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ABSTRACT
Background Auditory neuropathy spectrum disorder
(ANSD) is a form of hearing loss in which auditory signal
transmission from the inner ear to the auditory nerve
and brain stem is distorted, giving rise to speech
perception difficulties beyond that expected for the
observed degree of hearing loss. For many cases of
ANSD, the underlying molecular pathology and the site
of lesion remain unclear. The X-linked form of the
condition, AUNX1, has been mapped to Xq23-q27.3,
although the causative gene has yet to be identified.
Methods We performed whole-exome sequencing on
DNA samples from the AUNX1 family and another small
phenotypically similar but unrelated ANSD family.
Results We identified two missense mutations in
AIFM1 in these families: c.1352G>A (p.R451Q) in the
AUNX1 family and c.1030C>T (p.L344F) in the second
ANSD family. Mutation screening in a large cohort of 3
additional unrelated families and 93 sporadic cases with
ANSD identified 9 more missense mutations in AIFM1.
Bioinformatics analysis and expression studies support
this gene as being causative of ANSD.
Conclusions Variants in AIFM1 gene are a common
cause of familial and sporadic ANSD and provide insight
into the expanded spectrum of AIFM1-associated
diseases. The finding of cochlear nerve hypoplasia in
some patients was AIFM1-related ANSD implies that MRI
may be of value in localising the site of lesion and
suggests that cochlea implantation in these patients may
have limited success.

INTRODUCTION
Auditory neuropathy spectrum disorder (ANSD) is
characterised by absent or severely abnormal inner
hair cell (IHC) function as measured by auditory
brainstem responses (ABRs), with preservation of
outer hair cell (OHC) function as indicated by
otoacoustic emission (OAE) and/or cochlear micro-
phonic (CM) testing. First described by Starr et al
in 1996,1 patients with ANSD present with variable
degrees of unilateral or bilateral hearing impair-
ment accompanied by poor speech discrimination
and poor word understanding especially in the
presence of noise. The prevalence of ANSD varies

from 0.5% to 15% among hearing-impaired
patients, with an incidence of about 13% in chil-
dren with severe-to-profound hearing loss.2–4

Consistent with physiological tests of auditory
function, ANSD can be caused by lesions of the
IHC, IHC–auditory nerve synapse, auditory nerve
or auditory cortex.5–7

In many cases of ANSD, the molecular pathology
remains unclear, with underlying aetiologies
running the gamut of genetic abnormalities, toxic/
metabolic derangements, infections, immunological
causes and drugs.8 9 Forty per cent of ANSD is esti-
mated to have a genetic basis with autosomal-
dominant, autosomal-recessive, mitochondrial and
X-linked inheritance all reported.3 The list of
causative genes includes OTOF, PJVK, DIAPH3 and
mtDNA (m.1095T>C) in non-syndromic ANSD
and PMP22, MPZ, TMEM126A and DDDP in syn-
dromic ANSD, although other genetic aetiologies
await discovery.2

In 2006, we reported a large Chinese family
with X-linked progressive auditory and peripheral
sensory neuropathy, and mapped this ANSD locus
(AUNX1) to chrXq23-27.3.10 Using whole-exome
sequencing (WES), we have identified the causal
AUNX1 gene as AIFM1 and show that variants in
this gene are a common cause of familial and spor-
adic ANSD. This finding is noteworthy because
AIFM1 mutations are also associated with mito-
chondrial encephalomyopathy, prenatal ventriculo-
megaly and Cowchock syndrome, three disorders
characterised by developmental disabilities, motor
dysfunction, muscle weakness and brain abnormal-
ities as resolved by MRI.11–13 Our work expands
the spectrum of AIFM1-associated phenotypes and
mandates screening of AIFM1 in small pedigrees
with apparent autosomal-recessive ANSD if
X-linked inheritance cannot be excluded.

