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Background. Diabetes is a progressivemetabolic disease characterized by hyperglycemia. Functional impairment of islet β cells can occur
to varying degrees. 2is impairment can initially be compensated for by proliferation and metabolic changes of β cells. Cell division
control protein 42 (Cdc42) and the microRNA (miRNA) miR-29 have important roles in β-cell proliferation and glucose-stimulated
insulin secretion (GSIS), which we further explored using the mouse insulinoma cell line MIN6. Methods. Upregulation and
downregulation of miR-29a and Cdc42 were accomplished using transient transfection. miR-29a and Cdc42 expression was detected by
real-time PCR andwestern blotting.MIN6 proliferationwas detected using a cell counting kit assay. GSIS under high-glucose (20.0mM)
or basal-glucose (5.0mM) stimulation was detected by enzyme-linked immunosorbent assay. 2e miR-29a binding site in the Cdc42
mRNA 3′-untranslated region (UTR) was determined using bioinformatics and luciferase reporter assays. Results. miR-29a over-
expression inhibited proliferation (P< 0.01) and GSIS under high-glucose stimulation (P< 0.01). Cdc42 overexpression promoted
proliferation (P< 0.05) and GSIS under high-glucose stimulation (P< 0.05). miR-29a overexpression decreased Cdc42 expression
(P< 0.01), whereasmiR-29a downregulation increased Cdc42 expression (P< 0.01).2e results showed that the Cdc42mRNA 3′-UTR
is a direct target of miR-29a in vitro. Additionally, Cdc42 reversed miR-29a-mediated inhibition of proliferation and GSIS (P< 0.01).
Furthermore, miR-29a inhibited β-catenin expression (P< 0.01), whereas Cdc42 promoted β-catenin expression (P< 0.01).Conclusion.
By negatively regulating Cdc42 and the downstream molecule β-catenin, miR-29a inhibits MIN6 proliferation and insulin secretion.

1. Introduction

Diabetes is a progressive metabolic disease characterized by
hyperglycemia, and it is the third most common chronic
disease worldwide, after cancer and cardiovascular disease
[1, 2]. Based on the pathogenesis of diabetes, it can be di-
vided into type 1 diabetes mellitus (T1DM) and type 2 di-
abetes mellitus (T2DM) [3]. T1DM is characterized by
autoimmune-induced loss of β cells in the pancreas, which
leads to insufficient insulin secretion or complete insulin
deficiency [4]. T2DM is caused by genetic, environmental,
behavioral, and other risk factors, and it is characterized by
hyperglycemia, insulin resistance, and relative insulin

deficiency [5]. During the development of both T1DM and
T2DM, functional impairment of islet β cells can occur to
varying degrees [6]. 2is impairment can initially be com-
pensated for by β-cell proliferation and changes in meta-
bolism. However, as the disease progresses, the islet β-cell
proliferation is reduced and insulin secretion continues to
decline, eventually leading to irreversible functional failure.
2erefore, studying islet β-cell proliferation and insulin
secretion is of great significance.

It has been reported that both islet β cells self-replication
under elevated blood glucose conditions and transformation
of islet α cells to β cells may increase the number of islet β
cells [7–9]. In β cells, glucose can regulate insulin secretion
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in a process known as glucose-stimulated insulin secretion
(GSIS) [10]. GSIS can maintain blood glucose levels within
the physiological range, which involves transportation of
glucose into β cells through the plasma membrane glucose
transporters, followed by transformation of glucose to
glucose-6-phosphate and the subsequent rises of Ca2+ and
metabolic coupling factors such as ATP, glutamate,
NADPH, and monoacylglycerol from glycolytic or mito-
chondrial metabolism [11, 12]. GSIS is composed of two
phases: a rapid and transient first phase and a slow and
lasting second phase. Both phases involve active mobiliza-
tion of insulin secretory granules from the cytoplasm to the
plasma membrane, requiring small GTP-binding proteins
known as small GTPases-mediated actin cytoskeletal
remodeling [12–14].

MicroRNAs (miRNAs) are short non-coding RNAs of
approximately 22-nt in length, which are recognized as
important regulators of gene expression after transcription
[15]. To date, the human genome has been shown to encode
more than 2000 miRNAs, which are involved in a wide
variety of biological and pathological processes [16].
miRNAs act as negative regulators by repressing mRNA
translation or causing mRNA degradation after transcrip-
tion, so abnormal miRNA expression interferes with many
physiological and pathological processes [17]. Many
miRNAs have been found to be involved in the pathogenesis
of diabetes and insulin resistance, and they affect the
function of islet β cells [18, 19]. miR-29a is one of the most
abundant miRNAs expressed in the β cells of the mouse and
human pancreas, and many studies have shown upregula-
tion of miR-29a in diabetic models [20–22]. It belongs to the
miR-29 family, which is composed of three closely related
precursors: miR-29a, miR-29b1, and miR-29b2 (which are
identical but encoded by two distinct precursor stem se-
quences), and miR-29c [23]. 2e sequences of mature miR-
29 family members are conserved in humans, rats, and mice,
and the seed sequence that regulates gene expression by
binding to target mRNAs, AGCACC, is also identical [20].
miR-29a has been reported to play a negative regulatory role
in insulin secretion by human and mouse islet β cells, and
miR-29a overexpression reduced GSIS levels in vitro [24].
Conversely, it has also been reported that miR-29a positively
regulates insulin secretion in vivo [20]. 2erefore, the role of
miR-29a in GSIS warrants further study.

