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Bisphenol B (BPB), a substitute of bisphenol A (BPA), is widely used in the polycarbonate
plastic and resins production. However, BPB proved to be not a safe alternative to
BPA, and as an endocrine disruptor, it can harm the health of humans and animals.
In the present study, we explored the effects of BPB on mouse oocyte meiotic
maturation in vitro. We found that 150 µM of BPB significantly compromised the
first polar body extrusion (PBE) and disrupted the cell cycle progression with meiotic
arrest. The spindle assembly and chromosome alignment were disordered after BPB
exposure, which was further demonstrated by the aberrant localization of p-MAPK.
Also, BPB exposure increased the acetylation levels of α-tubulin. As a result, the
spindle assemble checkpoint (SAC) was continuously provoked, contributing to meiotic
arrest. We further demonstrated that BPB severely induced DNA damage, but the ROS
and ATP production were not altered. Furthermore, the epigenetic modifications were
changed after BPB exposure, as indicated by increased K3K9me3 and H3K27me3
levels. Besides, the pattern of estrogen receptor α (ERα) dynamics was disrupted with a
mass gathering on the spindle in BPB-exposed oocytes. Our collective results indicated
that exposure to BPB compromised meiotic maturation and damaged oocyte quality by
affecting spindle assembly and chromosome alignment, acetylation of α-tubulin, DNA
damage, epigenetic modifications, and ERα dynamics in mouse oocytes.

Keywords: bisphenol B, spindle assembly, chromosome alignment, DNA damage, epigenetic modifications

INTRODUCTION

Endocrine disrupting chemicals (EDCs), a group of exogenous substances or compound mixtures,
can interfere with hormone action in the body and disrupt endocrine function that harms
human and animal health (WHO/IPCS, 2002). Bisphenol A (BPA), a common manufacturing
chemical in polycarbonate plastics is being widely used in industrial production, is one of the
most abundant EDCs (Usman and Ahmad, 2016). Widespread use of BPA-containing products
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results in ubiquitous BPA exposure leading to a persistent and
elevated environmental level. Bio-monitoring measurements of
BPA in human serum, urine, hair, semen, and breast milk
have revealed widespread exposure to BPA in the human
population (Vandenberg et al., 2007; Usman and Ahmad, 2016).
As an endocrine disruptor, BPA has been attracting increasing
attentions, and many researchers are digging to explore how the
endocrine system disrupted by bisphenol B (BPB) (Weatherly
and Gosse, 2017; Ma et al., 2019a; Yang et al., 2019). Concerning
the public health issue of reproductive disorder, the involvement
of EDCs is suspected (Ma et al., 2019b). It has been reported
that BPA has adverse effects on reproductive systems (Castellini
et al., 2020). In males, BPA exposure decreases testosterone levels,
affects sperm production and quality, and increases sperm DNA
damage (Wisniewski et al., 2015; Lombó et al., 2019). BPA may
influence the cyclicity negatively in females and cause ovarian
and uterine dysfunction, including steroidogenesis, follicular
formation, and oogenesis (Ziv-Gal and Flaws, 2016; Pivonello
et al., 2020). Due to its reproductive toxicity and endocrine
disrupting properties, the use of BPA is restricted.

The public concern and restrictions on BPA promote the
development of alternative substances to replace BPA. BPB,
as a substitute of BPA, is widely used in the production of
polycarbonate plastic and resins (Cunha and Fernandes, 2010).
Different food items such as canned foods, drinks, meat, peeled
tomatoes, beverage, and milk for infants have been detected with
BPB (Grumetto et al., 2008; Cunha et al., 2011; Cunha et al.,
2012). BPB is resistant to aerobic and anaerobic bio-degradation,
which makes it more prone to bio-accumulate in nature (Chen
et al., 2016; Usman and Ahmad, 2016). BPB has been detected in
various samples from humans such as sera and urine (Cobellis
et al., 2009; Cunha and Fernandes, 2010). BPB is structurally
similar to BPA with analogous physicochemical properties, and
it was reported to affect male reproductive system negatively.
Both acute and subacute exposures of adolescent male mice to
BPB adversely impact tests and morphology of the sperm and
their function (Ullah et al., 2018a,b; Ikhlas and Ahmad, 2020).
Adult rats subjected to 50 mg/kg/day of BPB for 30 days have
experienced sperm cell DNA damage (Ullah et al., 2018a). Ovaries
in BPB treated female rats indicated adverse morphological and
histopathological alterations, including a notable decrease in
antral follicles and corpus luteum and the rise in atretic and cystic
follicles (Ijaz et al., 2020). A relevant study has reported dose-
dependently impaired reproductive functions in male and female
zebrafish exposed to BPB, evidenced by a lower number of eggs
laid, and a smaller hatching rate and embryo survival, reaching
statistical significance in the 1 mg/L group (Yang et al., 2017).
Despite the above experiments, the effects of BPB on reproductive
function of animals and humans have been poorly studied.

