
Frontiers in Psychiatry | www.frontiersin.or

Edited by:
Trevor Ronald Norman,

The University of Melbourne, Australia

Reviewed by:
Yoshihiko Matsumoto,

Yamagata University, Japan
Maria Bove,

University of Foggia, Italy

*Correspondence:
Jianping Lu

szlujianping@126.com
Ling Li

lcl115@163.com
Paul Yao

vasilis112@yahoo.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Molecular Psychiatry,
a section of the journal
Frontiers in Psychiatry

Received: 29 June 2020
Accepted: 18 August 2020

Published: 03 September 2020

Citation:
Lu J, Xiao M, Guo X, Liang Y, Wang M,
Xu J, Liu L, Wang Z, Zeng G, Liu K, Li L
and Yao P (2020) Maternal Diabetes

Induces Immune Dysfunction in
Autistic Offspring Through Oxidative
Stress in Hematopoietic Stem Cells.

Front. Psychiatry 11:576367.
doi: 10.3389/fpsyt.2020.576367

ORIGINAL RESEARCH
published: 03 September 2020

doi: 10.3389/fpsyt.2020.576367
Maternal Diabetes Induces Immune
Dysfunction in Autistic Offspring
Through Oxidative Stress in
Hematopoietic Stem Cells
Jianping Lu1*†, Meifang Xiao2†, Xiaoling Guo3, Yujie Liang1, Min Wang2, Jianchang Xu1,
Liyan Liu2, Zichen Wang1, Gang Zeng2, Kelly Liu2, Ling Li2* and Paul Yao1,2*

1 Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen, China, 2 Hainan Women and Children’s
Medical Center, Haikou, China, 3 Department of Pediatrics, Foshan Maternity and Child Health Care Hospital, Foshan, China

Autism spectrum disorders (ASD) have been found to be associated with immune
dysfunction and elevated cytokines, although the detailed mechanism remains
unknown. In this study, we aim to investigate the potential mechanisms through a
maternal diabetes-induced autistic mouse model. We found that maternal diabetes-
induced autistic offspring have epigenetic changes on the superoxide dismutase 2 (SOD2)
promoter with subsequent SOD2 suppression in both hematopoietic stem cells (HSC) and
peripheral blood mononuclear cells (PBMC). Bone marrow transplantation of normal HSC
to maternal diabetes-induced autistic offspring transferred epigenetic modifications to
PBMC and significantly reversed SOD2 suppression and oxidative stress and elevated
inflammatory cytokine levels. Further, in vivo human study showed that SOD2 mRNA
expression from PBMC in the ASD group was reduced to ~12% compared to typically
developing group, and the SOD2 mRNA level-based ROC (Receiver Operating
Characteristic) curve shows a very high sensitivity and specificity for ASD patients. We
conclude that maternal diabetes induces immune dysfunction in autistic offspring through
SOD2 suppression and oxidative stress in HSC. SOD2 mRNA expression in PBMC may
be a good biomarker for ASD diagnosis.

Keywords: autism spectrum disorders, cytokine, hematopoietic stem cells, oxidative stress, superoxide dismutase 2
BACKGROUND

Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders characterized by
impairment of verbal communication and social skills in addition to restricted and repetitive
behaviors. During the past few decades, the prevalence of ASD has significantly increased to a ratio
of 1:59 in the United States (1–3). Many factors, including genetics/epigenetics, environmental risk
Abbreviations: ALB, autism-like behavior; ASD, autism spectrum disorders; BMT, bone marrow transplantation; ChIP,
chromatin immunoprecipitation; HO1, heme oxygenase 1; HSC, hematopoietic stem cells; PBMC, peripheral blood
mononuclear cells; IL-6, interleukin-6; IL1b, interleukin-1b; IFNg, type II interferon; MCP1, monocyte chemoattractant
protein-1; MIP1a, macrophage inflammatory protein-1a; NFkB, nuclear factor-kB; ROS, reactive oxygen species; SOD2,
superoxide dismutase 2; STZ, streptozotocin. TD, typically-developing; TNF-a, tumor necrosis factor-a.
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factors, sex, and immune system (4), have been reported to
contribute to ASD development, while the detailed mechanism
remains largely unclear (3, 5–7).

We have recently reported that prenatal progestin exposure
(6, 8, 9) and maternal diabetes (10–12) contribute to ASD
development through suppressed expression of estrogen
receptor b (ERb) and superoxide dismutase 2 (SOD2) in
neurons (12). Furthermore, our preliminary data showed that
SOD2 expression in peripheral blood mononuclear cells (PBMC)
was significantly decreased in the ASD group compared to the
typically developing (TD) group. Since PBMC are typically
derived from hematopoietic stem cells (HSC), we hypothesize
that SOD2 suppression in PBMC is due to gene suppression of
HSC during embryonic development (13, 14).

