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Background: We used a targeted metabolomics approach to identify fatty acid (FA)
metabolites that distinguished patients with coronary artery ectasia (CAE) from healthy
Controls and patients with coronary artery disease (CAD).

Materials and methods: Two hundred fifty-two human subjects were enrolled in
our study, such as patients with CAE, patients with CAD, and Controls. All the
subjects were diagnosed by coronary angiography. Plasma metabolomic profiles of FAs
were determined by an ultra-high-performance liquid chromatography coupled to triple
quadrupole mass spectrometric (UPLC-QqQ-MS/MS).

Results: Ninety-nine plasma metabolites were profiled in the discovery sets (n = 72),
such as 35 metabolites of arachidonic acid (AA), eicosapentaenoic acid (EPA),
and docosahexaenoic acid (DHA), 10 FAs, and 54 phospholipids. Among these
metabolites, 36 metabolites of AA, EPA, and DHA showed the largest difference
between CAE and Controls or CAD. 12-hydroxyeicosatetraenoic acid (12-HETE), 17(S)-
hydroxydocosahexaenoic acid (17-HDoHE), EPA, AA, and 5-HETE were defined as a
biomarker panel in peripheral blood to distinguish CAE from CAD and Controls in a
discovery set (n = 72) and a validation set (n = 180). This biomarker panel had a better
diagnostic performance than metabolite alone in differentiating CAE from Controls and
CAD. The areas under the ROC curve of the biomarker panel were 0.991 and 0.836
for CAE versus Controls and 1.00 and 0.904 for CAE versus CAD in the discovery and
validation sets, respectively.

Conclusions: Our findings revealed that the metabolic profiles of FAs in the plasma from
patients with CAE can be distinguished from those of Controls and CAD. Differences in
FAs metabolites may help to interpret pathological mechanisms of CAE.

Keywords: plasma metabolomic profiles, coronary artery ectasia, biomarkers, coronary artery disease, fatty acid
metabolites
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BACKGROUND

Coronary artery ectasia (CAE) is characterized as a diffuse,
saccular, irregular, or fusiform dilation of the coronary arteries
exceeding 1.5-fold the diameter of the normal adjacent
vessel (Eitan and Roguin, 2016). The incidence of CAE was
estimated to be 0.5–5%, with male predominance (Yetkin and
Waltenberger, 2007). Previous studies reported that coronary
luminal enlargement was considered an important reason for
angiographic stigmata of impaired blood flow, such as sluggish
circulation, swirling, strikingly slow, and scattered clearance of
contrast material (Kruger et al., 1999). Indeed, some authors
illustrated evidence of stable angina, positive treadmill test,
increased levels of biochemical markers, or even myocardial
infarction in isolated CAE without obstructive coronary artery
disease (CAD), 38.7% of patients with isolated CAE were
reported as having a history of myocardial infarction in the
corresponding myocardial territory (Demopoulos et al., 1997;
Sayin et al., 2001; Manginas and Cokkinos, 2006). More recently,
in 2017, Takahito Doi’s study found that the patients with
isolated CAE had a significantly higher risk for cardiovascular
events than patients without CAE (Doi et al., 2017). Besides,
massive enlargement of the coronary artery cannot only result in
compression of adjacent structures, vasospasm, thrombosis, and
dissection, but also aneurysm rupture, albeit rare can cause acute
cardiac tamponade (Kawsara et al., 2018). Therefore, it is clear
that CAE, especially the giant ones, is not a benign disease.

Management of patients with CAE remained significant
challenge for several reasons: the pathogenesis of CAE is largely
unknown. Previous studies showed that 70–80% of CAE were
attributed to atherosclerosis and genetic factors, whereas only 10–
20% of CEA were associated with inflammatory or connective
tissue diseases. Although degradation of the extracellular matrix,
nitric oxide dysfunction, and abnormal matrix metalloproteinase
activity was recognized as causes of CAE, detailed pathological
mechanism still remains unclear (Bergman et al., 2007; Eitan
and Roguin, 2016). Also, most CAEs are clinically silent and are
only detected incidentally during coronary angiography or CT,
while clinically symptomatic isolated CAE-induced myocardial
infarction needs to perform percutaneous coronary interventions
(Yip et al., 2002). Besides, no specific biomarker for CAE has
yet been found, which also represents a huge barrier for further
understanding of the mechanisms of CAE (Li et al., 2009).