Female fertility is greatly affected by the oocytes’ quality, which
is linked to clear and accurate meiotic division. The meiotic
maturation process involves distinct spindle organization and
chromosome alignment and segregation, which is regulated by
the microtubule organizing center (MTOC) (Bennabi et al., 2016;
Mogessie et al., 2018). To avoid false chromosome segregation,
the continuous activation of SAC works as a checkpoint,
which inhibits the onset of anaphase till the attachment of all

chromosomes to spindle microtubules and align at the metaphase
plate (Lara-Gonzalez et al., 2012). BPA has been reported
to disrupt the oocyte maturation process, affect cytoskeletal
dynamics, induce oxidative stress and DNA damage, alter the
epigenetic modifications, and even culminate in oocyte apoptosis
(Wang et al., 2016). Other bisphenol substitutes, like bisphenol
S (Žalmanová et al., 2017), bisphenol AF (Ding et al., 2017), and
Fluorene-9-bisphenol (Jiao et al., 2019), were also demonstrated
to inhibit mouse oocyte maturation and deprave oocyte quality.
Nevertheless, related to oocytes maturation, the effects of BPB on
oocyte maturation has never been addressed, and it remains to
explore whether BPB have the same effects like BPA.

The objective of this study was to evaluate the effects of BPA
on mouse oocyte maturation and its related mechanisms in vitro,
and by evaluating the ratio of PBE, ROS levels, DNA damage,
spindle morphology, chromosome alignment and segregation,
ER, and epigenetic modifications. Our study could determine the
novel toxicological mechanisms of BPB on oocyte maturation and
create awareness about the safety of BPA substitutes.

MATERIALS AND METHODS

Animals and Ethics Statement
In this study, we used female of Kunming mice (3–4 weeks). The
experimental mice were bought locally and kept in the Laboratory
Animal Center of Huazhong Agricultural University under 12 h
light/dark cycle. These mice received food and water ad libitum.
All the experiments were performed according to the rules set out
by the Huazhong Agricultural University Animal Care and Use
Committee (HZAUSW-2017-005).

Antibodies and Chemicals
Primary antibodies detailed information including host species,
vendor, catalog number, and working concentration are given in
Table 1. BPB was purchased from Aladdin (Shanghai, China);
Dihydroethidium was obtained from Beyotime (Beijing, China);
CellTiter-Glo ATP Assay Kit was purchased from Promega

TABLE 1 | Detailed information of antibodies.

Antibody Host spices Vendor Catalog no. Working
dilution

IF

α-tubulin-FITC Mouse Sigma F2168 1:100

H3K9me3 Rabbit Affinity DF6938 1:100

H3K27me3 Rabbit Affinity DF6941 1:100

Estrogen
receptor alpha

Rabbit Abcam ab32063 1:100

BubR1 Rabbit Abcam ab254326 1:50

Alpha tubulin
(acetyl K40)

Mouse Abcam ab179484 1:100

Phospho-p44/42
MAPK

Rabbit Cell Signaling
Technology

4370T 1:100

Cy3-conjugated
anti-rabbit IgG

Goat Boster BA1032 1:100
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(Madison, Wisconsin). Sigma (St. Louis, MO, United States)
supported all remaining reagents, except for any other variable.

Oocytes Collection and Culturing
Cumulus oocytes complexes were obtained from ovaries of
Female K. M aged 3–4 weeks, primed with pregnant mare serum
gonadotropins for 48 h, by manual puncturing of antral ovarian
follicles. Cumulus cells and oocytes were separated by recurrent
pipetting. For the persistence of GV-stage, the oocytes were
retrieved in preheated (37◦C) DMEM/F12 medium with IBMX
(50 µM). To stimulate the meiotic maturation, oocytes (GV) were
washed out of IBMX and cultured in M16 medium at 37◦C in a
humidified atmosphere of CO2 (5%).