Cell division control protein 42 (Cdc42) is a member of
the Rho family of small GTPases [25], and it plays an im-
portant role in the second phase of GSIS [26, 27]. It has been
confirmed that Cdc42 can be found in cloned islet β cells,
normal mouse islet cells, and normal human islet cells, and it
is localized to insulin secretory granules [28]. Under
physiological conditions, glucose regulates actin cytoskele-
ton rearrangement and stimulates insulin secretion by
mediating the transformation between Cdc42-GDP (in-
active) and Cdc42-GTP (active) [29]. Salunkhe et al. found
that phosphorylation of focal adhesion kinase (FAK), which
phosphorylates Cdc42 under glucose stimulation, disrupts
the F-actin barrier, allowing insulin secretory granules to
redistribute in islet β cells and thereby promoting insulin
secretion [30]. It has also been reported that Cdc42 mediates

insulin secretory granule transportation and insulin secre-
tion via the PAK1-Raf-1/MEK/ERK pathway [31]. Addi-
tionally, Cdc42-PAK1-Rac1 has been shown to play a
regulatory role in insulin exocytosis and may also play a role
in actin remodeling and insulin granule mobilization [32].
2ese studies suggest that Cdc42 has a significant role in
GSIS.

β-Catenin is a transcription factor, mostly known as a
key component of the canonical Wnt signaling pathway to
regulate cell proliferation [33, 34]. Activated Wnt signaling
inhibits ubiquitin-mediated proteasomal degradation of
β-catenin, thus causing β-catenin to accumulate. Sub-
sequently, β-catenin translocates to the nucleus to form a
transcriptionally active complex with T-cell factor (TCF)
and lymphoid enhancer factor and promotes transcription
of proliferation-related genes, such as c-Myc [35, 36].
β-Catenin can also regulate cell-cell adhesion between
pancreatic β cells via forming complexes with cadherins,
which is important for correct regulation of insulin release
[37–39]. Emerging evidence has shown upregulation of
β-catenin protein under diabetic conditions, and hyper-
glycemia can promote translocation of β-catenin [40, 41].

In a study on human non-small cell lung cancer, miR-
29a overexpression led to significant inhibition of Cdc42
protein expression, whereas Cdc42 mRNA expression was
unchanged [42]. In gastric cancer, miR-29a inhibits Cdc42
expression at both the protein and RNA levels [43]. Addi-
tionally, miR-29a inhibits glioma invasion by targeting
Cdc42 [44]. Furthermore, in breast cancer, Cdc42 negatively
regulates p53, and miR-29a positively regulates p53 by
targeting Cdc42 and, notably, miR-29a inhibits insulin se-
cretion by negatively regulating Cdc42 and P85 [45]. Cdc42
has also been identified as a direct target of miR-29a in
mouse osteoclasts using a luciferase reporter assay [46]. And
many studies have confirmed that β-catenin can be regulated
as a downstream molecule of Cdc42 [47–49]. 2erefore, the
role of miR-29a in islet β-cell proliferation and GSIS may be
achieved through interaction with Cdc42/β-catenin
signaling.

2e aim of the current study was to explore the effects of
miR-29a and Cdc42 on islet β-cell proliferation and GSIS
using MIN6 cells, and to identify the effect of the miR-29a/
Cdc42/β-catenin signaling cascade in these cells. 2e results
indicate that miR-29a plays a negative regulatory role in
GSIS and MIN6 cell proliferation, whereas Cdc42 plays a
positive regulatory role. And miR-29a negatively affects
GSIS and MIN6 cell proliferation via inhibiting Cdc42/
β-catenin signaling pathway.

2. Materials and Methods

2.1. Cell Line and Culture. 2e mouse insulinoma cell line
MIN6 was obtained from BoGu Biotechnology Co. Ltd.
(Shanghai, China). High-glucose (4500mg/L) Dulbecco’s
modified Eagle’s medium (DMEM) was purchased from
Hyclone (Logan, UT, USA). Fetal bovine serum (FBS) was
purchased from Biological Industries (Cromwell, CT, USA).
2e MIN6 cells were maintained in high-glucose DMEM
supplemented with 12% FBS, 10 μl/L β-mercaptoethanol
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(Sigma-Aldrich, St. Louis, MO, USA), 100U/ml penicillin,
and 100 μg streptomycin mixture (Solarbio, Beijing, China)
at 37°C in 5% CO2.

2.2. Transient Transfection. 5.5×105 MIN6 cells were in-
oculated in 6-well plate and incubated for 24 hours in
DMEMmedium.2e 20 μMfinal concentration of miR-29a
mimic, inhibitor, negative control (NC; miR-29a NC), and
Cdc42-pcDNA3.1 was synthesized by Gemma Co. Ltd.
(Shanghai, China). siRNA fragments (siRNA-497, siRNA-
569, and siRNA-643) and an NC-siRNA fragment were also
obtained from Gemma Co. Ltd. Oligonucleotide and
plasmid transfection was conducted using Lipofectamine
2000 (Gemma Co. Ltd.). Opti-MEM was purchased from
Gibco company (Grand Island, NY, USA). Firstly,
100 pmol of siRNA was added to 200 μl Opti-MEM and
blended gently. Secondly, 200 μl Opti-MEM was used to
dilute 5 μl lip2000 reagent. 2is was maintained for
5minutes at room temperature after mixing. 2e lip2000
reagent diluent was then added to the siRNA diluent at
room temperature for 20minutes to form the siRNA-
lip2000 complex. 2e medium was replaced by serum-free
medium, and siRNA-lip2000 complex was added into the
pore containing cells and medium. 2e fluorescence and
cell status were observed after 6 hours. 2e serum-free
medium was extracted and medium was added. 2e se-
quences of the oligonucleotides are shown in Table 1. After
24–48 h of transfection, MIN6 cells were used for the
following experiments.