Fatty acids (FAs) and metabolites played a critical role
in the pathogenesis of CAE. Usama Boles’s study found
that serum FA metabolites were different in isolated CAE
compared to atherosclerosis in mixed CAE, which suggested
potentially specific pathophysiology in isolated CAE (Boles et al.,
2017). Besides, abnormal FA metabolisms in plasma suggested
alterations in lipid signaling in patients with CAE, especially in
arachidonic acid (AA) and its metabolites (Zhang et al., 2014).
Lipid signaling in the AA cascade is important for regulating
some important biological processes, such as inflammation,
blood flow, and plaque formation (Buczynski et al., 2009; Watkins
and Hotamisligil, 2012). In addition to lipid signaling, FA
metabolites, as a component of the phospholipid membrane,
play an important role in cell signal transduction (Zeldin, 2001).

Furthermore, a previous study showed that polyunsaturated
FAs from P-450 metabolites of FAs could also regulate cardiac
function and vascular tone (Roman, 2002).

Based on the important roles of FA metabolites in CAE
formation, a targeted metabolomics approach was used to
discover and subsequently validate the metabolic signatures of
these FAs in plasma and to assess the performance of a biomarker
signature to distinguish patients with CAE from healthy Controls
and patients with CAD, which provided a theoretical basis for
further interpreting pathological mechanism of CAE.

MATERIALS AND METHODS

Detailed methods are available in the online-only data
Supplementary Material.

RESULTS

Study Design and Baseline Patient
Characteristics
Two hundred and fifty-two participants were enrolled in the
discovery and validation sets. The discovery sets included 72
participants, i.e., 24 participants with CAE and 48 sex-, age-
and body mass index (BMI)-matched Controls and participants
with CAD. For patients with CAD, the percentages of single-,
double-, and multiple-vessel CAD were 29.16, 8.33, and 20.83%,
respectively. The patients with CAE were diagnosed by coronary
angiography, and CAE was defined as a localized dilatation in
the diameter of a coronary artery segment that exceeded the
luminal area of the adjacent normal coronary vessels by 1.5-
fold. Controls were determined to not have CAE by coronary
angiography. The baseline characteristics of the discovery sets
are shown in Table 1. Validation sets included 180 participants,
and the baseline characteristics of the participants are shown in
Supplementary Table 2. The workflow of the study is presented
in Figure 1.

Metabolic Profiles of Fatty Acids in
Plasma From Different Subjects
To evaluate differences in FA metabolisms between subjects with
CAE versus Controls or patients with CAD, we first performed
metabolic profiling of FAs in plasma from different subjects.
In total, 99 plasma metabolites were profiled in the discovery
sets (n = 72), such as 35 metabolites of AA, eicosapentaenoic
acid (EPA), and docosahexaenoic acid (DHA), 10 FAs, and 54
phospholipids (Figure 2A). For 35 metabolites of AA, EPA, and
DHA, a total of 28 and 29 metabolites were significantly different
between CAE versus Controls and CAE versus CAD, respectively
(P < 0.05), although no significantly different metabolites
were found between CAD versus Controls (Figure 2B and
Supplementary Table 3). A total of 10, 5, and 3 phospholipids
were significantly different between CAE versus Controls, CAE
versus CAD, and CAD versus Controls, respectively (P < 0.05;
Supplementary Table 4). A total of 3 and 4 FAs were
significantly different between CAE versus Controls and CAE

Frontiers in Physiology | www.frontiersin.org 2 November 2021 | Volume 12 | Article 770223

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-770223 November 15, 2021 Time: 14:33 # 3

Liu et al. Metabolism and Coronary Artery Ectasias

TABLE 1 | Baseline characteristics of patients in the discovery sets.