We used in vitro culture model to check the effect of BPB
on oocyte meiotic maturation and oocyte quality. Therefore, we
used a much higher concentration of BPB in this manuscript,
to check what concentration could be toxic to oocyte, and what
are the defects induced by BPB, and related regulatory pathways.
DMSO dissolved BPB was diluted with M16 medium to obtain
the relevant concentrations (DMSO, <0.3%) of 0, 50, 100, 150,
and 200 µM to study the possible effects on oocyte maturation
in vitro. The first PBE (in vitro oocyte maturation sign) rate was
observed. Though 150 µM BPB exposure significantly reduced
PBE rate, however, a limited number of oocytes were capable
to continue the meiosis, which could help to uncover the BPB
molecular mechanism affecting the oocyte maturation. Hence,
a concentration of 150 µM was selected to investigate the
molecular mechanism.

Immunofluorescence Staining
Firstly, oocytes were washed with PHEM solution (60 mM PIPES
at pH 6.9, 25 mM HEPES, 10 mM EGTA, 2 mM MgCl2.7H2O).
Next, oocytes (stage-specific) were fixed in PHEM solution (4%
paraformaldehyde, 0.5% Triton X-100) for 45 min. Subsequently
following blocking in PBS with 2% BSA and 0.05% Tween-20 at
25◦C for 1 h, oocytes were incubated in the refrigerator overnight
at 4◦C with the primary antibodies mentioned (Table 1).
Following primary antibody incubation, PBS plus Tween-20
(0.05%) was used to wash oocytes three times for 10 min each
to incubate with the second antibody (Cy3-labeled goat anti-
rabbit, Boster, 1:100) at 37◦C for 1 h. For labeling DNA, at room
temperature, oocytes were incubated with DAPI (1 µg/ml) in PBS
for 10 min. Finally, DABCO was used to mount oocytes on glass
slides for confocal laser scanning microscopy (Zeiss LSM 510
META, Carl Zeiss Imaging, Germany) equipped with an objective
DIC. Plan-Apochromat 63/1.4 oil. Visualization of confocal
images was made by subjecting these images to LSM. Image
Browser software and Adobe Photoshop (Adobe Systems Inc.,
San Jose, CA, United States). Primary antibodies were replaced
with non-immunized rabbit or goat IgG for negative control.

Dihydroethidium was used to determine the level of ROS.
Before measuring fluorescence, the confocal microscope was
adjusted to the same parameters. Each group of oocytes
underwent the same immunostaining procedure for optimizing
the acquired signals in oocytes from control and treatment
groups. ImageJ software (NIH, United States.) or LSM. Image

Browser software (Zeiss, Germany) was used to analyze the
relative mean intensity of the fluorescence.

Chromosome Spreading
Following treatment with Tyrode buffer (pH 2.5) at room
temperature, oocytes detached from Zona pellucida were
retrieved in M2. Retrieved oocytes were fixed on glass slides
in a drop of 1% paraformaldehyde with Triton X-100 (0.155),
3 mM DTT. After air drying, slides were washed (PBS) and
blocked (BSA, 2%). Next, following incubation (anti-BubR1
rabbit, 1:50, 4◦C, overnight), and (CY3-conjugated anti-rabbit
sheep antibody, 1:100, 37◦C, 1 h), respectively, DAPI was
used to counterstain the chromosomes and for confocal laser
scanning microscopy.

ATP Assessment
Relative ATP concentrations were determined using the kit
method (CellTiter-Glo R© ATP Assay Kit) (Promega, Madison,
WI, United States) as per manufacturer instructions. Briefly,
control or treatment (BPB) oocytes were transferred (n = 30,
each) into 96-well black culture plates (M16, 50 µl/well)
and added a reagent (CellTiter-Glo R©; 50 µl/well; 10 min,
25◦C) for luminescent signal stability. Luminescence against
ATP concentration was obtained by reading the Plates
using EnSpire R© Multimode Reader (PerkinElmer, Waltham,
MA, United States).

Statistical Analysis
All the data were obtained from three independent experiments
and documented (M ± SEM). Data were analyzed using
the analysis software Graph-Pad Prism with paired samples
t-test. The difference was considered statistically significant if
P-values (0.05).