2.3. Real-Time Polymerase Chain Reaction (RT-PCR).
When the cell confluency reached 75%, the miR-29a
mimic, miR-29a inhibitor, and miR-29a-NC, NC-siRNA,
siRNA-497, siRNA-569 and siRNA-643 were separately
transiently transfected into MIN6 cells. After 36 h, total
RNA was extracted from the MIN6 cells using the total
RNA isolation reagent (Omega, Norcross, GA, USA)
according to the manufacturer’s instructions. 2 μl Pri-
meScript buffer, 0.5 μl Random 6 mers, 0.5 μl Oligo dT
Primer, 0.5 μl 1 ×PrimeScript RT Enzyme Mix I, 0.5 μl
gene-specific primers, up to 10 μl RNase free ddH2O, and
500 ng total RNA were added to prepare for reverse
transcription system. 2en, reverse transcription was
performed at 37°C for 15minutes, and after 5 seconds at
85°C, the machine was maintained at 4°C (when using
gene-specific primers, the first step of reverse transcription
reaction condition was changed to 42°C 15minutes). RT-
PCR was performed with an ABI StepOnePlus Real-Time
PCR System (Applied Biosystems, Foster City, CA, USA).
0.4 μl of forward primer, 0.4 μl of reverse primer, 10 μl of
TB Green Premix Ex Taq, 0.4 μl 50 ×ROX reference dye,
2 μl of template, 6.8 μl of ddH2O were added to form 20 μl
of the total reaction system. After mixing, 18 μl total re-
action system and 2 μl cDNA were added to each pore. 2e
reaction mixture was incubated at 95°C for 30 s followed by
40 cycles of 5 s at 95°C and 30 s at 60°C. 2e 2− ΔΔCTmethod
was used to calculate the relative difference in gene
expression.

2.4. Western Blot Analysis. Transient transfection was per-
formed when the MIN6 cell confluency reached 75%, and
protein extraction was carried out after 40 h. Cdc42-
pcDNA3.1, Cdc42-siRNAs, miR-29a mimic, miR-29a in-
hibitor, and miR-29a-NC were transiently transfected into
cells. Protein was electrophoresed on SDS-polyacrylamide
gel consisting of 5% stacking gel and 12% separating gel
(Solarbio). First, 15 μg of protein was added to each slot.
After the proteins were separated, they were transferred to a
polyvinylidene fluoride (PVDF) membrane (Merck Milli-
pore, Billerica, MA, USA) under 200mA for 1 hour and
15minutes. Next, 5% nonfat milk (Becton, Dickinson, and
Company, Franklin Lakes, NJ, USA) was used for 2 h
blocking. 2en, the PVDF membrane was incubated over-
night at 4°C with diluted (1 :1000) primary antibodies
(Cdc42 antibody, Abcam, Cambridge, MA, USA; β-catenin,
Affinity Biologicals, Shanghai, China; and β-actin, Zhong-
shanjinqiao Company, Beijing, China). Subsequently, the
membrane was incubated for 1.5 h at room temperature with
diluted (1 : 5000) secondary antibodies (HPR-labeled anti-
rabbit IgG of goat, HPR-labeled anti-rat IgG of goat; both
were purchased from Zhongshanjinqiao Company). Lastly,
the proteins were detected using an EasySee Western Blot
Kit (TransGen Biotech, Beijing, China) with a Gel Imaging
System (Bio-Rad, Hercules, CA, USA).

2.5. Cell Proliferation Assay. A cell proliferation assay was
performed using a cell counting kit (CCK; TransGen) after
Cdc42-pcDNA3.1, Cdc42-siRNA-643, miR-29a inhib-
itor + Cdc42-siRNA-643, and miR-29a mimic + Cdc42-
pcDNA3.1 were separately transiently transfected into
MIN6 cells. MIN6 cells were incubated in 96-well plates for
24 h. Next, 10 μl CCK solution and 90 μl high-glucose
(4500mg/L) DMEM were added to the cells. 2e cells were
then placed in an incubator at 37°C for 1 h before assess-
ment. 2e optical density at 450 nm (OD450) at 24, 48, and
72 h was measured using an SpectraMax Paradigm enzyme
labelling apparatus (Molecular Devices LLC, Sunnyvale,
CA, USA), and corresponding cell growth curves were
plotted.

2.6. Insulin Secretion Assay. After 40 h of transfection, the
medium was removed and cells in each group were divided
into two subgroups. Next, 1ml Krebs-Ringer bicarbonate
HEPES (KRBH, PanEra, Guangzhou, China) buffer was
added to each well and the mixture was incubated for 1 h.

Table 1: 2e sequences of miR-29a mimic and Cdc42-mus.