METHODS
Family ascertainment and clinical evaluation
Five unrelated Chinese families (AUNX1, 7170,
0223, 2724 and 2423) and 93 sporadic male
patients diagnosed with ANSD were ascertained
through the Department of Otolaryngology, Head
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and Neck Surgery, Chinese PLA General Hospital, from
November 2000 to June 2014. The phenotype of the AUNX1
family has been reported and includes auditory neuropathy and
delayed peripheral sensory neuropathy inherited in an X-linked
recessive pattern. The other four families had a similar clinical
phenotype. In all cases, genes commonly involved in ANSD
such as OTOF, PJVK and DIAPH3 were excluded by Sanger
sequencing. Acquired causes of ANSD such as prematurity,
hyperbilirubinemia, anoxia, hypoxia, congenital brain abnormal-
ities, perinatal intracranial haemorrhage, asphyxia and ototoxic
drug exposure were excluded by medical history.

All participants were examined by a multidisciplinary team
of healthcare providers that included a neurologist, otolaryn-
gologist and audiologist. The evaluation consisted of a compre-
hensive medical history, physical examination with careful
clinical assessment for peripheral neuropathies, pure-tone audi-
ometry, tympanometry, acoustic reflex testing, ABR, distortion-
product OAE testing and electrocochleography. The diagnosis
of ANSD was based on recognised criteria (Guidelines
Development Conference at NHS 2008, Como, Italy).
Neurological examinations included assessments of cranial
nerve function, motor activity, muscle weakness, sensory
impairment and reflexes. Electrophysiological studies including
needle electromyography (EMG), nerve conduction velocity

(NCV) and somatosensory evoked potential (SEP) in seven
patients from the four unrelated families were carried out. The
EMG was performed in the abductor pollicis brevis, tibialis
anterior and vastus lateralis muscles. Motor nerve conduction
velocities (MCVs) of tibial, peroneal, median and ulnar nerves,
as well as sensory nerve conduction velocities (SCVs) of sural,
median and ulnar nerves, were obtained. Amplitudes of com-
pound muscle action potential (CMAPs) and sensory nerve
action potential (SNAPs) were measured from positive to nega-
tive peak values. The Mini Mental State Examination (MMSE)
on the three patients (III: 1, III: 9 and III: 11) of family 2423
was conducted to assess the cognitive function. Select patients
underwent MRI of brain, temporal high-resolution CT and
electrocardiography. Serum enzymes related to energy metab-
olism, such as lactate dehydrogenase and creatine kinase, were
measured.

Peripheral blood samples were obtained and genomic DNA
was extracted according to standard procedures. WES was per-
formed on one person from the AUNX1 family (III: 12) and
three persons from the 0223 family (II: 1, III: 1 and III: 3).
Results were confirmed and validated by Sanger sequencing in
these persons and other available family members (figures 1B
and 2A). Three other small families (7170, 2724 and 2423,
figure 2B–D) and 93 unrelated sporadic cases with ANSD were

Figure 1 Identification of the disease-causing AIFM1 mutation in the AUNX1 family segregating auditory and peripheral neuropathy. (A) Schematic
genetic and physical map of the AUNX1 locus on chromosome Xq23-q27.3. The location of the AIFM1 gene is indicated (Mb, million bps). (B) The
phenotype in AUNX1 family co-segregates with the c.1352G>A (p.R451Q) mutation in AIFM1. The genotypes at c.1352 for the family members are
given: G or GG means hemi- or homozygous for the wild-type (WT) sequence, GA means c.1352G>A heterozygous, and A denotes the mutation in
hemizygous form. Whole-exome sequencing was completed on subject III: 12. (C) Sequence chromatograms of exon 13 of AIFM1 show the
c.1352G>A (p.R451Q) mutation (arrowhead) in affected males (hemizygote) and female carriers (heterozygote). A homozygous WT sequence is
shown on the bottom. (D) Multiple sequence alignment depicts evolutionary conservation of amino acid residue Arg451 (red vertical bar) across
human, bovine, mouse, chicken, Xenopus and zebrafish.
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analysed by Sanger sequencing. Five hundred ethnicity-matched
individuals (250 men and 250 women) with normal hearing
were recruited as normal controls.

