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Background: Reducing cutaneous scar formation is important for assessing the success of skin wound 
healing. Although it is generally accepted that adipose-derived mesenchymal stem cells (AMSCs) have 
substantial therapeutic potential, efforts are continuously made to improve the outcome of AMSC therapy. 
Post-transcriptional suppression of procollagen-lysine 1, 2-oxoglutarate 5-dioxygenase 1 (PLOD1) in 
AMSCs has been shown to greatly reduce scar formation during skin wound healing, likely through 
modulating macrophage polarization. In the present study, we tested whether a CD73+ subpopulation of 
AMSCs could reduce scar formation compared with CD73– AMSCs.
Methods: The gene profile of CD73+ versus CD73– AMSCs was obtained from a validated public database, 
GSE167219. AMSCs were isolated from adipose tissue surrounding the groin of mice, after which CD73+ 
versus CD73– AMSCs were sorted using flow cytometry. PLOD1 levels were determined in CD73+ versus 
CD73– AMSCs. Then, PLOD1 in CD73– AMSCs was depleted by a short-hair interfering RNA against 
PLOD1 (sh-PLOD1), while PLOD1 in CD73+ AMSCs was increased by expression of a PLOD1 transgene. 
A blade was used to induce a skin injury on the middle back of the mice. Either CD73+ AMSCs or CD73+ 
PLOD1 AMSCs or CD73– AMSCs or CD73– sh-PLOD1 AMSCs were intravenously transplanted 
into the injured region of the mice. Fibrosis and the underlying mechanisms were investigated. Co-
immunoprecipitation was performed to evaluate interaction between CD73 and PLOD1. 
Results: CD73+ AMSCs expressed significantly lower levels of PLOD1, a potent stimulator of fibrosis, 
compared with CD73– AMSCs. Transplantation of CD73+ AMSCs generated significantly reduced fibrosis 
at the skin injury site compared with CD73– AMSCs. However, expression of PLOD1 in CD73+ AMSCs 
abolished its advantageous effects on fibrosis reduction, while depletion of PLOD1 in CD73– AMSCs 
improved the outcome of fibrosis to the levels of transplantation of CD73+ AMSCs. Co-immunoprecipitation 
showed no direct protein interaction between CD73 and PLOD1. 
Conclusions: CD73+ AMSCs are a subgroup of AMSCs with better therapeutic effects on wound healing, 
and can inhibit scar formation through reduced PLOD1 in an indirect manner. 
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Introduction

Damaged cutaneous tissue can be replaced with an abnormal 
connective tissue during tissue regeneration to generate 
a specific structure known as a scar (1). The formation of 
scar impairs the regulator functionality of the normal skin, 
resulting in reduction in tensile and dysfunction (2). Anti-
inflammatory therapy with IL-10 or tumor necrosis factor 
alpha stimulated gene 6, or anti-angiogenesis therapy 
with anti-vascular endothelial growth factor monoclonal 
antibody may help to inhibit scar formation. 

Stem cell transplantation has been shown to be an 
effective treatment during wound healing (3), in which scar 
formation is substantially reduced. Mesenchymal stem cells 
(MSCs), especially adipose-derived MSCs (AMSCs), are 
most used due to their relative safety, easy access, and rich 
abundance (4-7). We recently showed that transcriptional 
regulation of procollagen-lysine 1, 2-oxoglutarate 
5-dioxygenase 1 (PLOD1) expression in AMSCs can further 
improve the therapeutic outcome of AMSCs. PLOD1 has 
been shown to be crucial for lysine residue hydroxylation 
in collagen telopeptides and for the collagen pyridinoline 
to develop fibrotic cross-links (8). Previous studies have 
demonstrated a beneficial effect of PLOD1 suppression 
on skin regeneration with reduced scar formation (9-14). 
However, to the best of our knowledge, our study is the first 
to show that the therapeutic potential of AMSCs can be 
improved by modulation of PLOD1 levels. 