Name Sequences (5′-3′)

miRNA-29a mimic UAGCACCAUCUGAAAUCGGUUA
ACCGAUUUCAGAUGGUGCUAUU

Cdc42-mus-643 UCACACAGAAAGGCCUAAATT
UUUAGGCCUUUCUGUGUGATT

Cdc42-mus-569 GCCUAUUACUCCAGAGACUTT
AGUCUCUGGAGUAAUAGGCTT

Cdc42-mus-497 GCUUGUUGGGACCCAAAUUTT
AAUUUGGGUCCCAACAAGCTT
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2ereafter, the KRBH buffer was removed and 1ml KRBH
containing 5.0 or 20.0mM glucose (Solarbio) was added into
subgroups separately for 1 h. 2e levels of insulin were
detected by enzyme-linked immunosorbent assay (ELISA)
using an ELISA Kit for Insulin (Cloud-Clone Corp., Wuhan,
China) according to the manufacturer’s instructions.

2.7. Luciferase Reporter Assays. 2e miR-29a binding site in
the Cdc42 mRNA 3′-UTR was identified in a bioinformatics
analysis (Gemma Co. Ltd.), and a luciferase reporter assay
was performed. First, the entire nonmutated 3′-untranslated
region (UTR) of the Cdc42 gene was cloned into a pGL3-
Basic vector (Gemma Co. Ltd.) at a site immediately
downstream of the luciferase gene. Second, the Cdc42 3′-
UTR was mutated with a mutagenesis kit (Promega,
Madison, WI, USA) and similarly cloned into a pGL3-Basic
vector. 1× 105 MIN6 cells were seeded into 6-well plates and
cultured for 24 h. Next, the cells were cotransfected with
2.5 μg of either of the pGL3-Basic vectors, and 2.5 μg of
either miR-29a or miR-29a-NC using Lipofectamine 2000
(Gemma Co. Ltd.). At 48 h after transfection, cell lysates
were prepared using Luciferase Assay Buffer II, and the
luciferase activity was measured using a Luciferase Assay
System (Promega). 2e experiment was performed in
triplicate.

2.8. Statistical Analysis. Statistical analysis was performed
using Prism 6 (GraphPad Software, San Diago, CA, USA) or
SPSS 17.0 (SPSS Inc., Chicago, IL, USA). All data are pre-
sented as mean± standard deviation (SD). One-way analysis
of variance (ANOVA) and Student’s t-test were used to
assess the differences between groups. P< 0.05 and P< 0.01
were considered to be statistically significant and highly
statistically significant, respectively.

3. Results

3.1. Effects of miR-29a on MIN6 Cells

3.1.1. Transfection Efficiency of miR-29aMimic and Inhibitor.
To ensure the validity of subsequent miR-29a-related ex-
periments, we determined the transfection efficiency of the
miR-29a mimic and inhibitor. 2e miR-29a mRNA tran-
scription level significantly increased in the miR-29a mimic
group compared with the miR-29a-NC group (P< 0.01) and
significantly decreased in the miR-29a inhibitor group
(P< 0.01) (Figure 1(a)). 2ese results indicated successful
transfection.

3.1.2. miR-29a Negatively Effects MIN6 Cell Proliferation.
To determine the effect of miR-29a on MIN6 cell pro-
liferation, we increased and decreased miR-29a expression
using the miR-29a mimic and inhibitor, respectively, and
detected the proliferation rate at 24, 48, and 72 h. 2e CCK
results showed that there were no significant differences in
the proliferation rate between the miR-29a NC group and
the miR-29a mimic and inhibitor groups after 24 h. In
contrast, the proliferation rate of the miR-29a mimic group

significantly decreased after 48 h (P< 0.01) and 72 h
(P< 0.01), and the proliferation rate in the miR-29a in-
hibitor group significantly increased after 48 h (P< 0.01)
and 72 h (P< 0.01) (Figure 1(b)). 2ese results indicated
that miR-29a negatively effects MIN6 cell proliferation.

3.1.3. miR-29a Negatively Effects Insulin Secretion by MIN6
Cells. To identify the effect of miR-29a on insulin secretion by
MIN6 cells, we increased and decreased miR-29a expression
using the miR-29a mimic and inhibitor, respectively, and
detected the level of insulin secretion after stimulation with
5.0 and 20.0mMglucose.2e ELISA results showed thatmiR-
29a overexpression inhibited insulin secretion under high-
glucose stimulation (P< 0.01) (Figure 1(c)), and miR-29a
downregulation promoted insulin secretion under high-
glucose stimulation (P< 0.01) (Figure 1(d)). Regardless of
whether miR-29a was up- or downregulated, there was no
effect on insulin secretion under basal-glucose stimulation
(Figures 1(c) and 1(d)). 2ese results indicated that miR-29a
plays a negative regulatory role in GSIS, but not in insulin
secretion at physiological blood glucose levels.

3.2. Effects of Cdc42 on MIN6 Cells

3.2.1. Transfection Efficiency of Cdc42-pcDNA3.1. To ensure
the validity of subsequent Cdc42-related experiments, Cdc42-
pcDNA3.1 was transiently transfected into MIN6 cells when
the cell confluency reached 75%, and protein extraction was
carried out after 40 h. 2e western blot results showed that
Cdc42 expression increased after transfection with Cdc42-
pcDNA3.1 compared with the expression in the pcDNA3.1
group (P< 0.01) (Figure 2(a)).2is result indicated successful
transfection.