Multipotent HSC are located in the bone marrow (BM)
niche and are responsible for the generation of blood and
immune cells. Their origins can be tracked back to the
embryo during cell differentiation and organogenesis (13, 14),
and it has been reported that prenatal exposure to risk factors,
such as progestins (15–17) and hyperglycemia (10–12, 18), can
induce gene suppression through epigenetic changes in
neurons, subsequently triggering ASD symptoms (8, 12).
Thus, we hypothesize that related HSC that originate from
the same affected embryo may experience gene suppression and
similar epigenetic modifications. Subsequently, the PBMC may
inherit similar modifications (19), triggering the dysfunction of
immune cells (20, 21) and resulting in abnormal cytokine levels
(22, 23).

In this study, we aim to investigate the potential mechanism
for ASD-associated immune dysfunction and elevated cytokines
(22, 24). Maternal diabetes-induced mouse offspring were
established as the experimental autistic model (12), and we
found that they showed significant autism-like behavior and
neuronal SOD2 suppression compared to the control group. In
addition, the autistic offspring were found to have epigenetic
modifications on the SOD2 promoter with SOD2 suppression
in both HSC and PBMC in addition to subsequent SOD2
suppression in PBMC. BM transplantation (BMT) of normal
HSC to these autistic offspring significantly reversed SOD2
suppression and oxidative stress in PBMC and subsequent
abnormal cytokines, indicating that SOD2 suppression and
oxidative stress in PBMC is due to epigenetic inheritance
from HSC. Further, in vivo human study showed that SOD2
mRNA expression in PBMC was reduced to ~15% in the ASD
group compared to the TD group. We conclude that maternal
diabetes induces immune dysfunction in autistic offspring
through oxidative stress in HSC and that SOD2 mRNA levels
in PBMC may be a good biomarker for the diagnosis of
ASD patients.
MATERIALS AND METHODS

A detailed description can be found in Supplementary
Information (see Data S1), and the related primers used in this
study are shown in Table S1.
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In Vivo Mouse Experiments
Mouse Protocol 1: Generation of Autistic Offspring
Adult (3 months old) female mice were monitored for estrous
cycles with daily vaginal smears. Only mice with at least two
regular 4- to 5-day estrous cycles were included in the studies.
Chronically diabetic female mice were induced through injection
of 30mg/kg streptozocin (STZ, 0.05 M sodium citrate, pH 5.5)
after an 8-h fasting period. Animals with blood glucose >250mg/
dl were considered positive, while control (CTL) mice received
only vehicle injections. The females were caged with proven
males, and pregnancy was verified through observation of a
sperm plug, which was designated as day 0 of pregnancy. The
male offspring were separated from the dams on day 21 and fed
until 7–8 weeks of age for further experiments. Some of the 7- to
8-week-old offspring were then used for autism-like behavior
testing. The amygdala was isolated for mRNA analysis, and
HSC cells were isolated from the tibia and femur while PBMC
cells were isolated from the blood for gene expression and
biomedical analysis.

Mouse Protocol 2: BMT of HSC
Male offspring from the CTL and STZ groups in Animal Protocol
1 were used as recipients for BMT. HSC were harvested from the
tibias and femurs of the male offspring (4 months old) that were
obtained from either the CTL or STZ group in Animal Protocol 1
as the donor for BMT. The isolated HSC were purified by density
centrifugation using Histopaque 1083® (#-1083-1, Sigma) and
then resuspended in 10 ml of RPMI 1640 supplemented with 10%
FBS and 2mM EDTA before being systemically transplanted (2 ×
106 cells) into the recipient male offspring (with CTL or STZ
group) that had been lethally irradiated with 2 doses of 6 Gy 3 h
apart (25). All transplant-recipient mice were set aside for a
minimum of 4 weeks to allow for complete reconstitution of the
BM (26) before they were then used for autism-like behavior
analysis. PBMC were separated from the blood using Ficoll-Paque
Plus lymphocyte separation medium (22), and were used for
analysis of gene expression and inflammatory cytokine secretion
along with isolated HSC. The experimental mice were randomly
separated into four groups as follows: CTL mouse with BMT of
HSC from CTL mouse (CTL/CTL-HSC); STZ mouse with BMT
of HSC from CTL mouse (STZ/CTL-HSC); CTL mouse with
BMT of HSC from STZ mouse (CTL/STZ-HSC); STZ mouse with
BMT of HSC from CTL mouse (STZ/CTL-HSC).

