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Magnetic resonance based diffusion imaging has been gainingmore utility and clinical relevance over the past decade.
Using conventional echo planar techniques, it is possible to acquire and characterize water diffusionwithin the central
nervous system (CNS); namely in the form of DiffusionWeighted Imaging (DWI) and Diffusion Tensor Imaging (DTI).
While each modality provides valuable clinical information in terms of the presence of diffusion and its directionality,
both techniques are limited to assuming an ideal Gaussian distribution forwater displacementwith no intermolecular
interactions. This assumption neglects pathological processes that are not Gaussian therefore reducing the amount of
potentially clinically relevant information. Additions to the Gaussian distribution measured by the excess kurtosis, or
peakedness, of theprobabilisticmodelprovideabetterunderstandingof theunderlying cellular structure. Theobjective
of this work is to providemathematical and experimental evidence that Diffusion Kurtosis Imaging (DKI) can offer ad-
ditional information about the micromolecular environment of the pediatric spinal cord. This is accomplished by a
more thorough characterization of the nature of randomwater displacementwithin the cord. A novel DKI imaging se-
quencebasedona tilted2Dspatially selective radio frequencypulseproviding reducedfieldof view(FOV) imagingwas
developed, implemented, and optimized on a 3 Tesla MRI scanner, and tested on pediatric subjects (healthy subjects:
15; patients with spinal cord injury (SCI):5). Software was developed and validated for post processing of the DKI im-
ages and estimation of the tensor parameters. The results show statistically significant differences in mean kurtosis
(p b 0.01) and radial kurtosis (p b 0.01) between healthy subjects and subjects with SCI. DKI provides incremental
andnovel informationover conventional diffusion acquisitionswhen coupledwithhigher order estimation algorithms.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The process of diffusion is a randomwalk phenomenon and as such
can be governed by a probabilistic distribution. Traditional diffusion and
diffusion tensor imaging (DTI) assumes an ideal Gaussian form of water
displacement regardless of the surroundingmicroenvironment. This is a
limiting assumption as tissue geometry and cellular barriers will neces-
sarily alter the path of diffusion. In contradistinction, Diffusion Kurtosis
Imaging (DKI) attempts to quantify the divergence of water diffusion
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from the ideal Gaussian probabilisticmodel. Bymeasuring excess kurto-
sis amore thorough characterization of tissue complexity can be obtain-
ed as the underlying diffusion distribution can more accurately reflect
the presence of diffusion barriers local to the imaging volume (Jensen
et al., 2005; Jensen and Helpern, 2003; Lu et al., 2006). Kurtosis is de-
fined as the shift of probabilitymass from the shoulders of a distribution
to its center and tails, which is mathematically depicted below:

K ¼ β2−3
μ4

μ2
2

−3
x4
� �

x2h i2
−3:

Because it does not consider kurtosis in the water diffusion distribu-
tion, DTI offers information related to the magnitude and direction of
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Table 1
MRI findings for the five SCI subjects based on T2-weighted images.

Subject MRI findings (T2)

SCI 1 Mild to moderate focal atrophy (C5–C6 to C7–T1); Subtle increase in
intramedullary signal (mid C3 to mid C5); No hemorrhage

SCI 2 Marked focal atrophy w/large focal syringomyelia (mid C7 to mid T1);
Increased intramedullary signal w/mild atrophy (mid C6 to mid C7); No
hemorrhage

SCI 3 Subtle increase in intramedullary signal (C1); Increased signal of left cord
(C7–T1); No atrophy; No hemorrhage

SCI 4 Mild atrophy (C6–C7 to C7–T1); No abnormal intramedullary signal; No
hemorrhage