CD73, encoded by the NT5E gene in humans, is 
an enzyme that mediates conversion of adenosine 
monophosphate to adenosine (15). Recent studies have 
shown that CD73 can be used as a marker to separate 
AMSCs into the following two subgroups: CD73+ AMSCs 
and CD73– AMSCs. CD73+ AMSCs demonstrate better 
effects during cardiac muscular regeneration and during 
recovery from spinal cord injury (16,17). However, whether 
CD73+ AMSCs are more beneficial than total AMSCs or 
CD73– AMSCs in skin wound repair, as well as the role 
of PLOD1 in CD73+ AMSCs in terms of regenerative 
potential, is not known, and therefore, addressed in this 
study.

We present the following article in accordance with 
the ARRIVE reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-21-6557/rc).

Methods

Protocols and animals

The present study received approval from the Research and 
Animal Ethics Association of Shanghai Jiao Tong University 
(No. XHEC-F-2021-071) in compliance with Shanghai 
Jiao Tong University institutional guidelines for the care 
and use of animals. A protocol was prepared before the 
study without registration. Both male and female 12-week-
old C57BL/6 mice (about 25 and 20 g, respectively) were 
used in the present study, and were both purchased from 
Shanghai Laboratory Animals Center Laboratory Animal 
Co., Ltd. (Shanghai, China). Mice of different sexes were 
distributed evenly into each experimental group. A 12-h 
light-dark cycle was applied to mouse housing. The mouse 
number in each experimental group was determined by 
power calculations (P<0.05) to guarantee the legitimacy 
of the results. An allocation concealment method was 
applied to reduce confounders. No criteria were used for 
excluding animals during the experiment. No data were 
excluded during the analysis. No humane endpoints were 
involved in the current study. Skin injury was induced as 
previously described. For the in vivo experiment, the mice 
were allocated to the following 9 groups: group 1, mice 
were sham treated; group 2, mice received skin injury and 
transplantation of saline; group 3, mice received skin injury 
and transplantation of AMSCs; group 4, mice received skin 
injury and transplantation of CD73– AMSCs; group 5, mice 
received skin injury and transplantation of CD73– AMSCs 
transfected with scrambled (scr) plasmid; group 6, mice 
received skin injury and transplantation of CD73– AMSCs 
transfected with siRNA for PLOD1 (siPLOD1) plasmid; 
group 7, mice received skin injury and transplantation of 
CD73+ AMSCs; group 8, mice received skin injury and 
transplantation of CD73+ AMSCs transfected with scr; and 
group 9, mice received skin injury and transplantation of 
CD73+ AMSCs transfected with PLOD1 plasmid. 

Isolation and sorting for CD73– versus CD73+ AMSCs

AMSCs were isolated from 12-week-old C57BL/6 mice, as 
previously described. AMSCs were cultured in Dulbecco’s 
modified Eagle medium supplemented with 15% fetal 
bovine serum. For separation of CD73– versus CD73+ 

https://atm.amegroups.com/article/view/10.21037/atm-21-6557/rc
https://atm.amegroups.com/article/view/10.21037/atm-21-6557/rc
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AMSCs, a PE-cy7-conjugated rabbit anti-mouse CD73 
antibody was used for flow cytometry-based cell soring. 
Data were analyzed using FlowJo software (FlowJo LLC., 
Ashland, OR, USA).

Transfection of AMSCs

Transfection of AMSCs was done with Lipofectamine 
3000 reagent (Invitrogen, St Louis, MO, USA) using 
plasmids carrying complete coding sequence for PLOD1, 
or a siRNA for PLOD1 (siPLOD1), or a scr as a control, 
all under control of a cytomegalovirus (CMV) promoter. 
The construct also contained a green fluorescent protein 
reporter (connected with a 2A sequence) with the transgene 
to allow evaluation of the transfection efficiency (about 90% 
in total). 

Transplantation of different AMSCs

A total of 2×106 differently modified AMSCs were prepared 
in 150 μL normal saline and then injected into the tail 
vein of the mice 3 days before injury formation, as the 
transplanted cells need time for homing. 

Histology

Masson trichrome staining was performed using trichrome 
Stain (Masson) kit (Sigma-Aldrich, St. Louis, MO, USA).