Immunostaining
The isolated PBMC were transferred to cover slips, and the cells
were fixed in 4% paraformaldehyde for 20 min before being
incubated with 0.3% Triton X-100 in PBS for 15 min. After
blocking with 5% goat serum in PBS at room temperature for
30 min, cells were incubated with 8-oxo-dG anti-mouse antibody
(# 4354-MC-050, from Novus Biologicals) for 12 h at 4°C and
subsequently with secondary antibody Alexa Fluor 488. The
cover slips were then mounted using antifade Mountant with
DAPI (staining nuclei, in blue). The photographs were taken
using a Confocal Laser Microscope (Leica, 20× lens) and
quantitated by Image J. software.
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Analysis of Cytokines
Mouse cytokine secretions were obtained from PBMC
supernatant, including IL-1b (Interleukin 1b), IL-6, and
monocyte chemotactic protein-1 (MCP1), and were measured
using Mouse IL-1b/IL-1F2 Quantikine ELISA Kit (#MLB00C),
Mouse IL-6 Quantikine ELISA Kit (#M6000B), and Mouse CCL2/
JE/MCP1 Quantikine ELISA Kit (#MJE00B), respectively,
according to manufacturers’ instructions from R&D Systems (27).

Human Study Protocol
The study of human subjects was approved by the Human
Subjects Institutional Review Board from Hainan Women and
Children’s Medical Center. Thirty-two cases of ASD children
and 28 cases of matched TD children (2–6 years old) were
identified and subjects participated in this study with informed
written consent from their parents (9). ASD diagnosis was based
on several clinical assessments by a multidisciplinary team and
was further confirmed by licensed clinical psychologists and
psychiatrists in Hainan Women and Children’s Medical Center
using the DSM-5 (Diagnostic and Statistical Manual of Mental
Disorders, Fifth Edition) as diagnostic criteria (9, 28, 29).
Peripheral blood (3–5 ml) was withdrawn from the selected
children and plasma was collected. Various cytokines, including
IFNg (type II interferon), IL-1a, IL-1Ra (Interleukin 1 receptor
antagonist), IL-1b, IL-6, IL-8, MCP1, macrophage inflammatory
protein-1a (MIP1a) and tumor necrosis factor-a (TNF-a), were
measured using BIO-PLEX Pro™Human Chemokine Panel (40-
Plex #171AK99MR2) according to manufacturers’ instructions
from BIO-RAD. Furthermore, PBMC were isolated from fresh
blood using Lymphoprep™ reagents (#07861, from STEMCELL
Technologies) for mRNA analysis of ERa, ERb and SOD2.
Combined PBMC from either the ASD or TD groups were
used for protein analysis through western blotting. The ROC
(Receiver Operating Characteristic) curve was established and
the Pass/Fail Cutoff Value was defined based on SOD2 mRNA
levels using SPSS 22 software for screening of ASD children.

Statistical Analysis
The data was given as mean ± SEM, and all the experiments were
performed at least in quadruplicate unless indicated otherwise.
The unpaired Student’s t-tests or one-way analysis of variance
(ANOVA) followed by the Turkey-Kramer test were used to
determine statistical significance of different groups, and the
two-way ANOVA followed by the Bonferroni post hoc test was
used to determine the effect of social recognition. The ROC
(Receiver Operating Characteristic) curve and Pass/Fail Cutoff
Value was established using SPSS 22 software, and a P value of <
0.05 was considered significant (8, 30).
RESULTS

Maternal Diabetes induces SOD2/ERb
Suppression in PBMC in Autistic Offspring
The autistic mouse model was established using maternal
diabetes-induced male offspring. We first evaluated autism-like
Frontiers in Psychiatry | www.frontiersin.org 3
behavior and found that ultrasonic vocalization frequency
decreased to 24.5% in the diabetic (STZ) group compared to
the control (CTL) group (see Figure 1A). Additionally, we
conducted social recognition tests and found that there was a
significant difference between the CTL and STZ groups [F
(1,16) = 3.678, P = 0.017]. Subsequent post hoc analysis
showed that habituation to the same stimulus conspecific (tests
1–4) was significant in the CTL group [F(3,32) = 4.793, P < 0.01]
but not in the STZ group, and dishabituation was significant in
the CTL group [F(1,8) = 3.961, P < 0.01] but not in the STZ
group (see Figure 1B). We also evaluated these effects through
three-chambered social tests. The results showed that time spent
in the empty side of the chamber indicating sociability increased
to 132% (see Figure 1C), while time spent in the empty side of
the chamber indicating social novelty decreased to 86% (see
Figure 1D) in the STZ group, compared to the CTL group. Our
results confirm that maternal diabetes induces autism-like
behavior in male offspring. Furthermore, we evaluated gene
expression in the mice and found that mRNA levels of ERb
and SOD2 in the amygdala in the STZ group were decreased to
55% and 44%, respectively, compared to the CTL group, while
ERa mRNA levels did not change (see Figure 1E). We then
evaluated mRNA expression in HSC, and the results showed that
ERb and SOD2 mRNA levels in the STZ group decreased to 65%
and 26%, respectively, compared to the CTL group, while ERa
mRNA levels showed no significant changes (see Figure 1F).
Finally, we evaluated gene expression in PBMC and found that
ERb and SOD2 mRNA levels in the STZ group decreased to 74%
and 18%, respectively, compared to the CTL group (see Figure
1G). We also evaluated protein expression for these genes and
observed a pattern similar to that of the mRNA levels, while ERa
expression did not change (see Figures 1H, I and Figure S1A).
Our results indicate that maternal diabetes induces SOD2/ERb
suppression in PBMC in autistic offspring.