Controls CAD CAE p Value for trend

n 24 24 24

Age, yrs 54.42 ± 10.15 53.96 ± 11.17 54.58 ± 9.86 0.484

Men, % 66.7 66.7 66.7

BMI, kg/m2 26.25 ± 2.83 26.08 ± 3.11 26.67 ± 2.87 0.272

SBP, mm Hg 124.6 ± 14.86 128.2 ± 17.56 131.6 ± 20.46 0.350

DBP, mm Hg 79.29 ± 9.26 77.656 ± 12.36 82.38 ± 13.18 0.264

TC, mmol/L 4.19 ± 0.94 4.00 ± 1.09 4.15 ± 1.34 0.260

TG, mmol/L 1.41 ± 0.55 1.67 ± 1.08 1.53 ± 0.63 0.0043

HDL-C, mmol/L 1.12 ± 0.48 1.18 ± 0.87 0.99 ± 0.30 <0.0001

LDL-C, mmol/L 2.67 ± 0.90 2.52 ± 0.84 2.77 ± 1.17 0.248

Glucose, mmol/L 5.62 ± 1.55 5.83 ± 1.35 5.38 ± 1.08 0.240

Cigarette smoking, % 0.153

Never 39.13 62.5 37.5

Current 60.89 37.5 62.5

Alcohol intake, % 0.252

Never 52.17 79.17 60.54

Current 47.83 20.83 39.46

Hypertension history, % 66.67 62.50 70.83 0.829

DM history, % 12.50 12.50 8.33 0.869

Age, body mass index (BMI), Systolic (SBP) and diastolic (DBP) blood pressure, glucose, and TC values are given as means (±SD); TG values are medians (range), and
the number of individuals (n) with percentage (n/N) are indicated. DM indicates Diabetes Mellitus. Body mass index is calculated as individual’s body weight divided by
the square of individual’s height.

FIGURE 1 | Design of the study.

versus CAD, respectively (P < 0.05), however, no significantly
different metabolites were found between CAD versus Controls
(Supplementary Table 5). Therefore, 35 metabolites of AA,
EPA, and DHA were emerged as the metabolites with the most
significant differences between CAE and Controls or CAE and
CAD compared with phospholipids and FAs.

Defining of a Potential Metabolic
Biomarker for Coronary Artery Ectasia
Principal component analysis (PCA) score plots revealed that
subjects with CAE were separated from Controls and subjects

with CAD (Figure 3A). Fourteen and 15 metabolites with
VIP (variable importance in projection) value > 1 on two
principal components were found as important metabolites
for distinguishing CAE from Controls and CAD, respectively
(Figure 3B and Supplementary Table 6). Eight metabolites were
screened as biomarker candidates via overlapping VIP value
and P-value (Figure 3C). These metabolites were significantly
increased in serum of patients with CAE compared with patients
with CAD and Controls (Figure 3D). To further validate the
eight biomarker candidates screened from the discovery sets,
an independent validation set (n = 180) was used, and these
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FIGURE 2 | Metabolic profiles of lipids in plasma from different subjects. (A) Comparison of 99 plasma metabolites concentrations in 72 discovery sets. (B) Fold
change of 99 plasma metabolites in 72 discovery sets.

metabolites were detected by target metabolomics. The following
criteria were satisfied to screen useful biomarkers: (1) P< 0.05 for
CAE versus Controls and CAE versus CAD, respectively; and (2)
having the same change trend as the discovery sets. Finally, five
metabolites were screened: 12-hydroxyeicosatetraenoic acid (12-
HETE), 17(S)-hydroxydocosahexaenoic acid (17-HDoHE), EPA,
AA, and 5-HETE (Supplementary Table 7).

Validation of the Diagnostic Performance
of the Biomarker Panel for Coronary
Artery Ectasia
To further validate the diagnostic performance of the biomarker
panel for CAE, a validation set (n = 180) was used. The
serum concentrations of the biomarker panel are shown in
Figure 4A. Biomarker panels were used to validate the diagnostic
performance via a logistical regression model. The results showed
that the biomarker panel had better diagnostic accuracy than
signal metabolites for CAE. The areas under the ROC curve
of the biomarker panel were 0.991 and 0.836 for CAE versus
Controls, 1.00 and 0.904 for CAE versus CAD in the discovery
and validation sets, respectively (Figure 4B and Table 2).

DISCUSSION

In our study, a target metabolomics approach was employed to
analyze the metabolic profile characteristics of FAs in patients
with CAE. PCA analysis showed good discrimination of CAE
from Controls or CAD in the discovery sets by using 36
metabolites of AA, EPA, and DHA. Overall, a biomarker panel,
such as 12-HETE, 17-HDoHE, EPA, AA, and 5-HETE, was

identified for distinguishing CAE from Controls and CAD in
the discovery. The diagnostic activity of the biomarker panel for
distinguishing CAE from CAD and Controls was verified in the
validation sets.

Although approximately half of CAE occurred due to
atherosclerosis, a minority of cases was observed in the absence
of a significant atherosclerotic lesion (Bilik et al., 2015). Patients
with isolated CAE exhibited distinct clinical characteristics, such
as more frequent involvement of the right coronary artery
and a lower frequency of stent implantation (ElGuindy and
ElGuindy, 2017). Moreover, patients with CAE coexisting with
CAD had no additional risk of cardiovascular events compared
to those with CAD only, however, even patients with isolated
CAE had a significantly increased risk for cardiovascular events
due to slow coronary blood flow, microemboli or thrombosis
(Yetkin and Waltenberger, 2007). Besides, Usama Boles’s study
found that serum lipid profiles were different in isolated CAE
compared to atherosclerosis in mixed CAE, which suggested
potentially specific pathophysiology in isolated CAE (Boles et al.,
2017). Therefore, it is not fully justified to conclude that CAE
is a subtype of coronary atherosclerosis. However, the clinical
presentation of CAE and CAD was similar, such as ischemic
cardiomyopathy, unstable angina, and myocardial infarction.
Therefore, healthy subjects and patients with CAD as Control
were enrolled in our study, which was helpful to improve the
accuracy and specificity of our results.