RESULTS

BPB Exposure Compromised the Meiotic
Maturation of Mouse Oocytes
We first examined the oocyte meiotic ability of BPB-exposed
oocytes by calculation of the first PBE rate in oocytes exposed
to different concentration of BPB (0, 50, 100, 150, and 200 µM)
for 14 h. Results showed that BPB exposure compromised the
oocyte meiotic maturation (Figure 1A). Statistical result showed
that the PBE rate decreased in the BPB-exposed groups (100,
150, and 200 µM) and this decrease was significant for the
150 µM BPB group from 85% in controls to 66% in BPB-
exposed oocyte (85.43 ± 3.9%, n = 117 vs. 23.77 ± 3.7%, n = 88;
P < 0.001; Figure 1B). The use of 150 µM of BPB has led
to a considerable reduction in PBE rates, but a small number
of oocytes have been able to continue meiosis and maturation,
which could help to investigate the BPB molecular mechanism
which affects oocyte maturation. Hence, the concentration of
150 µM was chosen to uncover the molecular mechanism in the
subsequent experiments.
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FIGURE 1 | BPB exposure compromised the meiotic maturation of mouse
oocytes. (A) Images depicting oocyte maturation with BPB (0, 50, 100, 150,
200 µM) exposure for 14 h. Bar,100 µm; Bar, 100 µm (small graph). (B) Rate
of oocytes that extruded the first PB in control and BPB-treated groups.
Control, n = 117; BPB, n = 88. ∗Significantly different (P < 0.05);
∗∗∗Significantly different (P < 0.001) compared with the corresponding control.

BPB Exposure Disturbed Cell Cycle
Procession of Meiotic Maturation in
Mouse Oocytes
Since BPB exposure resulted in the failure of meiotic maturation,
the cell cycle progression was analyzed after 14 h of culture,
grouped according to the developmental arrest at different
meiotic stages (Figure 2A). As shown in Figure 2B, most of
control oocytes reached MII stage, while most of BPB-exposed
oocytes were still arrested at the GVBD or MI stage (GVBD:
2.000 ± 1.1%, n = 90 control vs. 21.20 ± 3.2, n = 90; P < 0.01; MI:
3.633 ± 2.1, n = 90 control vs. 53.87 ± 10.8, n = 90; P < 0.05).
Notably, no significant difference was observed between the
control group and the BPB-exposed group of GV phase and A/TI
phase (GV: 1.200 ± 1.2, n = 90 control vs. 8.033 ± 4.1, n = 90;
P > 0.05; A/TI: 1.200 ± 1.2, n = 90 control vs. 10.13 ± 3.5,
n = 90; P > 0.05). These data demonstrated that BPB treatment
significantly disturbed meiotic progression.

BPB Exposure Affected Spindle
Assembly and Chromosome Alignment
in Mouse Oocytes
Considering a meiotic arrest mediated by defective spindle
morphology largely induced activation of SAC, we next examined
the MI oocytes for spindle organization and chromosome
alignment. Spindle structure was observed using an anti-
α-tubulin-FITC antibody, and DAPI was used for visualization
of chromosome alignment. The results displayed a typical
barrel-shaped spindle apparatus in controlled oocytes, and the
equatorial plate had well-aligned chromosomes. In contrast,
abnormal spindle morphology and misaligned chromosomes
were observed in BPB-treated oocytes (Figure 3A). Statistically,
the rate of abnormal spindles and misaligned chromosomes
were significantly increased from 18% in controls to 80% and
from 25% in controls to 87%, respectively (abnormal spindles:
18.30 ± 4.3% control, n = 92 control vs. 80.10 ± 5.9%, n = 91;
P < 0.01; misaligned chromosomes: 25.87 ± 6.3%, n = 92
control vs. 87.83 ± 4.9%, n = 91; P < 0.01; Figures 3B,C).
Moreover, p-MAPK was examined to explain the mechanism for
spindle defects following BPB exposure to the well-established

FIGURE 2 | BPB exposure disturbed cell cycle procession of meiotic
maturation in mouse oocytes. (A) Spindle and chromosome depiction during
oocyte developmental stages (GV, GVBD and Pro-MI, MI, A/TI, and MII).
α-tubulin, green; DNA, blue. Bar, 20 µm. (B) The cell cycle distribution was
quantified in the control and BPB groups. Control, n = 90; BPB, n = 90.
∗Significantly different (P < 0.05); ∗∗Significantly different (P < 0.01);
∗∗∗Significantly different (P < 0.001).