SCI 5 Tiny focus of increased intramedullary signal (C6–C7); Focal atrophy
(mid C6 to C7–T1) marked at C6–C7 level; No hemorrhage
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diffusion but lacks the ability to detectmicroenvironment viscosity and/
or diffusional barriers (Jensen et al., 2005; Lu et al., 2006; Jensen and
Helpern, 2010; Bester et al., 2010). In addition, the conventional diffu-
sion tensor cannot accurately resolve fiber crossings due to its lack of
ability to completely characterize the diffusion process (Lazar et al.,
2008). The concept of quantifying and characterizing the diffusion pro-
file of different structures has been around for some time in the form of
q-space imaging (QSI) (Cohen and Assaf, 2002; Latt et al., 2008). While
QSI can completely detail the diffusion displacement of water, it lacks
clinical significance at this time due to the need for high gradient
strength systems and longer imaging sessions, which makes it not suit-
able for clinical imaging (Lu et al., 2006; Jensen and Helpern, 2010; Hori
et al., 2012). However, Jensen and Helpern (Jensen et al., 2005; Jensen
and Helpern, 2010) noticed that the application of large gradient fields
introduced signal nonlinearity in the brain subsequently hinting at the
presence of kurtosis (Jensen and Helpern, 2003). By incorporating the
quadratic term of the diffusion signal polynomial expansion, it was pos-
sible to get a more complete characterization of the diffusion process,
namely the kurtosis, while still remaining clinically feasible in terms of
scan duration and hardware requirements (Jensen et al., 2005).

The introduction of the kurtosis tensor in themodel requires the ad-
dition of at minimum one extra b-value, which should not exceed
3000mm/s2 (Lu et al., 2006), and at least 30 gradient directions (15 di-
rections per b-value). This high angular resolution is needed to charac-
terize the kurtosis tensor. As was previously stated, QSI can provide this
information but the need for high b-values, which in turn results in a
lower signal to noise ratio (SNR) due to themore rapid signal dephasing
processmake it infeasible. In contradistinction, DKI can be used to calcu-
late kurtosis metrics as well as the orientation distribution function of
the diffusion distribution regardless of the model used (Lazar et al.,
2008). Simply stated, DKI is a refinement of DTI with DTI being a first
order approximation and DKI being second order. Non-zero kurtosis
may indicate single compartment voxels with barriers or multi-
compartment voxels with normal Gaussian displacements within the
compartment having different diffusion coefficients (Lu et al., 2006).
In essence, no assumptions are made about the compartmental nature
within voxels. This allows for a relatively unrestricted investigation as
to the nature of diffusion through the presence of barriers.

Recent work has investigated DKI in the adult brain and the spinal
cord and it is gainingmomentum in the study of pediatrics populations.
Multiple sclerosis (MS) patients have been studied in an adult popula-
tion within these regions (Bester et al., 2010; Raz et al., 2013; Yoshida
et al., 2013). Given that kurtosis is sensitive to structural changes in iso-
tropic tissues it served as an ideal technique for looking at normal
appearing tissue within this patient population. Significant work is
also being performed to investigate the pediatric brain, particularly
age related developmental microstructural gray and white matter
changes as well as epilepsy (Paydar et al., 2014; Li et al., 2012; Zhang
et al., 2013). Interestingly, kurtosis metrics all continued to increase
with age even as fractional anisotropy (FA) values plateau. This result
is profound in that isotropic microenvironments continued to evolve
and develop even after white matter pathways were established sug-
gesting a higher degree of structure in gray matter than offered by DTI
(Paydar et al., 2014).

Recently, spinal cord DKI was performed on adult patients with cer-
vical spondylosis, a degenerative process which can lead to motor and
sensory dysfunction (Hori et al., 2014). Thirteen patients with cervical
myelopathy were recruited to investigate microstructural changes in
gray and white matter. Tract specific analysis was performed but only
gray matter mean kurtosis (MK) demonstrated statistically significant
differences between affected versus unaffected cords. Affected cords
had an MK of 0.6 ± 0.18 while unaffected cord had a MK of 0.73 ±
0.13with a p-value of 0.0005. This study used an outer volume suppres-
sion (OVS) inner field of view technique for data collection (Wilm et al.,
2007; Wilm et al., 2009). This appears to be the only published study
that has incorporated this imaging strategy into a DKI protocol. In
contrast, the currentwork incorporated a novel tilted 2D RF spatially se-
lective reduced field of view method to reduce in plane distortions and
obtain reliable DKI data. To our knowledge this is the first study to use
such a pulse sequence to extract kurtosis information from the pediatric
spinal cord.