Transplantation of BM HSC Does Not
Reverse Maternal Diabetes-Induced
Autism-Like Behavior in Autistic Offspring
We evaluated the potential effect of BMT of HSC on the mice.
The 6-week-old male offspring from either the control (CTL) or
maternal diabetes (STZ) groups received HSC transplantation
from either the control (CTL-HSC) or maternal diabetes (STZ-
HSC) groups. The mice were used for autism-like behavior
analysis 5 weeks after transplantation and the amygdala tissues
or neurons were isolated for analysis. We first measured
epigenetic changes on the SOD2 promoter in amygdala
neurons, and the result showed that STZ group (STZ/STZ-
HSC) significantly increased H3K9me2 modification on the
SOD2 promoter to 267% compared to the CTL group (CTL/
CTL-HSC), while HSC transplantation of either CTL-HSC (STZ/
CTL-HSC group) or STZ-HSC (CTL/STZ-HSC group) had no
effect (see Figure S2A), indicating that BMT of HSC cells does
not affect the epigenetic changes in amygdala neurons. We then
measured gene expression in the amygdala. The results showed
that mRNA levels of ERb and SOD2 significantly decreased in
the STZ group compared to the CTL group, while ERa mRNA
September 2020 | Volume 11 | Article 576367
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levels did not change, and HSC transplantation showed no effect
on gene expression (see Figure S2B). We then evaluated autism-
like behavior (ALB) in the mice and found that HSC
transplantation had no effect on maternal diabetes-induced
autism-like behavior, which included ultrasonic vocalization
(see Figure S2C), social recognition tests (see Figure S2D) and
three-chambered social tests (see Figures S2E, F). Our results
indicate that HSC transplantation does not reverse maternal
diabetes-induced autism-like behavior in offspring, which may
be explained by the hypothesis that BMT cannot change
epigenetic modifications on the SOD2 promoter, subsequently
having no effect on the gene expression of ERb/SOD2 in
the amygdala.

Transplantation of BM HSC Reverses
Maternal Diabetes-Induced Gene
Suppression in PBMC in Autistic Offspring
We first evaluated the effect of HSC transplantation on epigenetic
changes on the SOD2 promoter in HSC. The results showed that
in the maternal diabetes group (STZ/STZ-HSC), H3K9me2
modification increased to 179% compared to the control group
(CTL/CTL-HSC) and transplantation of control HSC to the
diabetic group (STZ/CTL-HSC) completely reversed this effect,
Frontiers in Psychiatry | www.frontiersin.org 4
while transplantation of diabetic HSC to the control group (CTL/
STZ-HSC) mimicked the maternal diabetes-induced effect. On the
other hand, there was no effect on the other type of histone
methylation on the SOD2 promoter (see Figure 2A). Our results
indicate that HSC transplantation from graft mice was successful
for regeneration of HSC in host mice. We then measured mRNA
expression in HSC and found that in the STZ/STZ-CTL group,
mRNA levels of ERb and SOD2 decreased to 67% and 51%,
respectively, compared to the CTL/CTL-HSC group (see Figure
2B). We then evaluated the epigenetic changes in PBMC and
found that in the STZ/STZ-HSC and CTL/STZ-HSC group,
H3K9me2 modification increased to 201% and 184%,
respectively, compared to the control group (CTL/CTL-HSC),
while STZ/CTL-HSC totally normalized this effect. Additionally,
there was no effect on the other type of histone methylation on the
SOD2 promoter (see Figure 2C). Our results indicate that
epigenetic changes were transferred from transplanted HSC to
subsequent PBMC. We then measured mRNA expression in
PBMC and found that in the STZ/STZ-CTL group, mRNA
levels of ERb and SOD2 were decreased to 71% and 65%,
respectively, compared to the CTL/CTL-HSC group (see Figure
2D). We also measured the protein levels for those genes, and a
pattern similar to that of the mRNA levels was observed (see
A B