component of MTOCs. In contrast to wild MI oocytes, where
p-MAPK in spindle poles is canonically enriched, BPB-exposed
oocytes show a severe distorted p-MAPK localization. BPB
exposure resulted in the detachment of p-MAPK from spindle
poles with scattered signals around the spindle, and some
BPB-treated oocytes showed a precipitous decline in p-MAPK
expression (Figure 3D), indicating the dysfunction of MTOCs.
Moreover, the aberrant spindle assemble and chromosome
alignment were found in MII oocytes after BPB treatment
(aberrant spindle and chromosome: 17.81 ± 9.0%, n = 102
control vs. 65.34 ± 3.5%, n = 91; P < 0.01; Supplementary
Figures 1A,B). Thus, these data suggested that BPB exposure
disrupted meiotic spindle assembly and chromosome alignment,
which contributed to meiotic failure after BPB treatment.

BPB Exposure Changed the Acetylation
Levels of α-Tubulin in Mouse Oocytes
In tubulin, one of the most abundant non-histone proteins, lysine
40 of α-tubulin subunit is the site of acetylation (Zilberman et al.,
2009). The microtubules stability in mouse oocytes is dependent
on α-tubulin acetylation levels (Ling et al., 2018), and aberrant
levels of α-tubulin acetylation may affect spindle assembly and
the meiotic process. As spindle defects were confirmed, we then
examined the acetylation status of microtubules in control and
BPB-treated oocytes. Results from Figures 4A,B revealed that the
BPB-exposed oocytes had a significantly higher level for tubulin
acetylation compared to the control (19.17 ± 1.466, n = 34 control
vs. 35.47 ± 2.570, n = 29; P < 0.0001).

BPB Exposure Continuously Activated
the SAC in Mouse Oocytes
Meiotic arrest and impaired spindle assembly in BPB-treated
oocytes suggest that SAC might always be activated. To gain
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FIGURE 3 | BPB exposure disturbed the MI spindle assembly and chromosome alignment. Only the oocytes that reach to GVBD at 2 h in the control and BPB
treated group were cultured for 8 h for subsequent analysis. (A) Spindle morphology and chromosome alignment depiction in control and BPB-treated oocytes.
α-tubulin, green; DNA, blue. Bar, 20 µm. (B) Aberrant spindle morphology rate following BPB exposure. Control, n = 92; BPB, n = 91. ∗∗Significantly different
(P < 0.01). (C) Aberrant chromosomal alignment rate following BPB exposure. Control, n = 92; BPB, n = 91. ∗∗Significantly different (P < 0.01). (D) Depiction of
p-MAPK position in control and BPB-exposed oocytes. p-MAPK, red; α-tubulin, green; DNA, blue. Bar, 20 µm.

insight into this issue, BubR1, an integral component of SAC, was
detected by chromosome spreading to indicate SAC activation at
10 h (A/TI) after BPB exposure. The control group did not show
BubR1 signals, whereas a clear BubR1 signal was observed still
in BPB exposed oocytes at the kinetochores (Figure 5), which
indicates SAC activation.

BPB Exposure Increased DNA Damage
in Mouse Oocytes
Considering that BPB exposure induced DNA damage in sperm
cells, so we want to know whether BPB can also cause DNA
damage in oocytes. DNA double strand breaks (DSBs) is one of
the most common types of DNA damage. Therefore, the anti-
γ.H2A.X antibody was used to indicate DNA damage in mouse

oocytes. As shown in Figure 6A, bright γ.H2A.X foci prevalence
in BPB-exposed oocytes inferred the induction of severe DNA
damage. Quantitative analysis further demonstrated that the
DNA damage level significantly increased after BPB treatment
(12.23 ± 0.6193, n = 33 control vs. 16.88 ± 1.447, n = 32; P< 0.01;
Figure 6B).