Previous discussions have focused on DKI in the central nervous sys-
tem (CNS), however, it is important to note that DKI has also been ap-
plied to prostate cancer for predicting adverse outcomes (Rosenkrantz
et al., 2013), and to head and neck squamous cell carcinomas (Jansen
et al., 2010), and kidneys (Pentang et al., 2014) to improve DWImodel-
ing fit. It can be seen that diffusion kurtosis imaging has the potential to
be versatile in terms of clinical applicability since it can yield informa-
tion about the underlyingmicromolecular environment of any anatom-
ical region influenced or governed by diffusional processes.

The aim of this work was to implement a novel reduced field FOV
DKI sequence and to optimize the acquisition sequence in terms of scan-
ning time and distortion minimization to investigate clinical applicabil-
ity to pediatric spinal cord injury (SCI). This additional information
could serve as a potential biomarker for further characterization and
quantification of functional changes in the spinal cord as a result of inju-
ry. It is hypothesized that the DKI values obtained from injured cords
will show statistically significant differences when compared with
values obtained from uninjured, healthy cords.

2. Methods

2.1. Subject recruitment

For this study a total of 20 subjects (15 healthy subjects and 5 pedi-
atric patients with cervical SCI) having a mean age of 10 years and
4 months (age range: 6–16) were recruited. All subjects and parents
were provided informed assent and consent of the IRB-approved imag-
ing protocol. Healthy subjects recruited for this studywere typically de-
veloping children/adolescents with no evidence of spinal cord
pathology or traumatic injurywith ameanageof 10years and5months.
10 females and 5 males made up this population. SCI patients were re-
cruited if they had chronic cervical injury andwere free of spinal instru-
mentation. Themean age for SCI patients was 10 years and 1month old
(4males and 1 female). SCI subjects were excluded if their injurieswere
not chronic (b1 year post injury), had pacemakers or other implantable
electrical stimulation devices, were unable to lay supine for 45 min, re-
quired sedation to undergo an MRI, required mechanical ventilation,
containedmetallic fragments (such as bullets), or had suicidal ideations.
Table 1 describes the MRI findings on T2 weighted images for each of
the five SCI patients.

2.2. Image acquisition

Given the inherent limitations with acquiring functional data on the
spinal cord, a specialized acquisition sequence was optimized. Echo-
planar imaging (EPI) suffers from geometric distortions due tomagnetic
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field inhomogeneities as well as susceptibility differences between ad-
jacent anatomical structures. These distortionsmanifest due to accumu-
lated phase differences along the echo train and are indistinguishable
from the modulation needed for spatial encoding. Increasing the gradi-
ent blips along the phase encode direction mitigate these distortions
(Finsterbusch, 2009; Rieseberg et al., 2002) and reduce the need for re-
duction in the field of view in the phase directionwhich can be achieved
through the use of a 2DRF excitation profile.

This inner field of view sequence was implemented on a 3.0 T Sie-
mensVerioMR scanner and optimized for both signal and scan duration
when imaging the pediatric spinal cord. High in-plane resolution axial
diffusion weighted images were acquired to cover the entire cervical
spinal cord (C1–C7) using an 8 channel spine array in conjunction
with a 4 channel neck coil. Imaging parameters optimized for kurtosis
imaging were: 30 diffusion directions, b-values = [0 1000 2000] s/
mm2, voxel size = 0.8 × 0.8 × 6 mm3, field of view = 164 × 47 mm2,
axial slices = 25, TR = 5200 ms, TE = 123 ms, number of averages =
1 (with 6 B0 images), and acquisition time=5:48min:sec. Convention-
al T1 andT2 scanswere also obtained for clinical review. Anesthesiawas
not administered to the subjects in this study and cardiac/respiratory
gating was not used to keep scan times as short as possible.