Whole-exome sequencing
Quantified, high-quality genomic DNA (2 mg per person) from
one individual from family AUNX1 (III: 12) and three indivi-
duals from family 0223 (II: 1, III: 1 and III: 3) was used for
WES. Each genomic DNA sample was captured using Agilent
SureSelectXT Human All Exon V5 technology (Agilent
Technologies, Santa Clara, California, USA) and enriched librar-
ies were sequenced using the HiSeq 2000 platform (Illumina,
San Diego, California, USA). Raw image files were processed on
the Illumina Pipeline V.1.6 using default parameters, and
sequences generated as 75–90 bp paired-end reads were aligned
to NCBI37/hg19 assembly. Duplicate reads were removed using
Picard (http://picard.sourceforge.net), and clean reads localised
to the target region were collected and analysed by SOAPsnp
(V.1.03).14 Local realignment of insertions and deletions (indels)
and variant annotation were performed using the Genome
Analysis Toolkit (http://www.broadinstitute.org/gatk/).15 By

previously described criteria,16 17 the low-quality variations
were filtered out.

Target enrichment was analysed using NGSrich.18 Variants
were filtered against 1000 Genomes data, and all variants with a
minor allele frequency (MAF) >1% were removed from the
analysis. Functional annotation of genetic variants was per-
formed using ANNOVAR (http://www.openbioinformatics.org/
annovar/). Candidate variants were Sanger validated.

Mutation screening of AIFM1
AIFM1 (NC_000023.10) contains 16 exons. Thirty-two primers
(16 primer pairs) were designed using Primer V.3.0 software and
synthesised by Invitrogen by Life Technology (Beijing, China) to
amplify each exon and exon–intron boundaries (see online sup-
plementary table S1). PCR was performed with PE9700 ther-
mocyclers (Applied Biosystems) using standard conditions.
Amplified products from all ANSD cases and controls were gel
purified and sequenced (ABI 3730, Applied Biosystems).
Nucleotide alterations were identified by sequence alignment
with the NCBI Reference Sequence (RefSeq) using DNAStar
software V.5.0 (DNASTAR, Madison, Wisconsin, USA).

Figure 2 The four auditory neuropathy spectrum disorder families segregating AIFM1 mutations. Pedigree, sequence results and typical audiogram
of each family are shown. Missense mutations c.1030C>T (p.L344F), c.778A>G (p.T260A), c.1264C>T (p.R422W) and c.1265G>A (p.R422Q) were
identified in family 0223 (A), 7170 (B), 2724 (C) and 2423 (D), respectively. These mutations co-segregate with auditory and peripheral sensory
neuropathy while carriers have normal hearing and sensory ability. The genotypes at c.1030, c.778, c.1264 and c.1265 for the available members in
the corresponding family are given respectively. Whole-exome sequencing was completed on three persons in family 0223 (II: 1, III: 1 and III: 3).
Needle electromyography and nerve conduction studies were performed on the individuals from family 7170 (IV: 2), family 0223 (III: 3), family 2724
(II: 4) and family 2423 (III: 1, III: 9 and III: 11). The Mini Mental State Examination was conducted on the three patients in family 2423 (III: 1, III: 9
and III: 11).
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Evaluation of the pathogenicity
Pathogenicity was assessed using PolyPhen-2 (Polymorphism
Phenotyping V.2, http://genetics.bwh.harvard.edu/pph2/index.
shtml), SIFT (http://sift.jcvi.org/), Protein Variation Effect
Analyzer (PROVEAN) (http://provean.jcvi.org/index.php) and
Mutation accessor (http://mutationassessor.org/).