Enzyme-linked immunosorbent assay (ELISA)

Protein levels for PLOD1 and CD73 were detected by anti-
PLOD1 or anti-CD73 ELISA kits (R&D, Carpinteria, CA, 
USA), respectively. 

Quantitative polymerase chain reaction 

Total RNA extraction was done using an RNeasy kit 
(Qiagen, Hilden, Germany), and quantitative reverse 
transcription polymerase chain reaction (qRT-PCR) 
was performed with a QuantiTect SYBR Green PCR kit 
(Qiagen, Shanghai, China). Commercial primers were all 
purchased from Qiagen. An 2−ΔΔCt method was used for 
analysis of gene transcript levels. Relative gene expression 
was determined by sequential normalization of the values 
against internal and experimental controls.

Bioinformatics and statistical analysis

A bioinformatics analysis on the differential gene profiles 
of CD73– versus CD73+ AMSCs was done using a validated 
public dataset, GSE167219. The study was conducted 
in accordance with the Declaration of Helsinki (as 
revised in 2013). Data quality was carefully confirmed 
using mean difference plot, mean variance trend plot, 
t-statistic quantile-quantile plot, and boxplot to ensure 
that all of the included data were reliable. All statistical 
analyses (one-way analysis of variance with a Bonferroni 
correction) were conducted by GraphPad Prism software 
(version 7; GraphPad Software, La Jolla, CA, USA). Data 
were represented as mean ± standard deviation and the 
significance was set at P<0.05. 

Results

Validation of a gene profile data for CD73– versus CD73+ 
AMSCs

Recent studies have shown that CD73 can be used as 
a marker to separate AMSCs into the following two 
subgroups: CD73+ AMSCs and CD73– AMSCs. CD73+ 
AMSCs demonstrate better effects during cardiac muscular 
regeneration and during recovery from spinal cord injury 
(16,17). However, whether CD73+ AMSCs are more 
beneficial than total AMSCs or CD73– AMSCs in skin 
wound repair, as well as the role of PLOD1 in the CD73+ 
AMSCs in terms of regenerative potential, is not known. 
Therefore, we first examined public databases to address 
these questions.

A public dataset (GSE167219) was validated by boxplot 
analysis (Figure 1A), mean variance trend plot (Figure 1B), 
t-statistic quantile-quantile plot (Figure 1C), and principal 
component analysis (PCA) plot (Figure 1D) to ensure that 
the data in this database were reliable and for analysis.

PLOD1 levels are significantly higher in CD73– AMSCs 
versus CD73+ AMSCs

We then examined the differential genes between CD73– 
AMSCs and CD73+ AMSCs. The results are shown in 
volcano maps (Figure 2A,2B). We found that PLOD1 levels 
are significantly higher in CD73– AMSCs versus CD73+ 
AMSCs (Figure 2B). To further confirm it, we separated 
CD73– AMSCs versus CD73+ AMSCs by flow cytometry 
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(Figure 2C). The isolated CD73– AMSCs and CD73+ 
AMSCs did not show big difference in morphology in 
culture (Figure 2D). qRT-PCR for CD73 was performed 
on CD73– AMSCs versus CD73+ AMSCs, which confirmed 
the proper separation of populations based onCD73 levels.
PLOD1 levels in CD73+ AMSCs were lower than those 
CD73– AMSCs by more than 80% (Figure 2E).

Preparation of plasmids to modify PLOD1 levels in CD73– 
AMSCs and CD73+ AMSCs

After detecting significantly lower PLOD1 in CD73+ 
AMSCs versus CD73– AMSCs, and demonstrating the 
beneficial effect of AMSCs by PLOD1 depletion, we 
hypothesized that CD73+ AMSCs might have a better 
effect on wound repair and generate reduced scar formation 
compared with total AMSCs or CD73– AMSCs. To prove 
this, we first generated plasmids to modify PLOD1 levels 
through expressing PLOD1 or siPLOD1. Plasmids carrying 