3.2.2. Screening of Cdc42 Small Interfering RNA (siRNA)
Fragments. To effectively reduce the Cdc42 expression, we
screened three siRNA fragments (siRNA-497, siRNA-569,
and siRNA-643) to identify which one was the most effective.
When the cell confluency reached 75%, NC-siRNA, siRNA-
497, siRNA-569, and siRNA-643 were transiently transfected
into MIN6 cells. In each group, total RNA was extracted after
36 h. 2e RT-PCR results showed that Cdc42 mRNA ex-
pression significantly decreased after transfection with
siRNA-497 (P< 0.05) and siRNA-643 (P< 0.01) compared
with the expression in the siRNA-NC group. Among the four
groups, the siRNA-643 group had the lowest Cdc42 mRNA
expression (Figure 2(b)). 2e results indicated that siRNA-
497 and siRNA-643 could more effectively reduce Cdc42
mRNA expression than siRNA-569, and siRNA-643may have
the optimal interference effect.

To determine whether siRNA-643 was the optimal siRNA
fragment, when the cell confluency reached 75%, the siRNAs
were transiently transfected into MIN6 cells, and protein ex-
traction was carried out after 40h. 2e western blot results
showed that Cdc42 protein expression in the siRNA-569 and
siRNA-643 groups significantly decreased (P< 0.01) com-
pared with the expression in the siRNA-NC group. Among
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the four groups, the siRNA-643 group had the lowest Cdc42
protein expression (Figure 2(c)). Based on the Cdc42 mRNA
and protein expression levels, we selected siRNA-643 as the
Cdc42-siRNA fragment to use in subsequent experiments.

3.2.3. Cdc42 Positively Effects MIN6 Cell Proliferation. To
identify the effect of Cdc42 on MIN6 cells proliferation, the
absorbance at 450 nm was measured at 24, 48 and 72 h after
transient transfection of MIN6 cells with Cdc42-pcDNA3.1
and Cdc42-siRNA-643, and corresponding cell growth
curves were plotted. 2e CCK results showed that there
were no significant differences in the proliferation rate

between the Cdc42-pcDNA3.1 and pcDNA3.1 groups, or
between the Cdc42-siRNA-643 and siRNA-NC groups,
after 24 h. In contrast, the proliferation rate in the Cdc42-
siRNA-643 group was significantly decreased after 48 h
(P< 0.01) and 72 h (P< 0.01), and the proliferation rate in
the Cdc42-pcDNA3.1 group was significantly increased
after 48 h (P< 0.01) and 72 h (P< 0.01) (Figure 2(d)). 2ese
results indicated that Cdc42 positively effects the pro-
liferation rate of MIN6 cells.

3.2.4. Cdc42 Positively Effects Insulin Secretion by MIN6
Cells. To identify the effect of Cdc42 on insulin secretion by
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Figure 1: Effects of miR-29a on MIN6 cells. (a) Effects of miR-29a mimic and inhibitor on miR-29a mRNA. RT-PCR to detect miR-29a
mRNA expression after transient transfection with miR-29a mimic and inhibitor (n� 3). ∗∗P< 0.01, compared with miR-29a NC group, as
assessed by paired Student’s t-test. (b) Effects of miR-29a on MIN6 cell proliferation. CCK assay to detect proliferation after transfection
with miR-29a mimic and inhibitor (n� 3). ∗∗P< 0.01, compared with miR-29a NC group, as assessed by one-way ANOVA, followed by
Fisher’s least significant difference test. (c and d) Effects of miR-29a on insulin secretion by MIN6 cells. ELISA to detect insulin secretion
levels in MIN6 cells after transient transfection with miR-29a mimic and inhibitor under basal-glucose (5.0mM) and high-glucose
(20.0mM) stimulation (n� 3). ##P< 0.01, compared with 5.0mM glucose group, and ∗∗P< 0.01, compared with miR-29a-NC group, as
assessed by paired Student’s t-test. Data are shown as mean± SD. NC: negative control.
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Figure 2: Continued.
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MIN6 cells, we increased and decreased Cdc42 expression
using Cdc42-pcDNA3.1 and Cdc42-siRNA-643, respectively,
and detected the level of insulin secretion under 5.0 and
20.0mM glucose stimulation by measuring the amount of
secreted insulin in the supernatant.2e ELISA results showed
that Cdc42 overexpression promoted insulin secretion under
high-glucose stimulation (P< 0.05) (Figure 2(e)), and Cdc42
downregulation inhibited insulin secretion under high-glu-
cose stimulation (P< 0.01) (Figure 2(f)). Regardless of
whether Cdc42 was up- or downregulated, there were no
effects on insulin secretion under basal-glucose stimulation
(Figures 2(e) and 2(f)). 2ese results indicated that Cdc42
plays a positive regulatory role in GSIS, but not in insulin
secretion at physiological blood glucose levels.

3.3. Effects of miR-29a/Cdc42 on MIN6 Cells

3.3.1. miR-29a Negatively Effects Cdc42 Protein Expression.
Many studies have indicated that Cdc42 mRNA is a
direct target of miR-29a in cancer progression [42–46].
2us, we hypothesized that miR-29a can affect the ex-
pression of Cdc42 during diabetes progression. To
identify the effect of miR-29a on Cdc42 protein ex-
pression, we transiently transfected the miR-29a mimic,
miR-29a inhibitor, and miR-29a-NC into MIN6 cells

when the cell confluency reached 75%, and extracted the
proteins for each group after 40 h. 2e western blot results
showed that, compared with the Cdc42 protein expression
in the miR-29a NC group, the expression in the miR-29a
mimic group significantly decreased (P< 0.01), whereas
the expression in the miR-29a inhibitor group signifi-
cantly increased (P< 0.01) (Figure 3(a)). 2ese results
indicated that miR-29a negatively effects Cdc42 protein
expression.