Unsaturated FAs and metabolites as potent endogenous
mediators were involved in regulating various biological
processes, such as inflammation, pain, and blood coagulation
(Schuchardt et al., 2013). AA (C20:4) as omega-6 FAs, EPA
(20:5 n-3), and DHA (22:6 n-3) as omega-3 FAs were essential
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FIGURE 3 | Defining of a potential metabolic biomarker for CAE. (A) Score plot of the first (PC1) and second (PC2) PCs (horizontal and vertical axes, respectively)
from principal component analysis of arachidonic acid metabolites in discovery sets. (B) VIP value of metabolites from PCA analysis in discovery sets. (C) Venn
diagram shows an overlap between metabolites with VIP value > 1 and P-value < 0.05. (D) Fold change of eight serum metabolites from C in discovery sets. CAE,
coronary artery ectasia; PCA, principal component analysis.

polyunsaturated FA and rely largely on the dietary intake
for low conversion rate in adult (Brenna et al., 2009). AA,
DHA, and EPA were catalyzed by lipoxygenases to form regio-

and stereo-selective hydroperoxides and then were reduced
to HETEs, HDoHE, and HEPEs (hydroxy-6E,8Z,11Z,14Z,17Z-
eicosapentaenoic acid), respectively (Brash, 1999). Previous
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FIGURE 4 | Validating the diagnostic performance of the biomarker panel for CAE. (A) Serum concentrations of a defined biomarker panel in the discovery and
validation sets. (B) ROC curves of biomarker panel and signal metabolites in discovery sets and validation sets. CAE, coronary artery ectasia.

studies showed that those oxylipins not only serve as precursors
for leukotrienes and hepoxylins that played a critical role
in regulating inflammation reaction and coagulation process,
but also themselves and downstream products, such as oxo-
ETE (oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid) from HETEs
could regulate various biological processes via G protein-
coupled receptors pathway (Powell and Rokach, 2013). In
our study, a significant increase in serum 12-HETE, 17-
HDoHE, EPA, AA, and 5-HETE level was found in patients

with CAE compared with patients with CAD and Controls,
moreover, those metabolites as biomarker panel could be used to
distinguish CAE from Controls and CAD in the discovery and
validation sets.

Local alteration in coronary tone was involved in the
pathological process of CAE (Yetkin and Waltenberger,
2007). Previous studies showed that vessel endothelial cells
could synthesize and release CYP450-derived FA metabolites
as endothelium-derived hyperpolarizing factors led to the
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TABLE 2 | Results of measurement of the serum metabolite panel in the diagnosis of CAE.

Discovery sets (n = 72) Validation sets (n = 180)

AUC (95% CI) Sensitivity (%) Specificity (%) AUC (95% CI) Sensitivity (%) Specificity (%)

CAE versus Controls

12-HETE 0.967 (0.870–0.997) 100 98.5 0.698 (0.608–0.778) 68.3 86.7

17-HDoHE 0.984 (0.898–1.000) 100 95.8 0.703 (0.613–0.783) 60.0 96.7

AA 0.901 (0.780–0.968) 95.8 75.0 0.714 (0.624–0.793) 55.0 95.0

EPA 0.88 (0.754–0.956) 83.3 79.2 0.715 (0.625–0.793) 50.0 91.7

5-HETE 0.974 (0.881–0.999) 100 91.7 0.648 (0.555–0.733) 58.33 85.00

5-Meta 0.991 (0.910–1.000) 100 95.83 0.836 (0.757–0.897) 80.00 75.00

CAE versus CAD

12-HETE 1 (0.926–1.000) 100 100 0.658 (0.566–0.742) 55.0 91.7

17-HDoHE 1 (0.926–1.000) 100 100 0.659 (0.566–0.743) 50.0 98.3

AA 0.868 (0.739–0.948) 58.3 100 0.721 (0.632–0.799) 55.0 95.0

EPA 0.837 (0.702–0.928) 83.3 70.8 0.739 (0.651–0.815) 55.3 93.3

5-HETE 1.00 (0.926–1.00) 100 100 0.558 (0.465–0.649) 41.67 91.67

5-Meta 1 (0.926–1.000) 100 100 0.904 (0.836–0.950) 86.67 80.00

CAE, coronary artery ectasia; CI, confidence interval; 5-Meta, serum metabolite panel.