D E F

G IH

C

FIGURE 1 | Maternal diabetes induces SOD2/ERb suppression in PBMC in autistic offspring. The 6-week-old male offspring from either the control (CTL) or
maternal diabetes (STZ) group were used for analysis. (A–D) Autism-like behavior analysis; (A) Ultrasonic vocalization, n = 9. (B) Social recognition, as indicated
through the seconds spent socially investigating a conspecific [same conspecific in tests 1-4; novel conspecific in test 5 (a new stimulus mouse was introduced)],
n = 9. (C, D) Three-chambered social tests, n = 8. (C) Time spent in chamber for sociability. (D) Time spent in chamber for social novelty. (E) mRNA levels in the
amygdala, n = 5. (F) mRNA levels in HSC, n = 5. (G) mRNA levels in PBMC, n = 5. (H) The protein levels in PBMC, n = 5. (I) The representative pictures of western
blotting for (H). *P < 0.05, vs. CTL group. Data were expressed as mean ± SEM.
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Figures 2E, F and Figure S1B), while there was no significant
effect on ERa expression. Finally, we evaluated SOD2 activity in
PBMC. The results showed that in the STZ/STZ-CTL group,
SOD2 activity decreased to 54% compared to the CTL/CTL-HSC
group (seer Figure 2G). The STZ/CTL-HSC treatment completely
reversed the maternal diabetes-induced effect for all the above
measurements, while CTL/STZ-HSC treatment mimicked this
effect. Our results indicate that HSC transplantation restores
maternal diabetes-induced gene suppression in PBMC in
offspring, which may be because transplanted HSC eventually
differentiated into PBMC during subsequent immunological
reconstitution after HSC transplantation.

Transplantation of BM HSC Reverses
Maternal Diabetes-Induced Oxidative
Stress in PBMC in Autistic Offspring
We evaluated the potential effect of HSC transplantation on
oxidative stress in PBMC. We first measured reactive oxygen
species (ROS) generation and found that STZ/STZ-CTL
treatment increased ROS generation (see Figure 3A) and 3-
nitrotyrosine (3-NT) formation (see Figure 3B) to 263% and
214%, respectively, compared to the CTL/CTL-HSC group. We
then measured DNA damage and found that in the STZ/STZ-
CTL group, 8-OHdG formation (see Figure 3C) and gH2AX
formation (see Figures 3D, E and Figure S1C) increased to
238% and 234%, respectively, compared to the CTL/CTL-HSC
group. We also evaluated 8-oxo-dG formation and found that 8-
oxo-dG formation in the STZ/STZ-CTL group (see Figures 3F,
G) increased to 214% compared to the CTL/CTL-HSC group.
Frontiers in Psychiatry | www.frontiersin.org 5
The maternal diabetes-induced effect was completely reversed in
the STZ/CTL-HSC group for all the above measurements, while
CTL/STZ-HSC group mimicked this effect. Our results indicate
that HSC transplantation restores maternal diabetes-induced
oxidative stress in PBMC in autistic offspring.

Transplantation of BM HSC Reverses
Maternal Diabetes-Induced Inflammatory
Cytokine Release From PBMC in Autistic
Offspring
We evaluated the potential effect of HSC transplantation on
inflammatory cytokine release in PBMC. We first evaluated
mRNA levels for the cytokines and found that in the STZ/
STZ-CTL group, mRNA levels of IL-1b, IL-6, and MCP1
increased to 248%, 179%, and 187%, respectively, compared to
the CTL/CTL-HSC group, and the STZ/CTL-HSC group either
partly (for IL-1b) or completely (for IL-6 and MCP1) reversed
the maternal diabetes-induced effect, while CTL/STZ-HSC group
mimicked this effect (see Figure 4A). We then evaluated the
levels of cytokine proteins that were secreted from PBMC. The
results showed that protein secretion of IL-1b (see Figure 4B),
IL-6 (see Figure 4C) and MCP1 (see Figure 4D) in the STZ/
STZ-CTL group increased to 197%, 184%, and 151%,
respectively, compared to the CTL/CTL-HSC group, and STZ/
CTL-HSC group completely reversed, while the CTL/STZ-HSC
group mimicked, the maternal diabetes-induced effect. Our
results indicate that HSC transplantation restores maternal
diabetes-induced inflammatory cytokine release from PBMC in
autistic offspring.
A B