3.3.2. miR-29a Binding Site in the Cdc42 mRNA 3′-UTR.
Based on the negative effect of miR-29a on Cdc42 protein
expression and in order to confirm that Cdc42 mRNA is a
target of miR-29a, the miR-29a binding site in the Cdc42
mRNA 3′-UTR was identified in a bioinformatics anal-
ysis and a luciferase reporter assay was performed
(Figures 3(b) and 3(c)). 2e bioinformatics analysis
showed that the Cdc42 mRNA 3′-UTR was targeted by
the complementary sequence of miR-29a (Figure 3(b)).
2e luciferase reporter assays showed that the miR-29a
mimic significantly decreased the luciferase activity of
MIN6 cells expressing the nonmutated Cdc42 mRNA 3′-
UTR, but it had no effect on the luciferase activity of
MIN6 cells expressing the mutated Cdc42 mRNA 3′-UTR
(Figure 3(c)). 2ese results showed that Cdc42 mRNA is
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Figure 2: Effects of Cdc42 on MIN6 cells. (a) Effects of Cdc42-pcDNA3.1 on Cdc42 expression in MIN6 cells. Western blot to detect
Cdc42 protein expression after transfection with Cdc42-pcDNA3.1 (n � 3). ∗P< 0.01, compared with pcDNA3.1 group, as assessed by
paired Student’s t-test. (b and c) Screening of Cdc42-siRNA fragments. (b) RT-PCR to detect Cdc42 mRNA expression after transient
transfection with different siRNA fragments (n � 3). ∗P< 0.05 and ∗∗P< 0.01, compared with siRNA-NC group, as assessed by paired
Student’s t-test. (c) Western blot to detect Cdc42 protein expression after transient transfection with different siRNA fragments (n � 3).
∗∗P< 0.01, compared with siRNA-NC group, as assessed by paired Student’s t-test. (d) Effects of Cdc42 onMIN6 cell proliferation. CCK
assay to detect MIN6 cell proliferation after transfection with Cdc42-siRNA and Cdc42-pcDNA3.1 (n � 3). ∗∗P< 0.01, compared with
siRNA-NC group, #P< 0.01, compared with pcDNA3.1 group, as assessed by one-way ANOVA, followed by Fisher’s least significant
difference test. (e and f ) Effects of Cdc42 on insulin secretion by MIN6 cells. ELISA to detect insulin secretion levels in MIN6 cells after
transient transfection with Cdc42-pcDNA3.1 and Cdc42-siRNA under basal-glucose (5.0 mM) and high-glucose (20.0mM) stimulation
(n � 3). ∗P< 0.05, compared with pcDNA3.1 group, ∗∗P< 0.01, compared with siRNA-NC group, and ##P< 0.01, compared with
5.0mM glucose group, as assessed by paired Student’s t-test. Data are shown as mean ± SD. NC: negative control.
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Figure 3: Effects of miR-29a/Cdc42 on MIN6 cells. (a) Effects of miR-29a on Cdc42 protein expression. Western blot to detect Cdc42
protein expression after transfection with miR-29a mimic and inhibitor (n� 3). ∗∗P< 0.01, compared with miR-29a NC group, as assessed
by paired Student’s t-test. (b) Bioinformatics analysis of the miR-29a binding site in the Cdc42mRNA 3′-UTR. (c) Luciferase reporter assays
indicate that miR-29a binds to Cdc42 mRNA inMIN6 cells. ∗∗P< 0.05, compared with nonmutated Cdc42 3′UTR+miR-29a-NC group, as
assessed by paired Student’s t-test. (d) Effects of miR-29a/Cdc42 on MIN6 cell proliferation. CCK assay to detect MIN6 cell proliferation
after simultaneous overexpression of miR-29a and Cdc42, and after simultaneous interference with miR-29a and Cdc42 expression (n� 3).
∗∗P< 0.01, compared with miR-29a mimic group, and ##P< 0.01, compared with miR-29a inhibitor group, as assessed by one-way
ANOVA, followed by Fisher’s least significant difference test. (e) Effects of miR-29a/Cdc42 on insulin secretion by MIN6 cells. ELISA to
detect insulin secretion by MIN6 cells after transient transfection with miR-29a mimic +Cdc42-pcDNA3.1 and miR-29a inhibitor +Cdc42-
siRNA under high-glucose (20.0mM) stimulation (n� 3). ∗∗P< 0.01, compared with miR-29a inhibitor group, and ##P< 0.01, compared
with miR-29a mimic group, as assessed by paired Student’s t-test. Data are shown as mean± SD. NC: negative control; mmu: mouse lemur;
3p: mmu-miR-29a is produced from the 3′ end arm of the double strand of miR-29a; mut: mutated.
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a potential downstream molecule of miR-29a, and the
miR-29a/Cdc42 axis may be involved in diabetes.