a scr sequence were used as a control (Figure 3A). We first 
confirmed the CD73 mRNA levels (Figure 3B) and CD73 
protein levels (Figure 3C) in CD73+ AMSCs versus CD73– 
AMSCs by qRT-PCR and ELISA, respectively. Neither 
the expression of PLOD1 nor siPLOD1 altered levels of 
CD73 (Figure 3B,3C). Moreover, siPLOD1 significantly 
decreased PLOD1 mRNA levels (Figure 3B) and PLOD1 
protein levels (Figure 3C) in CD73– AMSCs, while PLOD1 
significantly increased PLOD1 mRNA levels (Figure 3B) 
and PLOD1 protein levels (Figure 3C) in CD73+ AMSCs.

Transplantation of CD73+ AMSCs further reduces fibrosis 
after skin injury in mice compared with transplantation of 
total or CD73– AMSCs

The in vivo effects of the specific AMSC subpopulations 
on post-injury fibrosis on mouse skin were then analyzed. 
The mice were assigned to the following nine groups:  
group 1, mice were sham treated; group 2, mice received 

Figure 1 Validation of a gene profile data for CD73– versus CD73+ adipose-derived mesenchymal stem cells. (A-D) GSE167219 public 
dataset was validated by boxplot analysis (A), mean variance trend plot (B), t-statistic quantile-quantile plot (C), and principal component 
analysis plot (D), and ensured that the data in this database were reliable for analysis.
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skin injury and transplantation of saline; group 3, mice 
received skin injury and transplantation of AMSCs; 
group 4, mice received skin injury and transplantation 
of CD73– AMSCs; group 5, mice received skin injury 
and transplantation of CD73– AMSCs transfected with 
scr plasmid; group 6, mice received skin injury and 

transplantation of CD73– AMSCs transfected with 
siPLOD1 plasmid; group 7, mice received skin injury 
and transplantation of CD73+ AMSCs; group 8, mice 
received skin injury and transplantation of CD73+ 
AMSCs transfected with scr plasmid; and group 9, mice 
received skin injury and transplantation of CD73+ AMSCs 

Figure 2 PLOD1 levels are significantly higher in CD73– AMSCs versus CD73+ AMSCs. (A,B) We examined differential genes between 
CD73– AMSCs and CD73+ AMSCs. Results are shown in volcano maps in A and B. We found that PLOD1 levels are significantly higher in 
CD73– AMSCs versus CD73+ AMSCs; (C) we separated CD73– AMSCs versus CD73+ AMSCs by flow cytometry, shown by a representative 
flow chart; (D) isolated CD73– AMSCs and CD73+ AMSCs in culture; (E) quantitative reverse transcription polymerase chain reaction 
for CD73 and PLOD1 on CD73– AMSCs versus CD73+ AMSCs. *, P<0.05. n=5. Scale bars are 100 μm. PLOD1, procollagen-lysine 1, 
2-oxoglutarate 5-dioxygenase 1; AMSCs, adipose-derived mesenchymal stem cells; FSC, forward scatter.
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transfected with PLOD1 plasmid. We evaluated the effects 
on fibrosis 2 weeks after skin injury. Through quantitative 
analysis on fibrotic tissue by Masson staining, we found that 
transplantation of CD73+ AMSCs resulted in less fibrosis on 
injured mouse skin compared with transplantation of total 
AMSCs, while transplantation of CD73– AMSCs resulted 
in more fibrosis on injured mouse skin compared with 
transplantation of total AMSCs (Figure 4A,4B), suggesting 
that CD73+ AMSCs could have a better therapeutic potential.

Better therapeutic effects of CD73+ AMSCs on skin wound 
repair could result from reduced PLOD1 expression

Next, we found that PLOD1 depletion completely abolished 

increased fibrosis by CD73– AMSC transplantation, while no 
difference was detected between transplantation of CD73– 
AMSCs and transplantation of CD73– AMSCs transfected with 
scr (Figure 4A,4B). Moreover, PLOD1 expression completely 
abolished reduced fibrosis by CD73+ AMSC transplantation, 
while no difference was detected between transplantation 
of CD73+ AMSCs and transplantation of CD73+ AMSCs 
transfected with scr (Figure 4A,4B). Together, these data suggest 
that better therapeutic effects of CD73+ AMSCs on skin wound 
repair could result from reduced PLOD1 expression.