2.3. Image processing

As diffusionweighted data is analyzed at a voxel level, intrascan and/
or interslice motion can be detrimental to the accuracy of the modeled
results. Motion correction was performed first on the six B0 images to
create a mean image and diffusion weighted images were subsequently
coregistered to themeanB0 (Middleton et al., 2014). This averaging and
coregistration process maximizes the signal to noise ratio (SNR) while
also smoothing out spurious signal spikes.

With the data properly preprocessed, kurtosis tensor estimationwas
performed through the following relation:

ln S bð Þ½ � ¼ ln S 0ð Þ½ �−bDapp þ 1
6
b2D2

appKapp þ O b3
� �

:

The above expression can be discretized and reduced to a linear least
squares problem as outlined in Tabesh et al. (2011)). As the output of
the linear least squares fit gives a simultaneous estimate of both the dif-
fusion and kurtosis tensors it is required to incorporate all b-values used
during acquisition ([0 1000 2000] s/mm2) to solve this minimization
problem. However, inherent signal variability can adversely affect the
accuracy of the calculated results. Signal variability in diffusion imaging
is introduced not only through thermal noise and system instability, but
also spatial and temporal artifacts commonly referred to as physiologic
noise. Physiologic phenomenon such as CSF flow, cardiac pulsation, and
subject motion will precipitate signal perturbations that manifest as
data outliers. These outliers can and will alter the modeled results
with the potential to give an unrealistic characterization of the diffusion
profile for a given imaging region. Physiologic noise has no known para-
metric distribution, unlike Gaussianmodeled thermal noise, and as such
is handled through robust estimators. Robust estimation of tensors by
outlier rejection (RESTORE) is an iteratively reweighted least squares
formulation that attempts to eliminate outliers through weighting out
data points with large residuals (Chang et al., 2005). The RESTORE pro-
cesswas implemented prior to the final kurtosis and diffusion tensor es-
timation to ensure removal of outlier data. This is of particular
importance for spinal cord imaging due to the close proximity to the
heart and lungs.

2.4. ROI definition

After estimation of the diffusion and kurtosis tensors and the gener-
ation of the appropriate diffusion metric maps, regions of interest (RoI)
were drawn to extract information from the whole cord (both gray and
white matter). RoIs were manually drawn on FA maps at every axial
level after being anatomically localized by a board certified neuroradiol-
ogist. Given the qualitative nature of the RoI definition process, every at-
tempt was made to ensure that there was consistent sparing of the
outermargin of the cord of approximately one voxel to avoid partial vol-
ume effects due to CSF contamination. This procedure was followed
throughout all slices for all subjects, both healthy subjects and patients
with SCI. DKI and DTI metrics were calculated at each disk level as well
as the middle of each cervical vertebral body.

2.5. Statistics

Upon definition of whole cord RoIs for each calculated kurtosis and
diffusion metric map, statistical analysis was performed between pa-
tient and healthy groups. A comprehensive data table was created con-
taining slice specific RoI information for FA, MK, mean diffusivity (MD),
radial kurtosis (Krad), radial diffusivity (Drad), axial kurtosis (Kax), and
axial diffusivity (Dax) for each subject. A repeated measure mixture
model was constructed looking at group differences by assigning RoI
level and group composition as the fixed effects. The covariance matrix
was modeled as unstructured and repeated based on level. This type of
repeated measures analysis is advantageous as few inherent assump-
tions are made in regards to the data. One assumption is that the data
is normally distributed at each level for each subject. It also assumes
the level is a fixed effect, indicating that any differences seen between
levels are the same regardless of which subgroup is being investigated
(healthy/patient). A test of this assumption showed no evidence of a
significant level-by-subgroup interactions. All inferences are a direct re-
sult of the model definition and data structure. This technique clusters
level information by subject, using the subject as their own control
and so considers only the measurement variance as the correct error
and not the variance between subjects. The result is essentially a test
of the signal to noise ratio as a measure of method sensitivity. The re-
peated measurement model tests whether there is sufficient evidence
to reject that the twomethods are the same and so are able to conclude
that they are different beyondwhatmay be observed by randomchance
due to measurement variability and not subject selection, expanding
the inference beyond the selected patients to the prescribed patient
population.