We then detected the ROS level in the BPB-exposed oocytes.
Unexpectedly, no obvious change was observed between the
BPB-exposed oocytes and the controls (Figure 6C), indicating
that oxidative stress was not produced by BPB. Moreover,
fluorescence intensity of ROS analysis further confirmed this
conclusion (14.36 ± 0.3942, n = 37 control vs. 14.29 ± 0.3002,
n = 36; P > 0.05; Figure 6D). Besides, the ATP content was
also not altered after BPB exposure (52,220 ± 2688, n = 30 vs.
57,860 ± 2041, n = 30 control; P > 0.05; Figure 6E).
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FIGURE 4 | BPB exposure increased the acetylation level of α-tubulin. (A) Acetylated α-tubulin depiction in control and BPB-treated oocytes. Acetylated α-tubulin,
red; DNA, blue. Bar, 20 µm. (B) Quantification of fluorescence intensity for acetylated α-tubulin in control, and BPB-exposed oocytes. Control, n = 34; BPB, n = 29.
∗∗∗Significantly different (P < 0.0001).

BPB Exposure Altered the Levels of
Histone H3K27me3 and H3K9me3
The effects of BPB exposure on epigenetic modification were
evaluated by examining the H3K27me3 and H3K9me3 levels.
The signals of H3K27me3 were significantly increased in the
BPB-exposed oocytes than in the control group. Consistently, the
fluorescence intensities of H3K9me3 were significantly higher in
the BPB-exposed oocytes. Statistical analysis further confirmed
that BPB affected the levels of histone H3K27me3 and H3K9me3

FIGURE 5 | BPB exposure continuously activated the spindle assembly
checkpoint. BubR1 depiction in control and BPB-exposed oocytes at ATI
stage. BubR1, green. DNA, red. Bar, 20 µm.

(H3K27me3: 16.16 ± 0.5889, n = 29 control vs. 19.11 ± 1.183,
n = 31, P < 0.05; Figures 7A,B; H3K9me3: 12.68 ± 0.6714, n = 30
control vs. 21.10 ± 0.2463, n = 29, P < 0.0001; Figures 7C,D).

BPB Exposure Disrupted the
Localization Patterns of ERα
Since BPB was suggested to be competitively bound to ER of
several species, including human and mouse (Blair et al., 2000;
Sipes et al., 2013; Zhang et al., 2018), we finally tested the
changes in estrogen receptor α (ERα) in controls and BPB-
exposed oocytes. ERα signals in control-oocytes were diffused
in the cytoplasm. At the same time, ERα had accumulated
separately around the chromosome and showed a spindle-
like pattern in oocytes exposed to BPB (Figure 8A). In
addition, fluorescence intensity analysis showed that ERα signals
were sharply increased in the BPB-exposed oocytes spindle in
comparison to control oocytes (57.56 ± 2.209, n = 34 control vs.
5.54 ± 6.005, n = 33; P< 0.01; Figure 8B). Collectively, these data
indicated that BPB exposure disrupted the localization patterns
of ERα.

DISCUSSION

Human beings are exposed to EDCs through various channels
throughout their life cycle. EDCs can be absorbed by the
body, accumulated, and even bio-transformed into more toxic
metabolites. The EDCs including BPA are widely distributed and
have adverse effects, which increased the researchers’ attention
toward it, and more and more studies aimed at explaining how
these compounds affect the endocrine system (Cimmino et al.,
2020). The safety of BPB as a substitute for BPA has also attracted
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FIGURE 6 | BPB exposure increased DNA damage in mouse oocytes. (A) Images depicting DNA damage in control and BPB-treated oocytes. γ.H2A.X, red; DNA,
blue. Bar, 20 µm. (B) Quantitative analysis of the fluorescence intensity of γ.H2A.X in control and BPB-treated oocytes. Control, n = 33; BPB, n = 32. ∗∗Significantly
different (P < 0.01). (C) ROS depiction in control and BPB-exposed oocytes. ROS, red. Bar, 100 µm. (D) ROS fluorescence intensity in control and BPB-exposed
oocytes. Control, n = 37; BPB, n = 36. No significant difference (P > 0.05). (E) The ATP content in control and BPB-treated oocytes. Control, n = 30; BPB, n = 30.
No Significantly (P > 0.05).

people’s attention. Most of the assays considered BPB has the
potency similar to or even greater than that of BPA. Adverse
effects of BPB on fish reproduction and the male reproductive
system in rodents has been reported, but the effects on the female
are still obscure.