Immunofluorescent staining in mouse inner ear
All experimental procedures were approved by the Institutional
Animal Care and Use Committee of the University at Buffalo
that conform to the guidelines issued by the National Institutes
of Health. Adult mice (C57, 2 months of age) were used for
immunofluorescence studies. The cochlear tissues of basilar
membrane, spiral ligament and the vestibular end-organ of
saccule macula were micro-dissected out as has been
described.19 20 After incubation at 4°C for 24 h with 1% Triton
X100 and 5% goat serum in 0.1 M phosphate buffered saline
(PBS) containing AIF primary antibody (rabbit monoclonal anti-
body against AIF, 1:100, Cat# ab32516, Abcam), the specimens
were then incubated with tetramethylrhodamine isothiocyanate
dextran-conjugated goat antirabbit secondary antibody (1:500,
Cat# F6005, Sigma) in PBS for 2 h at room temperature.
The speciments were next immersed in Alexa-488-
conjugated phalloindin (1:200, Cat#A12379, Invitrogen) for
40 min to label the stereocilia and cuticular plate of the cochlear
and vestibular sensory hair cells, and the F-actin in the gap-
junction of marginal cells of stria vascularis. The nuclei of
tissues were also labelled with 40,6-diamidino-2-phenylindole
dihydrochloride for 30 min. Immunoreactive products were
observed under a confocal laser scanning microscope. As a nega-
tive control, the primary antibodies were omitted.

RESULTS
Identification of missense mutations in AIFM1 by WES
To identify the causative variant at the AUNX1 locus, we com-
pleted exome sequencing of the proband in family AUNX1.
Ninety-nine variants were identified within the AUNX1 locus.
After filtering out synonymous changes and variants found in
<85% of reads (inconsistent with X-linked inheritance in indi-
vidual III: 12, an affected man), 24 variants remained: 17 non-

synonymous variants, 2 in-frame indels and 5 frameshift indels.
Based on incidence data for non-syndromic hearing loss and
auditory neuropathy, we excluded variants with an MAF
>0.001.21 22 Three variants remained—AIFM1 chrX
129267384:G>A; HS6ST2 chrX 131762528:G>A and VCX3A
chrX 6452043:C>A—none of which are reported in the
NHLBI Go Exome Sequencing Project (ESP) (6503 individuals)
or the 1000 Genomes Project (1000G) (1092 individuals).
Because VCX3A is expressed only in male germ cells, it was not
considered further.23 24 Both of the remaining variants were
confirmed in the proband by Sanger sequencing, but only
AIFM1 p.R451Q co-segregated with the phenotype in the
extended AUNX1 family (eight informative meioses were
tested; figure 1A–C). This variant was not found in a screen of
500 normal-hearing ethnicity-matched controls (250 women,
250 men, 750 X chromosomes).

To identify the causative variant in the second family (0223),
we completed exome sequencing of the proband (III: 1), his
affected brother (III: 3) and unaffected father (II: 1). WES gen-
erated an average of 12.3 Gb of sequence, with at least 120×
average coverage for each individual as paired-end, 90 bp reads,
indicating the high quality of sequencing (see online supplemen-
tary figures S1 and S2 and table S2). After mapping to the refer-
ence genome sequence, >99.0% of the targeted bases were
covered sufficiently to pass quality assessment for calling single-
nucleotide polymorphisms (SNPs) and short indels (see online
supplementary table S2). We identified an average of ∼20 700
SNPs in coding regions (exonic), an average of 129 variants
(SNPs and indels) within 2 bp of an exon/intron boundary that
may affect splicing, and an average of 1270 indels in coding
regions (see online supplementary table S3). Because the two
affected individuals share the causal variant when compared
with their normal-hearing father, a total of 807 variants were
retained after filtering against SNP and Indel databases including
dbSNP 141, 1000G, Hapmap 8 and YH (see online supplemen-
tary tables S4 and S5). Among them, 213 variants (including
129 non-synonymous SNPs and splice sites, as well as 84 indels)
were predicted to have a functional impact (see online supple-
mentary tables S6 and S7). Because inheritance was consistent
with an autosomal or X-linked recessive pattern based on family
pedigrees, candidate pathogenic variants selected for further