D E F G

C

FIGURE 2 | |Transplantation of bone marrow HSC reverses maternal diabetes-induced gene suppression in PBMC in autistic offspring. The 6-week-old male
offspring from either the control (CTL) or maternal diabetes (STZ) group received transplantation of bone marrow HSC from either the control (CTL-HSC) or maternal
diabetes (STZ-HSC) group, and mice were used for further biomedical analysis 5 weeks after transplantation. (A) The HSC were isolated for ChIP analysis, n = 4.
(B) The mRNA levels in HSC, n = 4. (C) The PBMC were isolated for ChIP analysis, n = 4. (D) The mRNA levels in PBMC, n = 4. (E) The representative pictures of
western blotting. (F) The quantitated protein levels in PBMC for (E), n = 5. (G) SOD2 activity assay, n = 5. *P < 0.05, vs. CTL/CTL-HSC group. Data were expressed
as mean ± SEM.
September 2020 | Volume 11 | Article 576367

https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles


Lu et al. Maternal Diabetes Induces Immune Dysfunction
Expression of SOD2 and ERb in PBMC
Decreased in ASD Patients
We found that SOD2/ERb expression was suppressed in PBMC in
maternal diabetes-induced autistic offspring in the mouse model.
In order to verify whether similar suppression occurs in autistic
children, 61 cases of TD and 64 cases of autistic (ASD) children
were identified and the PBMC were isolated for gene expression
analysis. The results showed that mRNA levels of ERb and SOD2
Frontiers in Psychiatry | www.frontiersin.org 6
in ASD group were decreased to 71.3% and 12.4%, respectively,
compared to the TD group. We also measured the protein levels
for those genes, and a pattern similar to that of mRNA levels was
observed (see Figures 5B, C and Figure S1D). On the other hand,
the ERa expression did not change (see Figure 5). Our results
indicate that expression of SOD2 and ERb in PBMC decreased in
ASD patients, and SOD2 mRNA levels had the most significant
decrease (~88%) in the ASD group compared to the TD group.
A B D

E

F

G

C

FIGURE 3 | Transplantation of bone marrow HSC reverses maternal diabetes-induced oxidative stress in PBMC in autistic offspring. The 6-week-old male offspring
from either the control (CTL) or maternal diabetes (STZ) groups received transplantation of bone marrow HSC from either the control (CTL-HSC) or maternal diabetes
(STZ-HSC) group, and the mice were used for further biomedical analysis 5 weeks after transplantation. (A) ROS formation in PBMC, n = 5. (B) Quantitation of
3-nitrotyrosine formation, n = 5. (C) 8-OHdG formation, n = 5. (D) Quantitation of gH2AX formation. (E) Representative gH2AX western blotting band for (D), n = 5.
(F) Quantitation of 8-oxo-dG formation, n = 5. (G) Representative pictures of 8-oxo-dG staining for oxidative stress (green) and DAPI staining for nuclei (blue) in
PBMC, n = 4. *P < 0.05, vs. CTL/CTL-HSC group. Data were expressed as mean ± SEM.
A B DC

FIGURE 4 | Transplantation of bone marrow HSC reverses maternal diabetes-induced inflammatory cytokine release from PBMC in autistic offspring. The 6-week-
old male offspring from either the control (CTL) or maternal diabetes (STZ) group received transplants of bone marrow HSC from either the control (CTL-HSC) or
maternal diabetes (STZ-HSC) group, and the PBMC were isolated for further analysis. (A) mRNA levels by qPCR, n = 4. (B) IL-1b secretion, n = 5. (C) IL-6 secretion,
n = 5. (D) MCP1 secretion, n = 5. *P < 0.05, vs. CTL/CTL-HSC group; ¶P < 0.05, vs. STZ/CTL-HSC group. Data were expressed as mean ± SEM.
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Establishment of Pass/Fail Cut/Off Value
for the Diagnosis of ASD Patients
In order to establish the Pass/Fail Cut/Off value for the diagnosis
of ASD patients, the ROC (Receiver Operating Characteristic)
curve was established by SPSS 22 software using the original
SOD2 mRNA expression levels (see Figure 6). Sixty-one cases of
TD children (considered as positive) and 64 cases of ASD children
(considered as negative) were used for calculations (see Figure
6A), and the ROC curve is shown in Figure 6B. Area Under the
Curve was calculated to be 0.914 (see Figure 6C), showing very
good sensitivity and specificity for ASD diagnosis in general. We
then established the Pass/Fail Cut/Off value for the diagnosis of
ASD patients using the coordinates of the curve. As shown in
Frontiers in Psychiatry | www.frontiersin.org 7
Figure S3, the Pass/Fail Cut/Off value was set as 0.0306 for SOD2
mRNA levels with 85% sensitivity and 83% specificity. We
concluded that a value of <0.0306 in regards to SOD2 mRNA
expression was considered to potentially indicate ASD in patients.