Endocrine disrupting chemicals can disrupt ovarian
physiology resulting in undesirable reproductive effects such
as estrogen deficiency, dysfunctional ovulation, premature
ovarian failure, and even infertility. The line of evidence for
BPB estrogenic activity has been obtained in various in vivo and
in vitro experiments (Serra et al., 2019). Ovarian estrogens and
estrogen/ER pathways are indispensable for the development
and physiology of female organs and female reproduction in
mammals (Wall et al., 2014). BPB is competitively bound to
ER of several species, including human and mouse (Blair et al.,
2000; Sipes et al., 2013; Zhang et al., 2018). ERs, including ERα

and ERβ, belong to a large nuclear receptor superfamily and
can function as the ligand-induced transcription factors (Hall
and McDonnell, 2005). BPB was confirmed to express ERα

through ER-regulated gene expression in human mammary
MCF-7 cell lines (Rivas et al., 2002; Mesnage et al., 2017).

In fish exposed from 5 µM of BPB, the expression of ERα

and hepatic estrogen genes vitellogenin-1, choriogenin-L was
significantly high (Yamaguchi et al., 2015). A dose-dependent
higher RNA expression of ERα and ER-regulated cyp19a1b
was observed in male zebrafish brain exposed for 21 days from
0.1 mg/L (Yang et al., 2017). Besides, ERα appears to play a
significant role in major reproductive physiological functions in
females (Lee et al., 2009). Our data displayed alteration in the
distribution of ERα, which was significantly aggregated on the
spindle in BPB treated mouse oocytes. During mitosis, ERα is
located on the spindles for the alignment of chromosome and
spindle dynamics (Zhang et al., 2015). Several EDCs have been
reported affecting oocytes maturation through targeting ERs.
In pig oocytes, bisphenol S enhances the ERα expression which
affects the oocyte meiotic maturation negatively (Žalmanová
et al., 2017). In our previous study, diethylstilbestrol was found
to neutralize oocyte meiotic maturation through affecting
ERα dynamic changes (Ding et al., 2020b). Of note, the same
phenomenon was observed in estrogen-exposed oocytes. These
results implied that EDCs may affect oocyte maturation by
affecting ERα dynamic, very likely through the effects of ERα
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FIGURE 7 | BPB exposure altered epigenetic modification in mouse oocytes.
(A) Images depicting H3K27me3 in control and BPB-treated oocytes.
H3K27me3, red. Bar, 10 µm. (B) H3K27me3 fluorescence intensity in control
and BPB-exposed oocytes. Control, n = 29; BPB, n = 31. ∗Significantly
different (P < 0.05). (C) Images depicting H3K9me3 in control and
BPB-treated oocytes. H3K9me3, red. Bar, 10 µm. (D) H3Kme3 fluorescence
intensity in control and BPB-exposed oocytes. Control, n = 30; BPB, n = 29.
∗∗∗Significantly different (P < 0.0001).

on spindle assembly. Regardless of its findings in mitosis, the
role of ERα in the assembly of meiotic spindles is not very
clear, and it will be a main content of our subsequent research.

Altogether, these data led to speculate that BPB exposure induces
dysfunction of ERα to disrupt mouse oocyte meiotic maturation
in vitro.

Ovarian potential to generate viable oocytes is limited
from puberty to menopause. In humans, immature oocytes
are arrested at the diplotene stage of meiotic prophase I,
and this dormancy continue for several decades (Holt et al.,
2013). Long-term growth arrest increases the susceptibility
to external stimuli for immature oocytes (Ge et al., 2019).
For the potential impact of BPB exposure on oocyte meiotic
maturation, PBE and cell cycle progression were explored in
the BPB-exposed oocytes. Our findings concluded that BPB
exposure compromised oocyte meiotic maturation and resulted
in the meiotic arrest. The meiotic arrest is mainly due to the
activation of the SAC induced by defective spindle morphology
(Lara-Gonzalez et al., 2012; Ding et al., 2020a). The failure of
meiotic maturation prompts us to detect the spindle organization
and chromosome alignment in MI oocytes. In BPB-exposed
oocytes, as shown by immunofluorescence results, disruption
of the spindle structure and chromosome alignment were
observed. Unlike mitosis, oocyte-meiotic spindles assembly
without canonical centrosome function, but MTOCs contained
centrosomal proteins for meiotic spindle organization (Lee
et al., 2000; Meunier and Vernos, 2012). Given the aberrant
spindle assembly, we also examined p-MAPK, a well-established
MTOC-associated protein (Ding et al., 2017). The disrupted
localization of p-MAPK in BPB-exposed oocytes suggested it
contributed to defects of spindles. To avoid false chromosome
separation, SAC is continuously activated in oocytes to prevent
abnormal chromosome segregation to ensure proper meiotic
maturation (Gorbsky, 2015). Our results suggested that the
SAC was not deactivated after BPB exposure inducing the
failure of meiotic metaphase to anaphase, which is another
contributor to BPB-induced meiotic arrest. After chromosome
separation, oocytes enter ATI stage and extrude PB1, and are
arrested at MII stage waiting for fertilization. Any error in the
meiotic process can lead to the failure of oocyte maturation,