Figure 3 AIFM1 mutation screening in patients with familial and sporadic auditory neuropathy spectrum disorder (ANSD) with or without
peripheral neuropathy. Graphical representation of AIFM1 structure (upper panel) and its encoded protein (lower panel). AIFM1 gene has 16 exons.
As a flavoprotein with an oxidoreductase enzymatic activity, AIFM1 contains a flavin adenine dinucleotide (FAD)-bipartite domain (in green), a
reduced nicotinamide adenine dinucleotide (NADH)-binding motif (in orange) and a C-terminal domain (in grey). It also has a mitochondria
localisation sequence (in blue) located in the N-terminal region (reference: http://atlasgeneticsoncology.org//Genes/AIFM1ID44053chXq25.html). The
positions of 11 mutations identified in familial and sporadic ANSD cases are shown between the two diagrams (blue lines and red bars). The
c.1352G>A (p.R451Q) mutation identified in the AUNX1 family is located in exon 13, which corresponds to the second FAD domain. The longest
isoform of AIFM1 (NM_004208.3; NP_004199.1) was used as the reference sequence for mutation nomenclature.
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Table 1 Summary of the clinical phenotypes for cases with AIFM1 mutations

Cases ID 7170* 0223* 1302 1757 7187 1747 2724* 3033 6962 2423* 0077 AUNX1* 1806 0046 4678 3305

Mutation†
detected

c.778A>G
(p.T260A)

c.1030C>T (p.L344F)‡ c.1078G>C
(p.G360R)

c.1264C>T (p.R422W)§ c.1265G>A
(p.R422Q)

c.1288C>T
(p.R430C)

c.1352G>A
(p.R451Q)

c.1415C>T
(p.A472V)

c.1424C>T
(p.P475L)

c.1492G>A
(p.V498M)

c.1773C>G
(p.I591M)

Hearing loss
degree¶

Mild Mild Mild Mild Moderate Moderate Moderate Mild Mild Moderate Mild Moderate Mild Moderate Moderate Mild

Tinnitus + − + + + + + + − + − + + − + +
Vertigo − − − − − − − − − − − − − − − −
Unsteadiness + + − − − + + + − + − + − − − −
Numbness of
extremities

+ + − + − + + + − + − + − − − −

Visual
impairment

− − − − − Myopia − − − Myopia − − Myopia − − Myopia

Foot deformity − − − − − − − − − − − − − − − −
Muscle atrophy − − − − − − − − − − − − − − − −
Intellectual
abilities

− − − − − − − − − − − − − − − −

MRI of brain CNH CNH NT NT CNH NT CNH NT NT CNH NT CNH NT NT NT CNH
CT of temporal
bone

− − NT NT − NT − − − − NT − NT NT NT −

*Familial cases, representing the probands of the AN families. The other cases are sporadic cases.
†RefSeq: NM_004208.3, NP_ NP_004199.1, GRCh38/hg38 chrX: NC_000023.11 (130129362..130165887, complement).
‡The mutation of c.1030C>T (p.L344F) was detected not only in family 0223 but also in other three sporadic cases 1302, 1757 and 7187.
§The mutation of c.1264C>T (p.R422W) was detected not only in family 2724 but also in the two sporadic cases 3033 and 6962.
¶The degrees of hearing loss were evaluated based on the recommendations of the EU HEAR project, as described by Stephens (2001), and the detailed audiological data of the auditory neuropathy spectrum disorder cases are summarised in online
supplementary table S9.
+/−, positive or negative finding; CNH, cochlear nerve hypoplasia; NT, not tested.
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analysis were rare homozygous or hemizygous nonsense, mis-
sense, splice site and indel variants with allele frequencies of
≤0.005 in public variant databases. Combined with the pre-
dicted effect on protein function by SIFT, PolyPhen2 and
Mutation Assessor programs, we identified five variants (includ-
ing one rare SNP and four indels) to be candidates (see online
supplementary table S8). After Sanger sequencing and genotyping
in all available family members, the only variant segregating
with the phenotype (auditory and peripheral sensory neur-
opathy) of family 0223 was c.1030C>T (p.L344F) in the
AIFM1 gene (figure 2A). This variant is recorded in dbSNP
(rs184474885, http://www.ncbi.nlm.nih.gov/projects/SNP) with
a very low MAF (A=0.0005, 2/3775). Interestingly, although
this variant is recorded as an SNP in 1000G, it was not found
in the screen of 500 normal-hearing ethnicity-matched controls
in Chinese populations (mentioned above).