3.3.3. Effects of miR-29a/Cdc42 on MIN6 Cell Proliferation.
To identify the effects of miR-29a/Cdc42 on MIN6 cell
proliferation, we transfected miR-29a inhibitor +Cdc42-
siRNA-643 and miR-29a mimic +Cdc42-pcDNA3.1 into
MIN6 cells. 2e absorbance at 450 nm was measured at 24,
48, and 72 h after transient transfection, and corresponding
cell growth curves were plotted. 2e CCK results showed
that after 48 and 72 h, simultaneous overexpression of miR-
29a and Cdc42 reversed the effect of the miR-29a mimic
regarding MIN6 cell proliferation inhibition (P< 0.01). Si-
multaneous interference with miR-29a and Cdc42 expres-
sion reversed the effect of the miR-29a inhibitor regarding
MIN6 cell proliferation promotion (P< 0.01) (Figure 3(d)).
2ese results further illustrated that Cdc42 mRNA is a
downstream molecule of miR-29a and indicated that miR-
29a can inhibit MIN6 cell proliferation by downregulating
Cdc42 expression.

3.3.4. Effects of miR-29a/Cdc42 on Insulin Secretion by MIN6
Cells. To identify the effects of miR-29a/Cdc42 on insulin
secretion by MIN6 cells, we transiently transfected miR-29a
inhibitor +Cdc42-siRNA-643 and miR-29a mimic +Cdc42-
pcDNA3.1 into MIN6 cells, and then stimulated them with
KRBH containing 20.0mM glucose for 1 h. 2e amount of
secreted insulin in the supernatant was measured by ELISA.
2e results showed that simultaneous overexpression of
miR-29a and Cdc42 reversed the effect of the miR-29a
mimic regarding insulin secretion inhibition (P< 0.01), and
simultaneous interference with miR-29a and Cdc42 ex-
pression reversed the effect of the miR-29a inhibitor re-
garding the promotion of insulin secretion under high-
glucose stimulation (P< 0.01) (Figure 3(e)). 2ese results
further indicated that miR-29a can inhibit insulin secretion
by MIN6 cells under high-glucose stimulation by down-
regulating Cdc42 expression.

3.4. miR-29a/Cdc42/β-Catenin is a Potential Signaling Cas-
cade in MIN6 Cells. Many studies have demonstrated that
β-catenin expression can be regulated by Cdc42 [47–49].
2erefore, we hypothesized that β-catenin is a downstream
molecule of miR-29a/Cdc42, and miR-29a/Cdc42/β-catenin
is a potential signaling cascade in MIN6 cells. We transfected
miR-29a mimic, miR-29a inhibitor, Cdc42-pcDNA3.1, and
Cdc42-siRNA-643 into MIN6 cells. 2e western blot results
showed that compared with β-catenin expression in the miR-
29a mimic and inhibitor NC, miR-29a downregulation sig-
nificantly increased β-catenin expression (P< 0.01), whereas
miR-29a overexpression significantly decreased β-catenin
expression (P< 0.01) (Figure 4(a)). Conversely, Cdc42
overexpression significantly increased β-catenin expression
(P< 0.01), whereas Cdc42 downregulation significantly de-
creased β-catenin expression (P< 0.01) (Figure 4(b)). 2ese
results indicated that miR-29a can inhibit but Cdc42 can
promote β-catenin protein expression in MIN6 cells.

4. Discussion

Apart from being one of the leading causes of death
worldwide, hyperglycemia in diabetic patients endangers
microvessel in various target organs; for example, the brain,
heart, kidneys, and eyes [50]. Proliferation impairment of β
cells is the main cause of T1DM and GSIS impairment in β
cells is the main cause of T2DM [1, 31, 51]. 2erefore, it is
important to understand the underlying mechanisms that
affect proliferation and GSIS of β cells in order to improve
the development of pharmacological agents for diabetes
treatment. In most cases, miRNAs act as negative regulators
and affect protein-coding genes; therefore, abnormal
miRNA expression interferes a variety of physiological and
pathophysiological processes, including insulin secretion.
Many studies have shown that Cdc42 is an important
regulatory gene in GSIS [25], via activating its downstream
effector p21-activated kinase (Pak1; a Ser/2r protein ki-
nase) during the second phase of GSIS [52–54]. Cdc42 lo-
cates on insulin secretory granules, and it participates in
exocytosis of insulin vesicles by regulating F-actin and its
associated pathways [55].

In this study, the MIN6 cell line was selected to in-
vestigate cell proliferation and insulin secretion in vitro for
the following four reasons: (a) the MIN6 cell line was
established from pancreatic tumors of transgenic non-obese
diabetic mice, and the insulin secretory function of MIN6
cells is highly similar to that of the pancreas; (b) islet β cells
are the most abundant cells among islet cells, accounting for
about 70% of the total; (c) the insulin secretory function of
MIN6 cells is highly similar to that of the pancreas; and (d)
most of the related studies in the literature used this cell line
to study insulin secretion and related signaling pathways, so
the body of literature on MIN6 cells is relatively rich. Both
T1DM and T2DM involve insulin deficiency, and T1DM also
involves loss of β cells, so the study of the role of miR-29a/
Cdc42/β-catenin in MIN6 cell proliferation and GSIS will be
helpful to explore the molecular mechanisms of T1DM and
T2DM. Our experiment first explored effects of miR-29a and
Cdc42, and the mechanism of miR-29a/Cdc42/β-catenin
pathway on MIN6 cells proliferation and GSIS under high-
glucose condition.