CD73 does not directly interact with PLOD1 

Finally, we examined whether CD73 might directly interact 

Figure 3 Preparation of plasmids to modify PLOD1 levels in CD73– AMSCs and CD73+ AMSCs. (A) Generation of plasmids to modify 
PLOD1 levels through expression of PLOD1 or siRNA for PLOD1 (siPLOD1). Plasmids carrying a scrambled sequence were used 
as controls; (B,C) levels of CD73 and PLOD1 were determined in transfected cells by quantitative reverse transcription polymerase 
chain reaction (B), and by enzyme-linked immunosorbent assay (C). *, P<0.05. n=5. NS, no significance; PLOD1, procollagen-lysine 1, 
2-oxoglutarate 5-dioxygenase 1; AMSCs, adipose-derived mesenchymal stem cells; GFP, green fluorescent protein.
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with PLOD1. Co-immunoprecipitation for CD73 and 

PLOD1 was then performed, showing no direct interaction 

between them (Figure 5). Therefore, CD73 could regulate 

PLOD1 indirectly. 

Discussion

It is very important to generate a more effective stem cell-
based therapeutic approach to boost skin wound repair 
and to determine the underlying cellular and molecular 

Figure 4 Better therapeutic effects of CD73+ AMSCs on skin wound repair could result from reduced PLOD1 expression. In vivo effects 
by these modifications on post-injury fibrosis on mouse skin were assessed. Mice were assigned to the following 9 groups. Fibrosis was 
determined by Masson staining 2 weeks after skin injury, as shown in the representative images (A) and by quantification (B). *, P<0.05. 
n=10. Scale bars are 100 μm. AMSCs, adipose-derived mesenchymal stem cells; PLOD1, procollagen-lysine 1, 2-oxoglutarate 5-dioxygenase 
1; NS, no significance. 
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mechanisms (5-7). PLOD1 appeared to be a rising star at 
the center of the studies, and our recent studies specifically 
used PLOD1 as a potential target. 

Recently, we showed that PLOD1 can be post-
transcriptionally suppressed in AMSCs, which improves the 
outcome of AMSC transplantation for skin wound repair. 
Differential ability of AMSC has a limitation. However, in 
the present study, we further showed that CD73+ AMSCs 
have better therapeutic potential compared with total 
AMSCs, likely due to the low expression of PLOD1. It 
is noteworthy that previous studies have demonstrated 
that CD73+ AMSCs are more like stem cells and have 
a regulatory effect on inflammation, perhaps through 
recruitment and polarization of macrophages (16). We have 
previously shown that the profibrotic effect of PLOD1 
could result from its regulation of macrophage polarization. 
Therefore, the effects of CD73+ AMSCs on macrophages 
could at least partially result from their low expression of 
PLOD1. 

The cross-talk between PLOD1 and CD73 is unknown. 
Several online protein interaction tools have been examined; 
none showed a direct binding relationship between the 
two proteins. Our data also showed no evidence of direct 
interaction between PLOD1 and CD73; therefore, their 
regulatory relationship should be indirect and could involve 
multiple signaling pathways.

In the present study, we did not analyze the recruitment, 
proliferation, and polarization of macrophages by 
CD73+ AMSCs compared with total AMSCs and CD73– 
AMSCs. These should be investigated in future studies, as 

macrophages are likely important targets for both CD73 
and PLOD1. It might also be interesting to compare the 
wound healing effect of CD73+ AMSCs and adipose stem 
cells exosomes. Other potential mechanisms of CD73+ 
AMSCs to inhibit scar formation may involve decreases in 
nitric oxide, p53 and TGFβ activity to inhibit fibroblast 
proliferation.

In conclusion, the current study, we provided robust 
evidence for using CD73+ AMSCs as a novel therapeutic 
approach to boost skin wound repair with attenuated scar 
formation.
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