Mutation spectrum of AIFM1 in familial and sporadic ANSD
To investigate the contribution of AIFM1 to ANSD in China, we
screened this gene for mutations in our extended familial and spor-
adic ANSD cohort; identifying 10 more novel missense mutations
in three additional families and 11 of 93 (10%) men with an
ANSD phenotype (figure 3, table 1 and online supplementary
table S9). In all cases of familial ANSD, the identified missense
mutations (c.778A>G [p.T260A], c.1030C>T [p.L344F],
c.1264C>T [p.R422W], c.1265G>A [p.R422Q], c.1352G>A
[p.R451Q]) completely segregated with the auditory and periph-
eral sensory neuropathy phenotype, with female carriers not
reporting any signs of ANSD or peripheral sensory neuropathy
(figures 1B and 2). Two variants identified in familial ANSD,
c.1030C>T (p.L344F) and c.1264C>T (p.R422W), were also
detected in sporadic ANSD cases, with similar phenotypes
(table 1). All of the 10 additional AIFM1 mutations were also
absent in the screen of normal-hearing ethnicity-matched controls
(750 X chromosomes). None of these variants were found in ESP
or 1000G except c.1030C>T (p.L344F) (see online supplemen-
tary table S10).

Clinical manifestations of AIFM1-associated ANSD
The phenotype associated with the AUNX1-causing AIFM1
p.R451Q mutation is characterised by childhood-onset ANSD
and delayed peripheral sensory neuropathy presenting as
extremity numbness, unsteadiness and areflexia.25 This clinical
picture was seen with the other familial cases of AIFM1 ANSD
(0223, 7170, 2724 and 2423) and in some patients with spor-
adic AIFM1 ANSD (table 1 and online supplementary table S9).
The electrophysiological findings of 14 nerves in seven affected
familial members were obtained (see online supplementary table
S11). Nerve conduction studies demonstrated reduced sural,
median and ulnar sensory NCVs or even absent responses. The
reduced SCVs were always associated with reduced SNAPs (see
online supplementary figure S3). The abnormal SEP results were
also recorded, including no response or prolonged latency for
the evoked potential P40 of tibial SEP, with or without pro-
longed latency of N9 potential of median SEP (see online sup-
plementary figure S4). The data indicated that the patients
might have demyelination changes in the peripheral sensory
nerves. However, the MCVs and CMAPs of all patients were
normal (see online supplementary figure S3). Needle EMG per-
formed in these patients also showed normal values. There were
no fibrillation, positive or fasciculation potentials and myotonic
discharges were not observed. The patients also showed normal
motor unit action potentials (see online supplementary figure
S5). All of these findings suggested that the affected patients had
evidence of peripheral sensory neuropathy but not motor neur-
opathy nor myopathy. The MMSE scores of patients III: 1, III:
9 and III: 11 from family 2423 were in the normal range
(27–30): 28, 27 and 28, respectively with their corresponding
educational backgrounds of junior college, high school and
middle school. These normal scores (≥27) indicated normal
cognitive function.