ASD Patients Have Increased Levels of
Inflammatory Cytokines in the Plasma
We evaluated the inflammatory cytokine levels in the plasma of
both TD and ASD patients. Twenty-eight TD control cases and
32 ASD patient cases were selected, and the plasma were
prepared to measure the cytokine levels. We found that the
cytokine levels of IL-1a, IL-6, and MCP1 in the ASD group
increased to 217%, 246%, and 154%, respectively, compared to
A B C

FIGURE 5 | Expression of SOD2/ERb in PBMC decreased in ASD patients. 3 ml of peripheral blood was withdrawn from either control (CTL, n = 61) or ASD (n =
64) children (2–6 years old), and the PBMC were isolated for mRNA analysis through real time PCR. *P < 0.05, vs. CTL group; ¶P < 0.01, vs. CTL group.
A B

C

FIGURE 6 | The ROC curve based on SOD2 expression for ASD diagnosis. The SOD2 mRNA expression levels from both CTL (n = 61) and ASD (n = 64) patients
were used to draw the ROC (receiver operating characteristic) curve. (A) Case processing summary, positive represents CTL cases, and negative represents ASD
cases. (B) ROC curve. (C) Area under the curve.
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the TD control group. On the other hand, there was no
significant difference in the cytokine levels of IFNg, IL-1Ra,
IL-1b, IL-8, MIP1a, and TNF-a (see Table 1). Our results
indicate that ASD patients have increased inflammatory
cytokine levels compared to the TD group.
DISCUSSION

In this study, we demonstrated that maternal diabetes-induced
mouse autistic offspring have epigenetic modifications and SOD2
suppression in both HSC and PBMC. BMT of normal HSC to
maternal diabetes-induced offspring reversed SOD2 suppression
and elevated cytokine levels in PBMC. In vivo study further proved
that ASD patients have significantly decreased SOD2 expression in
PBMC. Our results indicate that immune dysfunction in ASD may
be partly due to damage of HSC during embryonic development.

We have previously found that prenatal progestin exposure-
induces autism-like behavior in offspring through ERb/SOD2
suppression in neurons. Overexpression of ERb in amygdala
partly restores this effect, and male offspring are more
susceptible than female offspring due to lower basal ERb/SOD2
expression levels in neurons (8). Furthermore, we have recently
showed that maternal diabetes induces autism-like behavior
through epigenetic changes on the SOD2 promoter with
subsequent SOD2 suppression in the amygdala (12). Our results
indicate that expression of ERb/SOD2 in the amygdala plays an
important role in autism-like behavior. In this study, the maternal
diabetes-induced autistic mouse model was established, and the
male offspring was used for experiments to avoid potential
interference from estrogen in female offspring. Additionally,
around 50% of diabetic dams were either infertile or had born
dead offspring; to avoid this, the dosage of STZ was reduced from
50 to 35 mg/kg to achieve mild diabetes in dams and subsequently
increase the birth rate. We found that maternal diabetes-induced
autistic offspring have epigenetic changes on the SOD2 promoter
in amygdala neurons as well as in HSC and BPMC. Furthermore,
Frontiers in Psychiatry | www.frontiersin.org 8
HSC transplantation transferred the epigenetic changes to PBMC
during HSC differentiation, restored the gene expression in
PBMC, and subsequently restored maternal diabetes-induced
oxidative stress and abnormal cytokine levels in PBMC. On the
other hand, HSC transplantation showed no effect on amygdala
neurons in terms of either epigenetic modifications or gene
expression and subsequently showed no effect on maternal
diabetes-induced autism-like behavior. Our results indicate that
maternal diabetes-induced autism-like behavior is mainly due to
prenatal damage of neurons (such as in the amygdala), instead of
HSC or PBMC. It seems that immune dysfunction (triggered by
dysfunction of PBMC and HSC) is not the root cause of ASD. On
the other hand, the ASD-associated immune dysfunction may be
at least partly due to parallel damage of HSC during prenatal
exposure of risk factors such as hyperglycemia (12) or progestin
(8). Our findings provide a new strategy for ASD clinical
treatment. Restoration of either immune dysfunction in PBMC
or physiological function (such as cytokine levels) may have little
effect, while restoration of epigenetic changes in neurons may
ameliorate autistic symptoms (6).