Themodel for repeatability was fit by level for eachmetric consider-
ing the subject as the random effect. This provides a maximum likeli-
hood variance estimate of the residual (difference between scans 1
and 2) for the coffee break design. Using the residual variance as the
measurement error enables the calculation of the minimum detectable
difference (MDD), defined as theminimum difference that may be con-
fidently detected in a single patient at a given level. An alpha of 0.05was
selected thereby suggesting that any difference greater than the MDD
has a 95% chance that it was due to a real biological change in the
cord. Since the MDD is defined by the residual (or pooled) measure-
ment error, the detection applies to all patients that meet the same in-
clusion criteria as the patients analyzed. This is a much more
informative statistic than ICC as the ICC is an aggregated statistic and,
as primarily a function of sample heterogeneity, can be unusually high
for highly variable subjects ð σbetween

σbetweenþσwithin
Þ. In essence, high values can

be meaningless in practice and very high values may be solely due to
sample heterogeneity. Additionally, in the absence of residual depen-
dence on the mean, the resulting error is orthogonal, an ideal outcome.

3. Results

Visually, the generated maps of the kurtosis analysis support the
notion that measuring the kurtotic distribution of the water dis-
placement yields a more pronounced definition of different tissue
types as illustrated in Fig. 1. The figure shows the diffusion and kur-
tosis maps of a mid-cervical slice of a healthy, typically developing



Fig. 1. Diffusion and kurtosis maps at the mid-C5 level for a healthy adolescent. Color maps are provided for visualization and help enunciate different contrast mechanisms. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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adolescent. Of particular interest is that inspection of the MK color
map shows better visualization of the gray matter within the cord
which is not seen in the conventional MD image for the same slice lo-
cation. This ability to better define the gray and white matter may
allow more accurate interrogation of various pathologies that affect
the spinal cord. Fig. 2 shows the various DTI and DKI maps of an in-
jured subject. Visually, the results at the C7–T1 level suggest the
presence of a severe trauma to the spinal cord as is evident from
the Bo, DKI and DTI parametric images. The three different slice loca-
tions are shown to highlight the extent of the injury.

The abovemethodology (Section 2) generated a series of results that
help to characterize both the kurtosis and diffusion characteristics of the
normal and injured pediatric spinal cords. To highlight graphical differ-
ences between the two groups, box and whisker plots were created for
each estimated parameter. The first metric to be described is FA, which
was included to ensure that the already established diffusion parame-
ters generated by this algorithm are congruent with previous pediatric
spinal cord work. The first data cluster in Fig. 3 depicts the group differ-
ences between healthy subjects and patients for FA.
Fig. 2. Diffusion and kurtosis maps of a SCI patient showing the various maps at three different
consistent with spinal cord trauma.
It can be seen that typically developing pediatric cords have a FA
value of roughly 0.46 with injured pediatric cords around 0.4. These
value differences are statistically significant with a p-value less than
0.0001. It is important to note that there is a large variance associated
with the patient group which is probably a function of the relatively
low sample size (n = 5), differences between the type of injury (trau-
matic/nontraumatic), and severity of injury.

MK differences are shown in the second data cluster containedwith-
in Fig. 3. Again, similar to FA, patients demonstrate a lower mean kurto-
sis in comparison to typically developing children. Healthy subjects had
a mean value of 0.9 with patients at around 0.8. These results were sig-
nificantly different with a p-value of 0.0113.

Healthy subjects showed Krad values of 0.82 with patients at 0.77
with a significance level of 0.0087. Interestingly, the radial diffusivity in-
creases in patients as shown in Fig. 3. Differences of roughly 0.2 exist be-
tween the groups with a p-value of 0.0383.