hyperpolarization and relaxation of smooth muscle cells
(SMC) by activating Ca2+-dependent K+ channels and the
Na-K-ATPase pathway (Malmsjo et al., 1999). Moreover,
CYP450 inducers can regulate SMC hyperpolarization to
relax the coronary artery by increasing the synthesis of FA
metabolites (Fleming, 2000). Our targeted metabolic profile
showed that the FA metabolites level in plasma was significantly
increased in patients with CAE compared to those in Controls
and patients with CAD. We speculated that those increased
metabolites led to a local alteration in coronary tone by an
endothelium-independent pathway (Nishikawa et al., 1999).

Fatty acid metabolites are closely associated with nitric
oxide (NO) release, while NO overstimulation and medial
thinning were important pathological mechanisms leading to
CAE (Sorrell et al., 1996). FA metabolites as endothelium-derived
hyperpolarizing factors could mediate endothelium-dependent
relaxations via promoting endothelial nitric oxide synthase
(eNOS) expression and NO release (Zuccolo et al., 2016). Indeed,
EPA via upregulation of uncoupling protein 2 activates AMPKα1
resulting in increased endothelial nitric oxide synthase (NOS)
phosphorylation and promoted NO release in aortic endothelial
cells (Wu et al., 2012). Meanwhile, W. Raphael’s study found
that mRNA expression level of NOS2 in leukocytes had a close
association with plasma oxylipid concentrations, especially for
9-HODE and 13-HODE, while 13-HODE as a substrate was
oxidized to the relatively stable 13-Oxo-ODE (Ramsden et al.,
2012; Raphael et al., 2014). Our results showed that higher
concentrations of FA metabolites in the peripheral blood of
patients with CAE than in that of Controls and CAD might
contribute to CAE formation via the NO pathway.

A previous study showed that 10–20% of CEA have been
described in association with inflammatory or connective tissue
diseases, while FAs and their derivatives link nutrient metabolism
to inflammation reaction (Sonnweber et al., 2018). During the
early phase of inflammation, AA is predominantly metabolized

via 5-lipoxygenase (5-LOX), which produces pro-inflammatory
leukotriene, such as leukotriene B4 (LTB4), whereas in the late
phase prostaglandin E2, enhance 15-LOX expression, followed by
a switch from LTB4 synthesis to 5-LOX and 15-LOX-mediated
lipoxin A4 production, which contribute to local inflammation
(Ho et al., 2010). A previous study showed that 5-LOX and 15-
LOX were crucial enzymes that helped in the conversion of AA
to 5-HETE (Sinha et al., 2019). In our study, AA, 17-HDoHE,
and 5-HETE had a significant increase in the peripheral blood of
patients with CAE compared to patients with CAD and Controls,
these metabolites might contribute to CAE formation via an
inflammatory pathway.

Another pathological mechanism of CAE is related to the
metalloproteinase system (Manginas and Cokkinos, 2006). On
the one hand, gene polymorphisms of matrix metalloproteinase
(MMP)-3 were significantly different in patients with CAE
compared to patients with coronary lesions. On the other
hand, cardiac-specific over-expression of MMP-2 could induce
CAE in mice (Dahi et al., 2011). 9-hydroxyoctadecadienoic
acid (9-HODE) was reported to promoting the expression
of metallopeptidase domain 17 to induce SMC apoptosis,
extracellular matrix degradation, and necrotic core growth
(Garbin et al., 2013; Vendrov et al., 2017). Recent studies have
documented that 20-HETE as a CYP450-derived AA metabolite
was correlated with increased elastin degradation by activating
MMP-12 in Ang II-independent pathways (Soler et al., 2018).
In addition to 20-HETE, 15-HETE could also induce MMP
expression in vessel endothelial cells in vivo and in vitro (Prato
et al., 2010; Liu et al., 2018). Therefore, FA metabolites may
induce CAE formation by activating metalloproteinase.

In summary, the present study shows that the plasma FA
profiles of patients with CAE could be seen as biomarkers
to distinguish CAE from Controls and patients with CAD.
Moreover, the diagnostic accuracy of the metabolic biomarkers
was verified in the validation sets. Characterizing the metabolic
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profile of FAs in the peripheral blood from patients with
CAE may help to comprehend the underlying biological
mechanisms of the disease.
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