Re-examination of patients showed that both hearing impair-
ment and sensory neuropathy slowly progress.10 25 Although
serial cerebral MRI in familial ANSD demonstrated normal
signal intensity in the brain, inclined sagittal MRI of the internal
auditory canals showed bilateral cochlea nerve hypoplasia

Figure 4 Brain MRI imaging and muscle biopsy immune-staining of the patient (III: 3) from family 0223. (A) Serial cerebral MRI with
fluid-attenuated inversion recovery sequence demonstrates normal signal intensity in bilateral centrum semiovale (left panel) and periventricular and
subcortical white matter (right panel). (B) Axial view of the cerebellopontine angle and the internal auditory canal (IAC) shows normal anatomy (left
panel). The two white lines illustrate the plane prescribed for oblique plane sagittal images obtained perpendicular to the nerves of the IAC. The
oblique plane sagittal image (3D-fast-spin echo sequence, middle panel) obtained on the left side demonstrates an abnormally small cochlea nerve
(Cn, white arrow) but a normal size IAC with normal facial (Fn), superior (Vsn) and inferior (Vin) vestibular nerves (green arrows). The right Cn was
symmetrically small (right panel, white arrow). (C–F) Immunohistochemical staining of muscle biopsy (left gastrocnemius) in patient III: 3 shows a
few atrophic myofibers (H&E, C). No ragged red fibres (modified Gomori-trichrome, D), ragged blue fibres (succinate dehydrogenase, E) or targetoid
fibres (nicotinamide adenine dinucleotide-tetrazolium reductase, F) are identified. There is no reduction or absence of cytochrome-c-oxidase
histochemical reactions observed (G).
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(CNH), a finding consistent with the diagnosis of ANSD (figure
4A, B and table 1). No symptoms or signs of muscle wasting,
weakness or atrophy were identified in AIFM1 mutated patients,
and muscle biopsy of the left gastrocnemius in an affected
member of family 0223 (III: 2) revealed only a few atrophic
myofibers (figure 4C–G). All patients with AIFM1 mutations
had normal serum levels of lactate dehydrogenase and creatine
kinase.

Impact on protein structure
We evaluated the functional effects of the 11 amino acid substi-
tutions identified in this study using Polyphen2, SIFT,
PROVEAN and Mutation Assessor.26–30 Nine variants were pre-
dicted to be likely pathogenic by at least three programs. (We
considered the following predictions as pathogenic: Polyphen2,
probably damaging; SIFT, damaging; PROVEA, deleterious;
Mutation Assessor, medium/high functional impact). The excep-
tions, p.R422Q and p.I591M, were predicted pathogenic by
two and one program, respectively (figure 3 and online supple-
mentary table S12). Structural comparison of wild-type versus
mutated AIFM1 protein showed that mutations in the two
flavin adenine dinucleotide (FAD) and reduced nicotinamide

adenine dinucleotide (NADH) domains have greater impact on
the protein surface than mutations in C-terminus (see online
supplementary figures S6 and S7).

Histological findings
Immunostaining of murine inner ear demonstrated ubiquitous
localisation of AIFM1 in the inner, especially to the cytoplasm
of IHC, OHCs and spiral ganglion neurons, consistent with a
role in normal auditory function (figure 5 and online
supplementary figures S8–S9).

DISCUSSION
In 2006, we mapped a novel X-linked auditory neuropathy
locus (AUNX1) to chrXq23-q27.3 in a large five-generation
Chinese family.10 Using WES and confirmatory segregation ana-
lysis, we now report a novel missense change, p.R451Q in
AIFM1, as causally responsible for the phenotype in this family.
Consistent with its playing a major role in ANSD, we have iden-
tified 10 other mutations in AIFM1 in a cohort of familial and
sporadic cases of ANSD of Chinese ethnicity. In all familial
cases, the identified variants (p.T260A, p.L344F, p.R422W and
p.R422Q) co-segregate with the auditory and peripheral sensory