Many gestation insults and factors, including maternal
infection, maternal immune activation, immunogenetics, and
autoimmune disorders, have been reported to be associated
with ASD development (21–24), while the detailed mechanism
remains unknown. Multipotent HSC (31) are responsible for the
generation of most adult blood and immune cells (14). Prenatal
risk factors including progestins (15–17) and hyperglycemia (10–
12, 18) may bring potential damage to HSC during embryonic
development and subsequently affect the PBMC and related
immune function. Our results show that maternal diabetes
induces epigenetic changes on the SOD2 promoter in HSC and
that these kinds of epigenetic changes are inherited in subsequent
PBMC, resulting in immune dysfunction. BMT of normal HSC
restores maternal diabetes-induced epigenetic changes in PBMC
and subsequent PBMC dysfunction in autistic offspring,
providing powerful evidence that immune dysfunction is at
least partly due to HSC dysfunction triggered by prenatal
spikes during embryonic development.

It has been reported that ASD is associated with elevated
cytokine levels, although the detailed mechanism remains unclear
(21–23, 32). In this study, we showed that maternal diabetes-
induced autistic mouse offspring have elevated levels of
inflammatory cytokines, including IL-1b, IL-6, and MCP1, and
BM transplantation of normal HSC significantly restored abnormal
cytokine levels to a normal amount. Furthermore, the human study
showed significantly increased plasma cytokine levels of IL-1a, IL-
6, and MCP1 in the ASD group compared to the TD group.
Interestingly, SOD2 suppression in either HSC or BPMC is
associated with ASD, indicating that SOD2 suppression and
subsequent oxidative stress in HSC may potentially contribute to
elevated cytokines in ASD (20, 33). It has been reported that nuclear
factor-kB (NFkB) binding activity in PBMC increases significantly
in ASD patients (34), and NFkB is an important mediator for the
inflammatory process. Furthermore, hyperglycemia-mediated
oxidative stress causes persistent NFkB activation through
epigenetic changes (35). With this in mind, we suggest that
TABLE 1 | Cytokine levels in plasma for typically developing (TD) and autistic
(ASD) children.

Plasma
cytokines

TD subjects (n = 28)
Mean ± SDV

ASD subjects (n = 32)
Mean ± SDV

P
value

Age (years) 3.2 ± 0.8 3.1 ± 0.9 0.974
Male/Female 16:12 28:4 N/A
IFNg (pg/ml) 8.61 ± 2.13 11.6 ± 3.11 0.087
IL-1a (pg/ml) 21.63 ± 8.61 47.04 ± 12.64 <0.01**
IL-1Ra (pg/
ml)

87.44 ± 18.11 69.78 ± 21.56 0.416

IL-1b (pg/ml) 14.73 ± 3.56 15.9 ± 4.12 0.916
IL-6 (pg/ml) 12.76 ± 2.94 31.41 ± 5.67 <0.01**
IL-8 (pg/ml) 21.36 ± 4.57 23.65 ± 4.19 0.287
MCP1 (pg/ml) 36.91 ± 9.24 56.91 ± 10.23 0.036*
MIP1a (pg/ml) 14.23 ± 4.31 25.32 ± 6.27 <0.01
TNF-a (pg/ml) 15.64 ± 3.48 13.61 ± 2.22 0.798
ASD, autism spectrum disorders; TD, typically developing; * indicates P < 0.05;
** indicates P < 0.01.
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SOD2 suppression in HSC may trigger elevated cytokine release
through oxidative stress-mediated NFkB activation.

We have previously reported that maternal diabetes induces
epigenetic modification on the SOD2 promoter with subsequent
SOD2 suppression and oxidative stress in neurons, triggering
ASD development in offspring (12). In addition, prenatal
progestin exposure triggers SOD2 suppression in neurons in
addition to ASD development (15–17). Here, we found that
similar SOD2 suppression occurred in both HSC and PBMC in
maternal diabetes-induced autistic offspring due to inheritance
of epigenetic changes on the SOD2 promoter. We then
hypothesize that SOD2 suppression in PBMC is associated
with ASD. Our further in vivo study showed that SOD2
mRNA expression was reduced to ~12% in the ASD group
compared to the TD group, this is a very significant dramatic
reduction in SOD2 expression, indicating that maternal diabetes
and prenatal progestin exposure may play a dominant role for
the contribution of ASD development. Furthermore, the SOD2
mRNA level-based ROC curve shows very high sensitivity and
specificity for ASD diagnosis.

Conclusions
This study has determined that maternal diabetes-induced mouse
autistic offspring have epigenetic changes on the SOD2 promoter
that result in SOD2 suppression in both HSC and PBMC. BM
transplantation of normal HSC reverses epigenetic changes and
subsequently normalizes SOD2 suppression and elevated cytokine
levels in PBMC. We conclude that maternal diabetes induces
immune dysfunction in autistic offspring through oxidative stress
in HSC (36) and that SOD2 suppression in PBMC can be a
sensitive biomarker for ASD diagnosis.
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