Thefinal parameter thatwas investigated is themeandiffusivity, dif-
ferences inwhichwere not found to be significant. Given the lack of sta-
tistical significance that exists for the axial component, it is intuitive that
locations in the cervical cord. The functional maps at the C7–T1 level show abnormalities



Fig. 3. Box plots for each of the seven measured diffusion parameters. Each parameter has a box plot for both healthy (H) participants and patients (P).
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the mean diffusion, which is a function of both the radial and axial con-
stituents, is not significant either.

The results from the repeated measures mixed model are summa-
rized in Table 2.

The final results that need to bementioned are those pertaining to the
repeatability analysis. As mentioned during the statistical methodology
section the following plot (Fig. 4) shows an anatomical level breakdown
describing the MDD for each of the seven calculated diffusion metrics.

The repeatability results are convincing, with the FA MDD being the
most sensitive at detection of an abnormal biological process as this po-
tential biomarker requires the smallest change, while maintaining sta-
tistical significance, to differentiate healthy from pathologic tissue.
Wald confidence intervals are also provided as the model definition in-
cluded unbounded variance components. The asymmetry of these
bounds is due to the fact that this process follows a chi-squared
distribution.

4. Discussion

The results detailed in Section 3 show statistically significant differ-
ences between healthy subjects and SCI patients for FA, MK, Krad, and
Drad. The FA differences follow the trend shown in previous work
(Barakat et al., 2011)with patients having a lower FA relative to healthy
Table 2
Tabulation of statistical results depicted in Fig. 2. Statistically significant results are denot-
ed with an asterisk. Units for MD and the axial/radial diffusivity are given in 10−3 mm2/s.

Healthy (n = 15) Patients (n = 5) Prob N |t |

Mean Std. Err. Mean Std. Err.

MK 0.8955143 0.1268631 0.8284419 0.1537234 0.0113*
MD 1.1605821 0.1685569 1.3132117 0.2314225 0.1486
Krad 0.8529494 0.1823005 0.7436254 0.1669128 0.0087*
Drad 0.8644362 0.1688524 1.0486421 0.2287584 0.0383*
Kax 0.7929434 0.094897 0.7520648 0.1274471 0.0718
Dax 1.7575139 0.205746 1.8520006 0.2603917 0.9037
FA 0.4550699 0.0673923 0.3851518 0.0666581 0.0001*
subjects which is indicative of a more isotropic diffusion pattern due to
disruption ofwhitematter tracts. This result gives additional confidence
that the in-house kurtosis software is robust enough to provide compa-
rable results in terms of parameters calculated from conventional DTI
data sets.

The decrease of MK in patients with SCI suggests the presence of
structural abnormalities since kurtosis is representative of the degree
of structure in an imaging volume. The closer the mean kurtosis gets
to zero, the more perfectly Gaussian the diffusion profile becomes,
which in the spinal cord could be indicative of disruption of the motor
and sensory spinal tracts. Of particular interest and increasing impor-
tance are the investigations of the radial and axial components of kurto-
sis and diffusion datasets. These components may aid in determining
the nature and extent of injury. The radial kurtosis, as previously stated
is the in-plane kurtosis component and could be representative of the
degree of axonal and myelin integrity.

These results show a similar trend consistent with theMSwork pre-
viously discussed. It was shown that both the FA and MK significantly
decreased with an increase in MD when comparing MS patients to
healthy subjects. Also, and more interestingly, both normal appearing
gray matter and white matter demonstrated a decrease in MK in pa-
tients relative to healthy subjects (Bester et al., 2010). Anothermore re-
cent and larger study of MS (19MS patients and 16 healthy subjects) in
the spinal cord showed similar results (Raz et al., 2013). Results of the
whole cord FA and MK as well as white matter FA and the gray matter
MK were significantly decreased in patients while showing an increase
in whole cord MD. This study is another example of how DTI and DKI
metrics can be complimentary and jointly used for a more thorough
characterization of both normal appearing and pathologic tissue in
MS. While the whole cord MD did increase for this work, it was not sta-
tistically significant. However, the consistency in the trend is
encouraging.

