformations, particularly 
in the areas of immunotherapy and predictors of thera-
peutic response. Recent scientific literature illustrates a 
perceptible shift towards integrated treatment modali-
ties that synergistically blend immune checkpoint inhibi-
tors (ICIs) with traditional therapies. For instance, the 
emergence of locoregional and systemic therapy com-
binations — notably trans-arterial chemoembolization 
paired with ICIs — underscores a clinical paradigm 
favouring a collective assault on tumour sites, aiming to 
potentiate antitumoural responses [43]. Parallel to this 
evolving therapeutic landscape, the pressing need for 
reliable prognostic indicators to tailor treatment is well 
recognized. The utility of the ALB level as a prognostic 
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biomarker is supported by robust data indicating a clear 
inverse relationship between the ALB level and survival 
outcome in patients receiving ICI treatment [44]. This 
finding not only reveals the potential of albumin levels for 
stratifying patient prognosis but also potentially guides 
dietary and management decisions to mitigate hypoalbu-
minaemia. Moreover, the Royal Marsden Hospital (RMH) 
score, which has been identified for its prognostic value, 
has emerged as a vital tool, deploying simple yet effective 
clinical markers to predict treatment outcomes across 
various cancers, including HCC [45]. This prognostic 
tool facilitates more nuanced clinical decisions, optimiz-
ing treatment trajectories in a complex therapeutic field 
marked by the advent of immune modulation strategies. 
Despite these advancements, challenges persist, notably 
in the form of treatment-induced adverse effects such as 
hepatic toxicity. Insightful data demonstrate heightened 
risks of hepatic enzyme elevation with ICI use, necessi-
tating vigilant hepatic monitoring and possibly preclud-
ing specific patient demographics from such treatments 
owing to risk factors [46]. In HCC, advancing immune 
therapy involves recognizing its diverse response land-
scape. Recent data from the MOUSEION-02 study illu-
minate significant implications regarding neurotoxicity 
risks in immunotherapy [47]. Critically, understanding 
these markers not only promotes safer patient manage-
ment but could also lead to the adjustment of therapeu-
tic paradigms, potentially influencing survival outcomes 
in HCC patients receiving these treatments. These find-
ings invite further examination of the predictive factors 
contributing to adverse responses, which are essential 
for optimizing HCC immunotherapy efficacy. Taken 
together, these insights suggest a dual strategy for HCC 
management: promoting aggressive therapy against 
tumours while carefully mapping patient-specific prog-
nostic landscapes to increase both treatment precision 
and safety. Owing to the evolving background of medical 
treatment protocols, the exploration of valuable biomark-
ers has become increasingly pertinent.

On the basis of the aforementioned predictions, we 
conclude that the risk scoring model, which was con-
structed on the basis of DRLRs, provides valuable 
insights for R0 HCC patients. We developed a risk model 
composed of KDM4A-AS1, MKLN1-AS, and TMCC1-
AS1, all of which serve as prognostic risk factors for R0 
HCC patients. In future research, it is imperative to delve 
deeper into the molecular mechanisms underlying the 
role of DRLRs in HCC pathogenesis and progression. 
Given the identification of hub DRLRs with substantial 
implications for the prognostic landscape of R0 HCC, 
subsequent studies should focus on exploring the thera-
peutic potential of targeting these molecules. Specifi-
cally, the interaction of DRLRs with oncogenic pathways 

and their impact on the tumour microenvironment war-
rants thorough investigation. Additionally, incorporat-
ing advanced omics techniques to explore the epigenetic 
regulation and posttranscriptional modifications of these 
DRLRs could provide valuable insights into their role in 
tumour dynamics. Expanding on the preliminary find-
ings of drug sensitivity, further research should assess the 
efficacy of these drugs in clinical trials, explicitly exam-
ining the differential responses on the basis of DRLR 
expression levels. Ultimately, this could facilitate the 
development of precision medicine strategies, tailoring 
treatments on the basis of the DRLR-associated risk pro-
files in R0 HCC patients.

Limitations
Although our study innovatively developed a novel prog-
nostic prediction model highlighting the applicability of 
three DRLRs in predicting the OS of patients with R0 
resection status in HCC, it has several limitations that 
warrant cautious interpretation of the findings.

First, the retrospective nature of the study, which is 
largely based on archived data from existing databases, 
restricts our ability to control for potential bias intro-
duced during data collection. Prospective validation 
using a multicentric, diverse patient cohort would be 
beneficial to confirm our results across different demo-
graphic and genetic backgrounds, further bolstering the 
external validity of our findings. Second, although our 
model demonstrates sound predictive capabilities within 
the specific subset of R0 HCC patients, its applicabil-
ity and reliability across other subtypes of liver cancer 
remain to be evaluated. This limitation underscores the 
necessity of broader testing and model adjustments to 
cater universally to various HCC stages and conditions. 
Finally, although our in  vitro cellular functional experi-
ments confirmed that KDM4A-AS1, MKLN1-AS, and 
TMCC1-AS1 promote HCC cell proliferation, migra-
tion, and invasion, further research is needed to elu-
cidate the specific mechanisms underlying how these 
lncRNAs induce malignant biological behaviour in HCC 
cells. By addressing these limitations in future research, 
the utility and robustness of the prognostic model can 
be significantly enhanced, contributing to more pre-
cise and individualized therapeutic strategies for HCC 
management.

Conclusions
In this comprehensive study, we developed and vali-
dated an innovative prognostic model anchored by 
three DRLRs, namely, KDM4A-AS1, MKLN1-AS, 
and TMCC1-AS1. This model exhibits robust predic-
tive validity for OS among patients with HCC follow-
ing complete (R0) resection. Our study revealed that 
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the identified signature is pertinent for patients with 
R0 hepatocellular carcinoma (HCC) across various age 
groups, tumour stages, and pathological features, estab-
lishing it as an independent prognostic factor. This 
research delineates critical biological pathways associ-
ated with the signature and enhances our understanding 
of the complexity within the tumour microenvironment. 
An increased presence of M0 macrophages and activated 
CD4 memory T cells as well as elevated expression of 
major histocompatibility complex (MHC) class I were 
observed in patients categorized as high risk. Further-
more, these patients exhibit increased levels of tumour 
immune dysfunction and exclusion (TIDE), mutation 
frequency, and tumour mutational burden (TMB). These 
factors collectively impact the response to various thera-
peutic interventions, indicating increased responsiveness 
to medications, including GDC0810, MK-8776, osimer-
tinib, paclitaxel, and YK-4–279, in high-risk groups, 
thus providing insights for potential treatment options. 
Bioinformatics analysis also suggested that three piv-
otal DRLRs have significant prognostic importance and 
diagnostic value for R0 HCC. This information can guide 
more tailored and effective therapeutic approaches for 
managing R0 hepatocellular carcinoma. Moreover, our 
findings demonstrate that these three hub lncRNAs not 
only are prognostic biomarkers but also actively con-
tribute to the pathophysiology of HCC by modulating 
tumour cell proliferation, migration, and invasion. This 
insight paves the way for targeted therapies that could 
disrupt these molecular mechanisms, offering hope for 
more personalized and effective treatment strategies for 
HCC patients.
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