FIGURE 8 | BPB exposure changed the distribution pattern of ERα. (A) ERα depiction in control and BPB-exposed. ERα, red; α-tubulin, green; DNA, blue. Bar,
20 µm. (B) ERα fluorescence intensity on the spindles in control and BPB-exposed oocytes. Control, n = 34; BPB, n = 33. ∗∗Significantly different (P < 0.01).
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causing pregnancy loss and developmental disabilities in humans
(Jones and Lane, 2013).

A previous study reported that BPB exposure induced DNA
damage in sperm cells (Ullah et al., 2019). Consistently, BPB
exposure resulted in DNA damage in oocytes as indicated by
positive γ.H2A.X spot in our study. Pathways, DNA damage
response can detect and repair the DNA (Winship et al., 2018).
Initially, recovery of DNA damage in oocytes is mediated by
DNA damage response, in case the DNA damage could not
be repaired, it results in apoptosis (MacLennan et al., 2015).
In addition to apoptosis, DNA damage if failed to repair
immediately causes chromatin remodeling, cell cycle arrest, or
cell cycle delay (Dasika et al., 1999; van Gent et al., 2001;
Pandita and Richardson, 2009). Moreover, it was suggested
that DNA damage induced meiotic arrest in mouse oocytes
was intervened by the SAC (Collins et al., 2015). In our study,
BPB exposure did not affect GVBD occurrence after 14 h of
culture. Still, a large proportion of oocytes were arrested at MI
stage with SAC activation, indicating that DNA damage may
play a role in meiotic arrest induced by BPB exposure. EDCs
can disrupt mitochondrial function and cause oxidative stress.
Oxidative metabolism in mitochondria produces cellular ATP,
as a side effect of oxidative phosphorylation, ROS are generated
which could damage various biological macro-molecules (Yu
et al., 2010; Kawamura et al., 2018). In particular, suitable ROS
and ATP are crucial for proper spindle assembly in oocyte
meiosis (Ding et al., 2020a). BPB has also been found to induce
oxidative stress under in vitro conditions (Ullah et al., 2018a).
We thus detected the ROS production after BPB treatment.
Unexpectedly, BPB treatment did not lead to excessive ROS
production, indicating oxidative stress was not produced by
BPB. In consistent, the ATP levels were not changed by BPB
exposure. These data suggested that mitochondrial function was
not affected by BPB exposure.

Spatiotemporal gene expression is a prerequisite for oocyte
maturation, and to a certain extent is achieved through
epigenetic mechanisms. Epigenetic modifications in oocytes
could be changed after exposure to BPA and its analogs.
The expression of H3K4me2 and DNA methylation (5 mC)
levels was altered after BPA treatment in porcine oocytes
(Wang et al., 2016). Oocyte quality was also impaired
by BHPF exposure through changing histone modifications,
demonstrated by the increased H3K9me3 and H3K27me3 levels
(Jiao et al., 2019). Any alteration in stage-dependent histone
modifications can result in related to oocyte meiosis and
quality. Notably, any induced epigenetic modification tends
to be inherited to the next generation (Anway et al., 2005;
Skinner et al., 2011). Based on our results, BPB exposure
could change histone methylation (H3K9me3 and H3K27me3),
suggesting that BPB could affect epigenetic modifications
in mouse oocytes.

In conclusion, our results indicated that BPB exposure
compromised oocyte meiotic maturation and damaged oocyte
quality through affecting spindle assembly and chromosome
alignment, acetylation of α-tubulin, DNA damage, epigenetic
modifications, and ERα dynamics in mouse oocytes. Our study
suggests that BPB may not be a safe alternative to BPA via an

acute exposure in vitro. It warrants further studies to discourse
the persistent impact of BPB chronic exposures at a low dose.
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