Figure 5 Localisation of AIFM1 in
the murine inner ear by
immunostaining with a monoclonal
AIFM1 antibody. (A) Organ of Corti
whole-mount preparation demonstrates
AIFM1 (red) localisation to the
cytoplasm of inner hair cell (IHC) and
outer hair cells (OHCs), as well as the
surrounding tissue. (B) Control organ
of Corti tissue labelled with only
secondary antibody and phalloidin
(green). (C) Spiral ganglion
whole-mount preparation shows
AIFM1 (red) staining in spiral ganglion
neurons. (D) Control spiral ganglion
tissue labelled with secondary
antibody and phalloidin (green). The
scale bar indicates 15 mm in panels A
and B, and 10 mm in panels C and
D. DAPI, 40,6-diamidino-2-phenylindole
dihydrochloride.
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neuropathy. All 11 variants were absent in a screen of 500
normal-hearing, ethnicity-matched Chinese controls (750 X
chromosomes) and 9 were classified as likely damaging by mul-
tiple bioinformatics programs (see online supplementary table
S12). In aggregate, these data provide abundant compelling evi-
dence to implicate AIFM1 in X-linked recessive ANSD.

AIFM1 encodes apoptosis-inducing factor 1, a flavoprotein
located in the mitochondrial intermembrane space. AIFM1 has
at least two functions.31–33 First, as a caspase-independent death
effector, it mediates caspase-independent programmed cell
death when translocating from mitochondria to the nucleus
upon apoptotic stimuli. And second, as an FAD-dependent
NADH oxidoreductase, it plays an important role in oxidative
phosphorylation, redox control and respiratory chain activity in
healthy cells. To date, AIFM1 mutations have been associated
with a severe mitochondrial encephalomyopathy (COXPD6,
MIM# 300816; caused by p.R201del),11 prenatal ventriculo-
megaly (caused by p.G308E)12 and Cowchock syndrome
(CMTX4, MIM# 310490; caused by p.E493V).13 Common
features of these disorders are developmental disabilities such as
mental retardation, motor dysfunction and muscle weakness,
and abnormal MRI findings in brain.11–13 The AUNX1 pheno-
type is very different from these other phenotypes, as is the
location of the causal mutations in the protein (see online sup-
plementary table S13 and figure S10).

Based on phenotypic variability, it has been suggested that
AIFM-related diseases have differing pathogenic mechanisms.34

In Cowchock syndrome, the p.E493V mutation alters the redox
properties of the mutated protein, resulting in increased apop-
tosis.13 In COXPD6, in comparison, the R201del mutation
reduces activity of respiratory chain complexes I–Vand increases
caspase-independent programmed cell death.11 Most of the 11
mutations identified in this study are located in the NADH and
second FAD domains of AIFM1, which are essential for
FAD-dependent NADH oxidoreductase.

Interestingly, in spite of the widespread expression of AIFM1
in murine inner ear, which is consistent with a role in normal
auditory function, the mutated protein did not affect OHCs
function as measured by distortion product otoacoustic emission
responses (figure 5 and online supplementary table S9). In add-
ition, while some patients with AIFM1 mutations had
MRI-documented CNH, the onset of hearing problems was typ-
ically during adolescence, suggesting that the hypoplasia repre-
sents late-onset and not congenital degeneration (see online
supplementary figure S10; table 1).35 36

ANSD is known to be an extremely complex disease that has
congenital and acquired forms. Extensive clinical testing and
genetic research are invaluable to elucidate underlying mechan-
isms and sites of pathology.37–39 Our finding of bilateral CNH
in AIFM1-related ANSD implies that MRI screening may iden-
tify the site of lesion in some patients with this phenotype.
Furthermore, it suggests that if CNH is an eventual common
outcome cochlea implantation in patients with AIFM1-related
ANSD may meet with limited success.40–42 In most patients, we
were able to diagnose the other aspect of the phenotype, per-
ipheral sensory neuropathy, by clinical and neurophysiological
testing, although the symptoms of sensory neuropathy may
occur many months or even years after the auditory neuropathy
(see online supplementary table S11).

In conclusion, our study identifies AIFM1 as a new causal
gene associated with X-linked auditory neuropathy and delayed
peripheral neuropathy. These results expand the spectrum of
AIFM1-associated diseases to include ANSD. Because female
carriers are unaffected, AIFM1 should be considered in small

pedigrees with apparent autosomal recessive ANSD if X-linked
inheritance cannot be excluded. Further studies are required to
determine the long-term benefit these patients may receive from
cochlear implantation.
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