2e CCK and ELISA results showed that miR-29a in-
hibits MIN6 cell proliferation and insulin secretion under
high-glucose stimulation, but there were no significant
differences under basal-glucose stimulation. 2is result is
consistent with the results of an in vitro study by Bagge et al.
[24] on the INS-1E cell line, but it conflicts with the con-
clusions of an in vivo study by Dooley et al. [20],in which
miR-29a/b-1 was knocked out because it was not possible to
knockout only miR-29a. 2us, these conflicting results may
be caused by knocking out miR-29b-1 or by the differences
between the in vitro and in vivo approaches.

2e inhibition of Cdc42 protein expression using
siRNA-569 appeared to be as effective as that using siRNA-
643. Compared with the siRNA-NC group, the inhibition of
Cdc42 mRNA expression using siRNA-569 was also effec-
tive, but there was no statistical difference. 2e possible
reason was that our experiment was only performed three
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times. And siRNA-643 showed the best inhibitory effect on
Cdc42 mRNA and protein expression among the screened
siRNA fragments; therefore, siRNA-643 was used for sub-
sequent experiments. 2e CCK and ELISA results showed
that Cdc42 promotes MIN6 cell proliferation and insulin
secretion under high-glucose stimulation, but there was no
significant difference under basal-glucose stimulation. 2e
results of this experiment are consistent with current
mainstream thinking in this field. Current researchers
generally believe that Cdc42 plays a positive regulatory role
in GSIS and interfering with its expression decreases insulin
secretion [25]. Cdc42 can affect insulin secretion by regu-
lation of insulin vesicle fusion, exocytosis, and cytoskeletal
rearrangement [56], but the specific pathways involved in
this process require further research.

In addition, we investigated whether miR-29a affects
MIN6 cell proliferation and insulin secretion by interfering
with Cdc42 expression. 2e western blot results showed that
miR-29a has a negative regulatory role regarding Cdc42
expression in MIN6 cells, which is similar to the findings for
cancers such as nonsmall-cell carcinoma, stomach cancer,
and breast cancer [42, 43, 57]. Furthermore, the

bioinformatics analysis and luciferase reporter assay showed
that there is a miR-29a binding site in the Cdc42 mRNA 3′-
UTR, and miR-29a can therefore affect the expression of
Cdc42 and downstream molecules, ultimately exerting bi-
ological effects. And Cdc42 can reverse the effects of miR-
29a on MIN6 cell proliferation and GSIS under high-glucose
condition. It is worth mentioning that regardless of whether
miR-29a or Cdc42 was up- or downregulated, there were no
effects on GSIS under basal-glucose stimulation; therefore,
effects of miR-29a/Cdc42 on MIN6 cells GSIS under basal-
glucose stimulation study seems less necessary. 2ese results
suggest that Cdc42 is a direct effector of miR-29a in vitro,
and miR-29a can suppress MIN6 cells proliferation and
GSIS via negatively regulating Cdc42 expression.

Many studies have demonstrated that β-catenin can be
regulated effectively by Cdc42 [47–49], and we hypothesized
that miR-29a/Cdc42/β-catenin is a potential signaling cas-
cade involved in diabetes progression. Collectively, miR-29a
can negatively affect the expression of Cdc42 and down-
stream molecule β-catenin, and, therefore, suppress F-actin
remodeling, insulin granules mobilization, and cell-to-cell
interaction, and ultimately inhibit GSIS by MIN6 cells
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Figure 4: Effects of miR-29a and Cdc42 on β-catenin expression. (a) Effects of miR-29a on β-catenin expression. Western blot to detect
β-catenin expression after transfection with miR-29a mimic and inhibitor (n� 3). ∗P< 0.01, compared with miR-29a mimic NC, and
∗∗P< 0.01, compared with miR-29a inhibitor NC, as assessed by paired Student’s t-test. (b) Effects of Cdc42 on β-catenin expression.
Western blot to detect β-catenin expression after transfection with Cdc42-pcDNA3.1 and siRNA-643 (n� 3). ∗P< 0.01, compared with
pcDNA3.1, and ∗∗P< 0.01, compared with siRNA-NC, as assessed by paired Student’s t-test. Data are shown as mean± SD. NC: negative
control.
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[39, 58]. Besides, a low β-catenin protein expression may
inhibit β-catenin nuclear translocation and cyclins D1, D2,
and c-Myc gene expression, so miR-29a can negatively affect
the proliferation rate by MIN6 cells [59]. 2erefore, upre-
gulation of miR-29a associated with inhibition of Cdc42/
β-catenin signaling may be potential factors in MIN6 cells
proliferation and GSIS suppression.

5. Conclusions

In conclusion, the current study reports the role of miR-29a
in MIN6 cell proliferation and GSIS, which involves regu-
lating Cdc42 and β-catenin expression. 2e results indicate
that miR-29a inhibits MIN6 cells proliferation and GSIS and
negatively regulates Cdc42 expression. In contrast, Cdc42/
β-catenin is a miR-29a downstream signaling that promotes
MIN6 cells proliferation and GSIS. To summarize, miR-29a
can negatively affect GSIS and MIN6 cell proliferation via
Cdc42/β-catenin signaling. miR-29a/Cdc42/β-catenin may
be involved in diabetes progression. However, further ani-
mal experiments and studies of clinical samples from pa-
tients are needed to validate the function of miR-29a/Cdc42/
β-catenin, and whether other miRNAs and downstream
molecules play crucial roles in diabetes progression also
requires further studies.
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