Noticing that radial kurtosis decreases while radial diffusivity in-
creases for patients relative to healthy subjects could serve as a potential
biomarker for determination of pathology and/or injury. Each biomark-
er, individually, provides partial information to completely quantify



Fig. 4. Repeatability results showing the minimum detectable difference for each of the seven diffusion parameters at discrete locations along the cervical spinal cord. MDD results were
calculated using α = 0.05. Wald confidence intervals are displayed.
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spinal cord pathology but are complements and add to the total infor-
mation. The additional information from the multiple biomarker char-
acterization of the pathology reduces the overall variability of the
determination of positive or negative pathology and so reduces themul-
tivariate variance when both biomarkers are used.

The lack of statistically significant differences seen for axial compo-
nents of diffusion and diffusional kurtosis may suggest that the
through-plane diffusion has not been altered as a result of injury. Superior
to inferior and inferior to superior communication along the axons may
not be substantially altered, but rather given the radial differences could
be representative of a transection or shearing of the tracts at a given
level due to trauma. It may be as likely that it is more difficult to detect
changes in the inferior to superior direction because the axonal orienta-
tion does little to restrict diffusion in this direction in a healthy cord.

Several limitations exist for this study, primarily the relatively small
sample size of the patient population (n= 5) as well as the type and lo-
cation of the cervical injury. This was also not an age/gender matched
study. The small sample size limits the ability of the results to be ade-
quately generalized over the entire pediatric SCI population. However,
the significant p-values shown in the comparison of healthy to patients
was significant indicating that there is reasonably good evidence that
there is a real difference and it is not likely due to chance. Additionally,
the standard deviations for both healthy and patients are consistent be-
tween groups, which supports (though does not prove) the assumption
of a reasonably good sample from each group.

Also, there are amyriadof inherent limitationswhenperforming func-
tional imaging of the spinal cord (i.e. CSF pulsation and other physiologi-
cal noise). The presence of these physiological contaminants could have
adversely affected the diffusion signal thereby leading to artificially al-
tered results. However, motion correction and outlier rejection tech-
niques were applied to help mitigate these effects as detailed in
Section 2.3. The preliminary nature of this studymade some of these lim-
itations difficult to avoid, however, the results shownare encouraging and
these limiting factors are important questions to address for future work.

From an acquisition and image processing perspective, the manual
ROI definition and slice thickness were also potential limitations. Previ-
ous work has demonstrated moderate to strong agreement for ROI
placements in the pediatric spinal cord (Barakat et al., 2015). All ROIs
were drawn for the whole cord in the axial plane containing both gray
and white matter as outlined in Section 2.4. The 6 mm slice thickness
was required tomaximize signal given the sub-millimeter in-plane res-
olution. Higher field strength, stronger gradients, more RF receive chan-
nels, and/or multiband imaging would have enabled smaller cuts while
providing comparable, if not more, SNR.

5. Conclusion

In conclusion, statistically significant differences were seen for MK,
Krad, Drad, and FA. The FA results yielded confidence that DKI data
sets can reproduce trends seen in DTI for the pediatric spinal cord
while MK differences suggest a lesser degree of micromolecular struc-
ture in patients with spinal cord injury. The radial results also indicate
that in plane diffusion has been more adversely affected by trauma
than its axial counterpart which could represent the transectional na-
ture of an injury (perpendicular to the long axis of the spinal cord). Of
particular interest is the complementary nature of the significant re-
sults. The radial kurtosis tends to decrease in patients with SCI while
the radial diffusion increases. The combination of both these results
could potentially give rise to a more comprehensive biomarker than ei-
ther investigated individually. This is one particular area that needs to
be studied in more depth by looking at the interaction of these radial
components for patients in relation to healthy subjects. The results
shown do demonstrate that DKI can not only replace conventional DTI
in terms of functionality but offer additional information of clinical rel-
evance that canmore completely characterize the nature of water diffu-
sion in pathologic and/or injured tissue.
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